

শস্য শারীরবিজ্ঞান (প্রথম খণ্ড) গ্রহুটি বিশ্ববিদ্যালয়ের স্নাতক ও স্নাতকোত্তর পর্যায়ের উদ্ভিদবিজ্ঞান ছাড়াও কৃষিতন্ত্ব, মৃত্তিকাবিজ্ঞান, উদ্যানতত্ত্ব ও কৃষি আবহাওয়া-বিদ্যা বিষয়ক পাঠ্যসূচির অনুসরণে প্রশীত। ফলন বৃদ্ধিতে শসা উদ্ভিদের শারীরতত্ত্ব গুরুত্বপূর্ণ ভূমিকা রাখে। ফলন বৃদ্ধির জন্য উদ্ভিদের বিভিন্ন অংশের উন্নত অবস্থার গঠন ও সংশ্লিষ্ট পরিবেশ বিশেষভাবে প্রভাব ফেলে। উদ্ভিদ শারীরতত্ত্বের সাথে ঘনিষ্ঠভাধে সম্পর্কযুক্ত মৃত্তিকা ও বায়বীয় পরিবেশ্রে বিভিন্ন প্রভাবক এবং ম্স্য উদ্ভিদের নিত্য প্রয়োজন পানি ও পুষ্টি গ্রহণ এবং ব্যবহার সম্পর্কিত বিস্তৃত বর্ণনা গ্রন্থটির অন্যতম বিশেষত। কিছুটা উচ্চ পর্যায়ের বর্ণনায় উপস্থাপিত পীড়ন সম্পর্ব্বিত পরিবেশগত আলোচনাও বিশেষ গুরুত্ব রাখে। গ্রন্থটির এই খণ্ডে শস্য উদ্ভিদের 'বিভিন্ন গুরুত্বপূর্ণ শারীরবৃত্তীয় প্রক্রিয়ার সুবিস্তৃত বর্ণনা গ্রন্থটির ্বৃদ্ধি করেছে। উপযোগিতা সর্বোপরি পাঠ্যসূচির বিষয়ভিত্তিক গ্রন্থ প্রথমনে যথাসন্তব আধুনিক তথ্য সম্মূদ্ধকরণ ও প্রমিত বানানে প্রকাশ করার ক্ষেত্রে বাংলা একাডেমীর ভূমিকা উচ্চ শিক্ষাস্তরে বাংলায় পাঠ্যপুস্তক অধ্যয়নের অভ্যাস গঠনে অগ্রগণ্য

শস্য শারীরবিজ্ঞান

(প্রথম খণ্ড)

ড, নিশীথ কুমার পাল

প্রফেসর উদ্ভিদবিজ্ঞান বিভাগ রাজনাহী বিশ্ববিদ্যালয়

শস্য শারীরবিজ্ঞান (প্রথম খণ্ড) (উদ্ভিদ শারীরতত্ত্বের মৌলিক ও পরিবেশগত বিষয়)

> প্রথম প্রকাশ মাঘ ১৪০৪7 ফ্রেক্স্যারি ১৯৯৮

বা/এ ৩৭২১ (৯৭–৯৮ পাঠ্যপুস্তক : জ্বীকৃচি : ১)

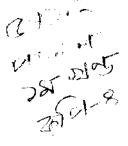
মুদ্রণ সংখ্যা : ১২৫০

পাণ্ডুলিপি প্রণয়ন ও মুদ্রণ তত্ত্বাবধান জীববিজ্ঞান, কৃষিবিজ্ঞান ও চিকিৎসাবিদ্যা উপবিজগ জীকচি ২৪২

> থকাশক গোলাম মঈনউদ্দিন পরিচালক পাঠ্যপুত্তক বিভাগ বাংলা একাডেমী ঢাকা ২০০০

মুদ্রক ওবায়দুল ইসলাম ব্যবস্থাপক বাংলা একাডেমী প্রেস চকো

> প্রক্ষন মোহাস্ফাদ মোহসীন


> > মূল্য

একন্থত বিশ টাকা

SHASSA SHARIRBIJNAN (Crop Physiology Vol-1) by Dr. Nishit Kumar Paul, Published by Gholam Moyenuddin, Dircetor, Textbook Division, Bangla Academy, Dhaka 1000, Bangladesh, First Edition : February 1998, Price : Tk. 120-00 only.

ISBN 984-07-3730-9

ANSDOC LIDIALY

R 7-8

উৎসগ

প্রয়াত মেজদা নীলমণি পাল

শস্য শারীরবিজ্ঞান উদ্ভিদবিজ্ঞানের একটি নতুন ফলিত শাখা। শস্যের সাথে মানুযের সম্পর্ক অবিচ্ছেদ্য। তাই প্রাচীনকাল থেকেই বিভিন্ন শস্যের ভাল গুণাবলীসম্পন্ন উচ্চ ফলনশীল জাত উদ্ভাবনের প্রচেষ্টা চলছে। এতদসস্বেও শস্যের ফলন একটি নির্দিষ্ট সীময়ে পৌছানোর পর আর তেমন বৃদ্ধি পাচ্ছে না। তাই শস্যের ফলনের এই বাধা অতিক্রমের জন্য বিজ্ঞানীরা শস্যের শারীরতত্ত্ব সম্পর্কিত জ্ঞানের উপয় বেশি গুরুদ্ধ দিয়েছেন।

শস্যের শারীরস্তত্ত্ব বিষয়ক জ্ঞান উদ্ভিদ প্রজননবিদগণ সাফলেরে সাথে ব্যবহার করে ভবিষ্যতে হয়তো শস্যের ফলন ও গুণগত মান আরও বৃদ্ধি করতে সক্ষম হবেন।

শস্য শারীরবিজ্ঞান বিষয়ে ইংরেজি ভাষায় পুস্তকের সংখ্যা বেশ কম। বাংলায় দুটি খণ্ডে প্রকাশিত শস্য শারীরবিজ্ঞানের গ্রন্থ দুটিই এই বিষয়ে জ্বমার প্রথম পুস্তক। ইংরেজি ভাষায় প্রশীত বিভিন্ন পুস্তক, বিজ্ঞান সাময়িকী এবং আমার গবেষণা কর্মের অভিজ্ঞতার আলোকে পুস্তকটি লেখা হয়েছে। গ্রন্থপঞ্জিতে উঞ্চেখিত পুস্তকগুলো থেকে আমি অনেক সাহায্য নিয়েছি।

শস্য শারীরবিজ্ঞান (১ম খণ্ড) গ্রন্থে শস্য উদ্ভিদের শারীরওত্বের সাথে ঘনিষ্ঠভাবে সম্পর্কযুক্ত মৃত্তিকা ও বায়বীয় পরিবেশের বিভিন্ন প্রভাবক এবং শস্য উদ্ভিদের পুষ্টি ও পানি গ্রহণ সম্পর্কিত বর্ণনা সাতটি অধ্যায়ে উপস্থাপিত হয়েছে।

ছাত্র–ছাত্রীদের যোঝার সুবিধাথে পদার্থবিজ্ঞান ও গণিতের ব্যবহার বহুলাংশে পরিহার করা হয়েছে। এ বিষয়ে বিস্তারিত জানতে হলে গৃন্থপঞ্জিতে উল্লিখিত পুস্তক থেকে তথ্য পাওয়া যাবে।

পুস্তকটি লেখার ব্যাপারে বন্ধুবর ড. শ্যামল কুমার রায়, সংযোগী অধ্যাপক, উদ্ভিদবিজ্ঞান বিভাগ, জাহাঙ্গীরনগর বিশ্ববিদ্যালয় যথেষ্ট উৎসাহ যুগিয়েছেন, তাঁকে অনেক ধন্যবাদ। আমার শত্রী দেবশ্রী এবং প্রান্ডন ছাত্র দিবাকর কুমার সরকার ও অরুন কুমার দাশ চিত্রের ব্যাপারে যথেষ্ট সহায়তা করেছে। তাঁদের কাছে আমি ঝণী। আমার শত্রী ও পুত্রদ্বয় পুস্তকটি লেখার সময় সুখময় পরিবেশ সৃষ্টি করে আমাকে সহায়তা করেছে, তাদেরকে ধন্যবাদ।

পরিশেযে, পুস্তকটি সার্বিক তত্ত্বাবধানে সুন্দরভাবে প্রকাশের জন্য বাংলা। একাডেমীকে আন্তরিক ধন্যবাদ।

উদ্ভিদবিজ্ঞান বিভাগ এজন্যাহী বিশ্ববিদ্যালয়

স্চিপত্র

প্রথম	অধ্যায়	:	সাধারণ আলোচনা	
দ্বিতীয়	অধ্যায়	:	মৃত্তিকা পরিবেশ	২৪
তৃতীয়	অধ্যায়	:	বায়বীয় পরিবেশ	88
চতুৰ্থ	অধ্যায়	:	পানির সরবরাহ ও ব্যবহার	
পদ্ধম	অধ্যায়	:	শস্য উষ্টিদের খনিজ্ব পুষ্টি	222
ষষ্ঠ	অধ্যায়	•	পরিবেশগত পীড়ন	500
সপ্তম	অধ্যায়	:	সালোকসংশ্লেষণ, আন্ধকার শ্বসন এবং আলোক শ্বসন	১ ৮৬
			তথ্যপঞ্জি	222
			গ্রহপঞ্জি	ર 8૯
				100

প্রথম অধ্যায়

সাধারণ আলোচনা

শস্য হলে। একক উদ্ভিদের সমাবেশ যা সাধারণত একই প্রজাতিভুক্ত এবং জিনের সভাওল জ মেটিমুটিভাবে একই প্রকার এবং এটি মানুষের প্রয়োজনীয় কোনো দ্বব্যের জন্য মিশিষ্ট এলাকর জন্মনো হয়।

শস্য কতকগুলো উপাদান নিয়ে গঠিত। যথা– প্রাথমিক প্রোপাগিউলের ব্যান্যকে propagules) আকার, সংখ্যা ও প্রকৃতি, অন্টোজেনির সময়ে উদ্ভিদের বৃদ্ধি ও কায়কারি চা এক যে পরিবেশে ও ঘটনাগুলো ঘটে যথা– বহিস্থ: পরিবেশ এবং সহযোগী উদ্ভিদের আকার, গঠন ও সঞ্চাবিন্যাসের জন্য পরিবর্তিত পরিবেশ। এ সকল উপাদানের পারস্পরিক ক্রিয়া এবং তালের ফলাফল অর্থাৎ শস্যের ফলন এবং গুণগত মান হলো শস্য শারীরবিজ্ঞানের মুখ্য আলোচা বিধায়।

গোড়ার দিকে উদ্ভিদ শারীরবিজ্ঞানীগণ উদ্ভিদে কিভাবে জৈবিক কায়কলাপ সংঘটিত হয় তা জানার জন্য কতকগুলো পদ্ধতি উদ্ভাবন করেন। পরবর্তী সময়ে এই পদ্ধতি গুলোকে বেয়নন সালোকসংশ্লেষণ, শ্বসন ইত্যাদি) গভীরভাবে জ্ঞানার জন্য ব্যাপক গবেষণা চলতে থাকে তা সমগ্র গবেষণালব্ধ বিশাল জ্ঞানকে কয়েকটি গ্রুপে বিভক্ত করা হয় ; যেমন- অণুষ্ঠীববিদা, কোষ জীববিদ্যা, প্রাণ-রসায়ন, প্রাণ-পদার্থবিদ্যা এবং উদ্ভিদ শারীরবিজ্ঞান। এ সমগ্র প্রাকৃতিক পারবেশে অবস্থিত উদ্ভিদ সম্প্রদায় ও তাদের উপর নির্ভরশীল সহযোগী জীবসমূহের উপর পারবেশের অবস্থিত উদ্ভিদ সম্প্রদায় ও তাদের উপর নির্ভরশীল সহযোগী জীবসমূহের উপর পারবেশের প্রথির আছে তা জানার জন্য গবেষণা পরিচালিত হয় যা পরবর্তীকালে পার্থবেশতেরের কি প্রত্বিদ্যা, প্রাণ-রসায়ন, জ্লাণ গেরমণা পরিচালিত হয় যা পরবর্তীকালে পার্থবেশতেরের বিষয়বস্তু হয়। প্রকৃতপক্ষে, উদ্ভিদ পারিবেশতত্ত্ব এবং উদ্ভিদ শারীরবিজ্ঞানের মধ্যভাগে শস্য শারীরাবিজ্ঞানের মবছান। প্রাকৃতিক পরিবেশে শস্য জন্মানোর সময় পরিবেশের বিভিন্ন উপাদানের সাথে শসের শারীরবৃত্তীয় পদ্ধতির কি প্রতিক্রিয়া সৃষ্টি হয় তা উদ্যাটন করাই শস্য শারীরবিজ্ঞানের মণ্ড উদ্ধেণা। একে পরিবেশ বিজ্ঞান না বলে শারীরবিজ্ঞান বলা হয়। কারণ উদ্ধেশ্রীর উদ্ধেন বন্ধিত ড ডন্য সকল জীবের আন্তঃসম্পর্ক বিবেচনা করা হয় ন্য।

শস্য উদ্ভিদ জ্ঞমিতে বপনের পর থেকে শস্যকর্তন পর্যন্ত- এই দীর্ঘ সময় ধরে এদের বাদ্ধ ও বিকাশ ঘটতে থাকে। তবে উল্লেখ্য যে, বীজ অথবা অঙ্গজ প্রোপাদিউল, যা কৃযকেরা মাঠে রপন করে, তা সম্পূর্ণ পৃথকীকৃত একক। প্রত্যেকটি এককে নির্ধারিত বংশগতীয় কমপ্রিমেন্ট থাকে, এক বা একাধিক কেন্দ্রীয় অক্ষ (axis) আছে এবং খাদ্যও মজুদ থাকে। মৃত্তিকা ডেদ করে চারাগাছ এর হওয়ার পর এটি স্বভোজী হয়। সূর্যালোকের উপস্থিতিতে কার্বন ডাই-অক্সাইত ও পানির মাধ্যমে মানোকসংল্লেয়ণ প্রক্রিয়ায় খাদ্য তৈরি করে এবং খাদ্যও মজুদ থাকে। মৃত্তিকা ডেদ করে চারাগাছ এর হওয়ার পর এটি স্বভোজী হয়। সূর্যালোকের উপস্থিতিতে কার্বন ডাই-অক্সাইত ও পানির মাধ্যমে মানোকসংল্লেয়ণ প্রক্রিয়ায় খাদ্য তৈরি করে এবং মূল কর্তৃক খনিজ মৌল উপাদানও পরিশেষণ হয়। এ অবস্থায় শাস্যকে একক জীবের সমষ্টি হিসেবে গণ্য করা যায় যা সুবিস্তৃত জারখানরে নার আচরণ করে। এই কারখানায় উৎপন্ন কিছু দ্রব্য পুন্যায় নতুন যন্ত্রপাতি উৎপাদনে অংশ নেয় ফ্রিছার কংব। এই কারখানায় উৎপন্ন কিছু দ্রব্য পুন্যায় নতুন যন্ত্রপাতি উৎপাদনে অংশ নেয় প্রক্রিয়ায় অংশ কের, এবং প্রত্যেকে কাজের হারের উপর প্রাত্যহিক প্রকৃত উৎপাদনে অংশ নেয় গ্রহিদায় অংশ নেয়, এবং প্রত্যেকের কাজের হারের উপর প্রাত্যহিক প্রকৃত উৎপাদন বিজ্ব লাব আই কোনো সময়ে একক উদ্ভিদের আকার, আয়তন ও নানাবিধ শারীরবৃত্তীয় ক্রিয়ার ডাত নিদেশ .করে প্রংভ্যাহিক উৎপাদনের পরিমাণ। প্রাত্যাহিক উৎপাদনের হার ও বিভিন্ন অন্ধে এদের আনুগাতিক স্থানান্তর নির্ভর করে পরিবেশ ও অন্তঃস্থ নিয়ন্ত্রণ কৌশলের উপর। প্রকৃতপক্ষে, পরিবেশ ও শারীরবৃত্তীয় কার্যাবলীর পারস্পরিক সম্পর্ক শস্যের সমগ্র বিকাশকাল ব্যাসী চলে।

ভেরিয়েশন বা ভেদ

বিভিন্ন উদ্ভিদের মধ্যে যে পার্থক্য দেখা যায়, তাকেই ভেদ বা বিভিন্নতা বলে। যেক্ষেত্রে উদ্ভিদে উদ্ভিদে এই পার্থক্য বংশপরম্পরয়ে স্থায়ী হয় এবং বিভিন্ন পরিবেশে এই পার্থক্য অক্ষুণ্ণু থাকে, তাকে বংশগতীয় ভেরিয়েশন বলে। যদি কোনো প্রজাতিকে ভিন্ন ভিন্ন পরিবেশে জন্মানোর ফলে উদের মধ্যে ভেরিয়েশন হয়, তাকে পরিবেশগত তেরিয়েশন বলে।

ভেরিয়েশন ঘটার আরও একটি উৎস আছে যার আবির্ভাব ঘটে উদ্ভিদের বৃদ্ধি ও বিকাশের সময়। এই ভেরিয়েশন দ্বারা উদ্ভিদের অভ্যস্তরীণ অবস্থার পরিবর্তন বুঝায়। এই জাতীয় অন্টোজেনেটিক পরিবর্তন কখনও কখনও এমন নাটকীয়ভাবে ঘটে—যেমন কাণ্ডের শীর্ষদেশ অঙ্গজ অধস্থা হতে পুষ্পীয় অবস্থায় পরিবর্তিত হয়—তখন একপ্রস্থ জিনের কার্যকারিতা নষ্ট করে দেয় এবং অপর একপ্রস্থ জিনকে সক্রিয় করে তোলে। অন্যান্য পরিবর্তন খুবই নমনীয় এবং এগুলো সময়ের তালে প্রতিফলিত হয়। তবে অন্টোজেনেটিক পরিবর্তনের কারণ যাই হেকে না কেন, সাধারণত এই পরিবর্তন বেশ ব্যাপক। এর ফলে একটি পরিবর্তনের কারণের প্রভাবে উদ্ভিদের ভিন্নতা দেখা দেয়। অপর ফল হলো, একই বংশগতীয় গঠনযুক্ত পপুলেশনের সদস্যদের মধ্য একংই পরিবেশা ভিন্নতা দেখা যায়।

মেরিস্টেমের গুরুত্ব (Importance of Meristem)

নিদিষ্ট অঞ্চলে কোষের বিভাজন, প্রসারলাভ এবং পৃথকীকরণের মাধ্যমে উদ্ভিদের বৃদ্ধি সংঘঠিত হয়। কোষের প্রসারতা ও পৃথকীকরণের ভিন্নতার কারণে উদ্ভিদ অঙ্গের আকারের দৃশ্যমান পার্গক্য হয়। কোষে বিভাজন, কেন্দ্রের সংখ্যা, কার্যকারিতা এবং স্থায়ীত্বের উপর একটি অঙ্গের সাধারণ গঠন এবং আকারের প্রায় সকল রকম পার্থক্য ঘটে। ভ্রাণের মূল ও বিটপের অগ্রভাগে অবস্থিত মেরিস্টেম বীজ বপনের পর কার্যক্ষমণ্ডা ফিরে পায় এবং উদ্ভিদের প্রায় জীবন এটি অঙ্গেল্ল থাকে। কাণ্ডের ক্ষেত্রে, ফুলের উৎপত্তির ফলে বৃদ্ধি সাময়িক বন্ধ থাকে; কোম বিভাজনের জন্য প্রাথমিন কাণ্ডের ক্ষেত্র, ফুলের উৎপত্তির ফলে বৃদ্ধি সাময়িক বন্ধ থাকে; কোম বিভাজনের জন্য প্রাথমিন কাণ্ডের ক্ষেত্র, ফুলের উৎপত্তির ফলে বৃদ্ধি সাময়িক বন্ধ থাকে; কোম বিভাজনের জন্য প্রাথমিন কাণ্ডের ক্ষক্ত গঠিত হয়। একইন্ডাবে পাতার প্রাইমোরডিয়াতে কোয বিভাজনের জন্য প্রাথমিক কাণ্ডের ক্ষেত্র গাতার মেরিস্টেম অবিরত বিভাজিও হয়; কিন্তু এর ক্রিয়ার স্থায় জ সীমাবদ্ধ, ফলে পাতা ২য় সীমিত বৃদ্ধির অঙ্গ। কাফিক মুকুলের ফেত্রে মুকুলটির জন্মলাভের পর বৃদ্ধি চলতে থাকে এবং নতুন পাতা ও মুকুল প্রাইমোরডিয়ার জন্ম দেয় এবং কিছুকাল পর বৃদ্ধি বন্ধ হয়ে যায়। এই বৃদ্ধি পুনরায় ঘটতে পারে আবার নাও পারে। যদি ঘটে, তবে এটি শাখা অথবা গৌণ-কাণ্ড অক্ষে পরিণত হয়। পরবত্রীকালে ক্যামিয়ামের উৎপত্তির ফলে নতুন মেরিস্টেমের জন্ম ২য় যা উন্টিদের জীবনের চিরস্তায়ী। অসংখ্য পাশ্রীয় মূলের জন্ম হয় যার শীর্যে **হায়ী মেরিস্টেমে এ** পশ্চাতে ক্যান্ধিয়াম মেরিস্টেম থাকে। পাতা, ফুল ও ফলের মেরিস্টেমের স্থায়ীহ্বকাল বেশ কম।

পাতার প্রাইমোরডিয়ার উৎপত্তি হয় কাণ্ডের বাইরের স্তরের কোষ হতে। ফুলের প্রাইমোরডিয়া কাণ্ডের সকল স্তর হতে জন্মায় এবং এক্ষেত্রে কাণ্ডের অক্ষের বৃদ্ধি বন্ধ থাকে। কারণ কাণ্ডের অগ্রতাগে ফুল জন্মায়। যদি অধিকাংশ অক্ষের ফুল একই সঙ্গে ফোটে, তাহলে শীঘ্রই উদ্ভিদটি মারা যায়। যদি এটি বৃদ্ধির প্রথম বছর ঘটে, তবে এসকল উদ্ভিদকে বর্যজীবী এবং দ্বিতীয় বছর ঘটলে দ্বি–বর্যজীবী উদ্ভিদ বলে। প্রকৃত বহুবর্যজীবী উদ্ভিদের অনেক অঙ্গজ কাণ্ড শীর্ষে থাকে: এদের মধ্যে প্রজাতির কিছু উদ্ভিদের শীর্য ফুলে ফুলে বিকশিত হয়। কিছু প্রজ্ঞাতির টাৰ্ডদ, একন শতাব্দী উদ্ভিদ বহু বছর পরে ফুল ধারণ করে এবং এফেরে প্রধান অফের শীষদেশে ফুল হয়। ফলে পুষ্পধারণের পর উদ্ভিদটি শুকিয়ে মরে যায়। অন্যান্য প্রজ্ঞাতির, যেমন টমেটোর ফেন্ডে লখা যায় যে, যখন শীর্ষস্থ মেরিস্টেম হতে পুষ্পমঞ্জরীর জন্ম হয়, তখন নিমুত্ত মুকুল টাকশত হয়ে অঙ্গজ বিটপের জন্ম দেয়। যদিও কিছুদিন পর এই মুকুলও ফুলের জন্ম দেয়।

নিচে কোষের গড় আয়তন ও শুক্ষ ওজনের পরিসংখ্যান উপস্থাপিত হলো।

পূর্ণাঙ্গা কোষ	মূল	শাত।
আয়তন (ধন মাইক্রোমিটার)	×۲۵۵	0×30 ⁸
শুব্দ ওজন (মাইক্রোগ্রাম)	৬	ło

গুষ্ঠ ওজন হলো প্রায়) অংশ কোষ প্রাচীর (সেলুলোজ, পেকটিন ইতিয়াদ) ুঁ জন্দ প্রোটিন এবং) অংশ অন্যান্য বস্তু।

ভাজক কলা : পূর্ণাঙ্গা কোষের আয়তনের প্রায় <mark>২</mark> অংশ এবং শুক্ষ ওজনের 🔓 অংশ।

'ব্দ্ধি, ডিফারেনসিয়েশন এবং কোঅর্ডিনশন (Growth, Differentiation and Coordination)

খুনির্দিষ্ট কতকগুলো পরিবর্তনের মাধ্যমে উদ্ভিদের আকারে ও আকৃতির বৃদ্ধি ঘটে। আকারের মধেকাঠি হলো উচ্চতা, আয়তন, সঙ্গীব ওজন, শুক্ষ ওজন ইত্যাদি। তবে এগুলোর মধ্যে শুক্ষ ওজন সবচেয়ে বেশি বিশ্বাসযোগ্য, কেননা পানির পরিমাণের স্বন্পকালীন পারিধর্তন এখেতে কোনে সমস্যার সৃষ্টি করে না এবং বায়োমাসে কি পরিমাণ শক্তি সঞ্চিত থাকে শুক্ষ ওজন তার একটি ভাল নিদেশক। যেমন, অধিকাংশ শুক্ষ ওজন সবচেয়ে বেশি বিশ্বাসযোগ, কেননা প্রানির পরিমাণের স্বন্পকালীন পরিবর্তন এক্ষেত্রে কোনো সমস্যার সৃষ্টি করে না, ওজন তার একটি হল নিদেশক। যেমন অধিকাংশ শুক্ষ কলায় (অতি উচ্চ প্রোটিন অথবা ফ্রাট সঞ্চিত ব্যক্ত ব্যটা হল সক্ষিণ্ড শক্তির পরিমাণ শ্বায় ১-৭৪×১০⁹ জুল প্রতি কেজিতে।

সাধারণভাবে উল্লেখ যায় যে, অন্তঃস্থ নিয়ন্ত্রণের জনা কোষ, কলা নগা শালা ডিফারেনসিয়েশন ঘটে। যে পরিবেশীয় প্রকরণের পরিবর্তনের মধ্যে শসা উদ্ভিদ জন্য চালা সংগ্রণত এগুলোর আকৃতির পরিবর্তন খুব কম হয়। আকারের পরিবর্তন এবং কোনো দাদন্দ আকারে পৌছাতে সময়ের অর্থাৎ বৃদ্ধির হারের পার্থক্য প্রধান। তবে এর স্পৃষ্ণ ষ্ট ব্যতিক্রম জাড়ে যেমন পুষ্ণায়ান, শাখায়ন, অঞ্চজ সঞ্চিত অঙ্গ যেমন– কন্দ তৈরি এবং বীজ ও ফলো বিছিল পদর্থের আনুপাতিক স্থানান্তর, এর ফলে গুণগত মানের ভিন্নতা হয়। তবে এই জাতীয় নিয়ন্ত্রণ সম্পর্কে জ্ঞান খাস্পৃণি। তবে এক্ষেত্রে উদ্ভিদ–হরমোন গুরুত্বপূর্ণ ভূমিকা রাখে।

শস্যের শ্রেণীবিন্যাস

বিভিন্নভাবে শস্যের শেশীবিন্যাস করা যায়। যেমন, (১) কৃষিতার্দ্বিক ব্যবহার (agronomic asc). (২) বিশেষ উদ্ধেশ্য (special purpose), (৩) বৃদ্ধিস্বভাব (growth habit) গুরবা জীবন চক (life cycle), (৪) পত্র ধারণের স্থায়িত্ব (leaf retention), (৫) গঠন এবং আকৃতি (structure and form), (৬) জলবায়ুগত অভিযোজন (climatic adaptation), (৭) ব্যবহারগত (usc/ulness), (৮) আলোকশ্বসনিক ধরন (photorespiratory type), (৯) ফটোপিরিওডিক বরন (photoperiodic type), (১০) তাপমাত্রাগত (temperature type) এবং (১১) উদ্ধিদ তার্থিক (botanical)।

১. কৃষিতাত্ত্বিক ব্যবহার

এক্ষেত্র শস্যের ব্যবহুর্ত্তের উপর ভিত্তি করে শ্রেণীবিন্যাস করা হয়। যেমন-

- (ক) দানাশস্য (Cereals): এটি এক প্রকার ঘাস; ভক্ষণযোগ্য বীজের জন্য এগুলো জন্মানো হয়। ধান, গম, যব ইত্যাদি দানাশস্যের উদাহরণ।
- (খ) ভালজাতীয় শস্য (Pulses) : যেমন- মটর, মশুর, ছোলা ইত্যাদি।
- (গ) গবাদিপশুর খাদ্য হিসেবে ব্যবহৃত শস্য (Forage crops) : এটি সজীব অথবা সংরক্ষিত অবস্থায় গবাদিপশুর খাদ্য। ধান, লেগুম, ফ্রুসিফার ইত্যাদি।
- (ঘ) মৃলীয় শস্য (Root crops): স্ফীত মূলের জন্য এই জাতীয় শস্য ব্যবহার করা হয়। যেমন- মিষ্টি আলু, ক্যাসাজ, ইয়াম, সুগারবিট, গাজর, শালগম ইত্যাদি।
- (৬) তন্তু উৎপাদনকারী উদ্ভিদ (Fibre crops) : যেমন- পাট, তুলা, শনপটি, ব্যামি (ramie), তিনি (tlax) ইত্যাদি।
- (চ) টিউবার শস্য (Tuber crops) : গ্রেমন- গোল আলু)
- (ছ) চিনি উৎপাদনকারী শস্য (Sugar crops): যেমন- আখ এবং সুগার্রেট। এগুলোর মিষ্টি রস থেকে চিনি উৎপাদন করা হয়।
- (জ) তেল উৎপাদনকারী শস্য (Oil crops) : যেমন- সরিষা, রাই, বাদাম, সয়ানিন, সূর্যমুখী ইত্যাদি।
- (ঝ) ওষুধ উৎপাদনকারী শস্য (Drug crops) : যেমন- কালমেঘ, কুর্চি, স্থর্পগন্ধা ইতার্চেন।
- (এঃ) রবার উৎপাদনকারী শস্য (Rubber crops) : গ্রমন- Hevea brasilensis I

২. বিশেষ উদ্দেশ্যে শ্রেণীবিন্যাস

অনেক কৃষিবিদ শস্য উদ্ভিদকে বিশেষ উদ্ধেশ্যে শ্রেণীবিন্যাস করেছেন। যেমন–

- (ক) কন্তার শাস্য (Cover crops) : সাময়িকভাবে মৃত্রিকাকে ধরে রাখার জন্য কন্তার শাস্য বন্ধন করা হয় : আলফালফা, ব্লোভার, সয়বিন, কার্টপি, রাই (ryc) এবং বাফহুইট গ্রাজপুণ কাল্যা শাস্য। মৃত্রিকার উর্বরতা শক্তি বৃদ্ধির জন্য কাতার শাস্য সবুজ অবস্থায় চায় করে মাট্টর সাথে মিশিয়ে দিলে একে সবুজ সারাবলে।
- (খ) ক্লাচ শস্য (Carch Crops): অন্য শস্যের পরিবতে বেশ দেরিতে অথব। নির্দিষ্ট শস্য নষ্ট হয়ে গেলে কণ্ট শস্য বপন করা হয়। স্বল্পকালস্থায়ী শস্য যেমন নিলেট এবং বাকতুইট এই উদ্ধেশ্য ব্যবহাত হয়।

- (গ) সঙ্গী শস্য (Companion crops) : এগুলো নাস (nurse) শসং নাজের প্রারাচ হারজেনে) পারাপরিক সুবিধার জন্য দুটি শস্য একত্রে বপন করা হয় এবং সাধারণত নতুন বেনে নাই থেকে প্রথম বর্যে কিছু ফলন পাওয়ার আশায় এটি করা হয়। আলফালফার সাংগ জহকে (oats) সঙ্গী শস্য হিসেবে বপন করলে, প্রথম বছরে আলফালফা প্রাচালীত হওয়ার সময়ের মধ্যেই জই-এর দনো সংগ্রহ করা যায়।
- (ঘ) সাইলেজ শস্য (Silage crops): যে সমন্ত, শৃস্য রসালো অবস্থায় আর্থিক আলে জাজেরে (fermentation) বায়ুরোধী আধারে রেখে লেয়া হয়, তাকে সাইলেও শস্য বলে। অমন ভুট্টা, সরগাম, ফরেজ ঘাম ও লেগুমে।
- (৩) সম্রেলিং শস্য (Soiling crops) : এগুলো সবুজ অবস্থায় কেটে গবলেশজনে বিজ্ঞাননা হয়। যেমন- লেগুমে, ঘাস, কেল, ভুট্টা।
- (চ) ট্রাপ শসা (Trap crops) : কতর্রন্ডলো ফ্রতিকারক পোরামারেড ধরার জন এব শশে বোনা হয়। এই উদ্দেশ্য শেষে এগুলোকে চাম করে মার্টির সাথে আশেয়ে কেন্দ্র হয়। মধ্য ত্র্বল ফেলা হয়।

৩, বৃদ্ধিস্বভাব অথবা জীবনচক্র অনুযায়ী শ্রেণীবিন্যাস

জীবনচক্র অনুস্থারে শাস্যকে গ্রীষ্মকালীন বর্ষজীবী (Summer annual) শীতকালান বয়ঞ্জীব (Winter annual), দ্বি-বর্ষজীবী এবং বহুবর্ষজীবী বলা হয়। পৃথিবীর অধিকাল খাদশেস বয়ঞ্জীবী এবং এদের মধ্যে কোনোটি গ্রীষ্মকালীন বর্যজীবী ও কোনোটি আবার শীতক বীন বয়জীবী। ন্যান বসন্তকালীন গম বসন্তকালে বপন করে গ্রীষ্মের শেযে ফাসল সংগ্রহ করা হয়। এগুলো ভীষ্মকালীন বর্যজীবী।

মপেরদিকে, শীতকালীন গম হেমন্তকালে বপন করা ২য় এবং পরের বহরের খালের খালের এনের জীবন চক্র সম্পূর্ণ হয়। এদেরকে শীতকালীন গম বলা হয়। বয়জীর্বী উদ্ভিদ এক বহুরের মধ্যেই জীবন চক্র সম্পূর্ণ করে। দ্বি–বর্যজীবী উদ্ভিদ এক বহুরের মধ্যেই জীবন চক্র সম্পূর্ণ করে। দ্বি-বর্যজীবী শস্যের জীবন চক্র সম্পূর্ণ করতে দুই থের সময় লগে। স্বার্থেও প্রথম বাধ এট হু গঙেষ্ঠ সঞ্চরী মস্যে জীবন চক্র সম্পূর্ণ করতে দুই থের সময় লগে। স্বার্থেও প্রথম বাধ এট হু গঙ্গু সঞ্চরী হাঙ্গে খাদ্য জমা করে এবং দ্বিতীয় বয়ে প্র্যায়ন এবং রীজ উদ্বোধন হলে। ব্যালির্যা হু গঙ্গু সঞ্চরী হাঙ্গে খাদ্য জমা করে এবং দ্বিতীয় বয়ে প্র্যায়ন এবং রীজ উদ্বোধন হয়। বালা হব হলুদ ছিন্বয়জীবী শস্যের জীবন চক্র সম্পূর্ণ করতে দুই থের সময় লগে। তারং রীজ উদ্বোধন হয়। বালা হব হলুদ ছিন্বয়জীবী সূইট, ক্রোভার, স্গার্থবিট, গাজর, পৌয়জে, বোধাকপি ইত্যান ছিন্বযান্ধনিংল বাদ বহুর্যজীবী শস্যের জীবন চক্র সম্পূর্ণ করতে দুয়োর অধিক বছর সময় লাগে এবং বাজে এবং বাজ মনির্দিষ্টকালের জন্য চলতে পারে। কোনো কেন্দের শস্য ন্যতিশীতোয়া মন্দলের বয়জীবী, বিদ্য দ্বীন্দিষ্টকালের জন্য চলতে পারে। কোনো কেন্দের শস্য ন্যতিশীতোয়া মন্দলের বয়জীবী, বিদ্যু

৪, পত্র ধারণ স্থায় ত্বের শ্রেণীবিন্যাস

মন্ঠ শদ্যে নিয়মতান্ত্রিকভাবে পত্র পাতন দেখা যয় না, ওবে আনেক বুজের শীতক জিলাগ পাতন হয়। এদেরকে পর্ণমোচী উদ্ভিদ বলেন চিরহরিৎ বুক্ষের পাতা সবসময় সবুজ দাবে।

৫. গঠন ও আকৃতিগত শ্রেণীবিন্যাস

ামধিকাংশ মাঠ শস্য বীরুৎ জাতীয় --- ধরম এবং রস্যালে। ও মৌদ বালা দা বে নালানেলেই চালে। কান্ঠল ব্যক্ষর প্রচুর পরিমাণে সৌণ কলা, বিশেষ করে জাইলেম থাকে।

৬, জলবায়ুগত শ্রেণীবিন্যাস

নির্ক্ষারথা বয়াবরা যেসকল শস্য জিল্মে তাসেরকে গ্রীক্ষমগুলীয় শস্য এক এব কেন্দ্র ও বিধায় দ্রুজিওক্ষাংশ বরাবরা শস্ত্রকো নাতিশীভোগ্যা শস্য শলা হয় : গ্রীক্ষমগুলীয়া ও লা ক্রিজিও অঞ্চলের মধ্যবতী অঞ্চলে উৎপন্ন শস্যকে সাব-টেপিক্যাল শস্য বলে। বাংলাদেশের অবস্থান সাব-টেপিকাল এলাকায়।

৭, ব্যবহারগত শ্রেণীবিন্যাস

ব্যবহারের উপর ভিত্তি করে শস্যকে ব্যবহারোপথোগী, ব্যবহারের অনুপোযুক্ত এবং ফতিকারক এই তিন ভাগে ভাগ করা যায়। আগাছা মাঠশস্যের জন্য ফতিকারক ; কেননা আলো, বাগুসে, পানি, খনিজ উপাদান ইত্যাদির জন্য শস্যের সাথে আগাছা প্রতিযোগিতা করে।

৮, আলোকশ্বসনিক শ্রেণীবিন্যাস

C3 শস্যে, যেমন- ধান, গম, সয়াবিন, সরিষা ইত্যাদিতে আলোকশ্বসন আছে। কিন্তু C4 শস্যে, যেমন- ভূট্রা, সরগাম, ইন্ফু ইত্যাদিতে আলোকশ্বসন নাই।

৯, ফটোপিরিওডিক শ্রেণীবিন্যাস

গম, জহু, যব, রাই (rye)-এ দিবাদৈর্ঘ্য ১৪ ঘন্টার বেশি না হলে পুষ্পায়ন হয় না ; ১৪ খন্টার কম হলে অঙ্গজ অবস্থায় থাকে। এদেরকে দীর্ঘ-দিবালোক প্রাপ্ত শস্য বলে। ধান, সরগাম, ভুটা, সয়াবিনে দিবাদৈর্ঘ্য ১৪ ঘন্টার কম হলে পুষ্পায়ন হয়। এদেরকে স্বন্পদিবালোকপ্রাপ্ত শস্য বলে। মাধার কতকগুলো শস্যের পুষ্পায়নে দিবালোকের কোনো ভূমিকা নাই। এদেরকে দিবালোক নিরপেক্ষ শস্য বলে।

১০, তাপমাত্রাগত শ্রেণীবিন্যাস

শস্যের স্বাভাবিক ধৃদ্ধি ও ফলনের জন্য হয় নিমু তাপমাত্রা না হয় উচ্চ তামপমাত্রার প্রয়োজন হয়। এদেরকে যথাক্রমে ঠাণ্ডা এবং উচ্চ–মৌসুমের শস্য বলে। যেমন– গম, যব, রাই (rye) এবং অনেক লেগ্যু ঠাণ্ডা–মৌসুমের এবং ভুট্টা, সরগাম উচ্চ–মৌসুমের শস্য।

১১, উদ্ভিদতাত্ত্বিক শ্রেণীবিন্যাস

উদ্ভিদ শ্রেণীবিন্যাসতন্ত্বে এ বিষয়ে বিস্তারিত আলোচনা করা হয়েছে। এই শ্রেণীবিন্যাস পুস্তকের আলোচন্য বহির্ভত।

শস্য উদ্ভিদের উৎপত্তি

মনুমান করা হয় যে, সকল আবাদি উদ্ভিদের উৎপত্তি হয়েছে বন্য জাত থেকে। তবে উৎপত্তির সঠিক সময় ও স্থান এবং অনেক শস্যের প্রকৃত পূর্বপুরুষ সম্পর্কে আমাদের জ্ঞান সম্পূর্ণ নয়। বর্তমানে গুরুত্বপূর্ণ অধিকাংশ শস্য উদ্ভিদ প্রাগৈতিহাসিক যুগে অতীব আদিমভাবে জন্মাতো। চাধাবদের সূত্রপাত হয়েছে প্রায় দশ হাজার বছর আগে, ধখন প্রাচীনকালের মানুষ পশু শিকার ছাড়াও খদ্যের উৎস বাড়ানের জন্য তাদের চারপাশে যে সমস্ত উদ্ভিদ জন্মাতো তাদের মধ্য থেকে কতরগুলো উদ্ভিদ বাছাইয়ের মাধ্যমে। প্রাচীনকালের অনেক উদ্ভিদ বর্তমানেও চাযাবাদ করা হচ্ছে, চবে অনেক উন্নত অবস্থায়। প্রাচীনযুগের মানুযের কাডে যে সমস্ত উদ্ভিদ অজানা ছিল, সেগুলোও শতাক্ষীর আবর্তে বর্তমানে চায়বোদ করা হচ্ছে। এর অনেক পর মানুযের মধ্যে পরিবেশের স্টেদ্যগ্রিয়তা জাগ্রত হয়, তখন আবাদি উদ্ভিদের তালিকায় পুন্প উৎপাদনকারী উদ্ভিদ, লনের ফন্য ঘ্রস এবং ছায়া প্রদানকারী উদ্ভিদ স্থান পায়। সাধারণ আলোচনা

মানুষ্মহ সকল জীবের খাদেরে জন্য ব্যবহৃত খলেশসের কখন ১০০ কেম মতা প্রাণ ৫০০ সে সম্পর্কে কতিপয় উদ্ভিদবিজ্ঞানী চিন্তাকমক বর্ণনা দিয়েছেন। সুইস ১০৮নবিজ্ঞানী Alphonse Decandolle Origin of Cultivated Plants শীর্ষক এক উ প্রতক মতার কম হার্ণ লেশ সংক্ষরণ ১৮৩০ সালে এবং দ্বিতীয় সংক্ষরণ ১৮৮৬ সালে প্রকাশিত হয় তার্তনি মজন কটিন তি ১৯৯টি শস্য পুরাতন বিশ্বে (old world) এবং ৪৫টি আমেরিকায় উৎপান্ড হয়। গোন্টা জোনায়ে উৎপত্তি হয় ভূট্টা, আলু, মিষ্টি আলু, বাদাম, সূর্যমুখী এবং তামকে হার্ডপোন্ড হয়। গোন্টা জোনায়ে ধান, সমাবিন, সুগার্রাব্যি, ইফু এবং গরালিপস্তর খদ্যের জন্য অধিকাশে গাল ও লেণ্ডা, স্টালান কাউপি, ইয়াম, পাল মিলেটের উৎপত্তি হয় আফ্রিকাতে। তুলার উৎপান্ড ভার্য জোলাধের হয়েক।

পরবর্তী সময়ে বিখ্যাত রাশিয়ান বংশগতিবিদ Nikolai Vavilov ১৯০৬ থেকে ১৯০৬ ফল পর্যন্ত শস্যের উৎপত্তির উপর গবেষণামূলক পরীক্ষাননিরীক্ষা পরিচালন কবেন পৃথিবঁর নান জায়গায় যুরে তিনি হাজার হাজার উদ্ভিদ নমুনা সংগ্রহ করেন। এই অবেষণার ফলাফলের চলার ভিত্তি করে তিনি The Origin, Variation, Immunity and Breading of Cuttorated Plants শীর্ষক পুস্তক প্রণয়ন করেন। রাশিয়ান ভাষা থেকে অনুবাদ করে ধারজীতে এই পৃথকট প্রকাশিত হয় ১৯৫১ সালে। Vavilov মন্তবং করেন যে, নিম্নালাখিত আটটি কেন্দে আবাদ উদ্ভিদের উৎপত্তি হয়েছে:

১, চীন, মধ্য ও পশ্চিমাঞ্চল : সয়াবিন, থব, জই, ব্যকহুইট, ইম্ফু ২০০টি হাওচাট প্রজ্ঞাতর উৎপত্তি হয়েছে।

২, <mark>ব্যমাসহ ভারত : ধান, তুলা, কাউপি সহ ১১৭টি</mark> প্রজ্ঞণত -

্রমধ্য এশিয়া : গম, তুলা, সিসেম, হেম্প,মটর, মশ্রসহ ৪১টি প্রজাত

৪, নিকট প্রাচ্য (এশিয়া মাইনর ও ইরানসহ) : গম, যব, দেই সাংবাধাশার, বাহ, জই,আলফালফাসহ ৮০টি প্রজাতি।

ু ও ভূমধ্যসাগরীয় **এঞ্চল :** ডুরাম, এমার এবং স্পেন্দ্র জম, কিডু ৫০০, যব, ৫০০০২০০০০ প্রজাতি।

৬, পূর্ব আফ্রিকার ইথিওপিয়া–সোমালিলানেও অঞ্চলা: যব ,৬২০ সার্ববিশিষ , ভুর মালম সরগাম, মিলেট, রেড়ি, ছোলা, মনুর, কফিসহ ৩৮টি প্রজ্ঞাতি।

৭, দক্ষিণ মেরিকো ও মধ্য আমেরিকা : ভুট্টা, উচ্চ ভূমির তুলা, মিষ্টি আলুসহ ভলান প্রজাতি।

৮) দক্ষিণ আমেরিকা,বিশেষ করে পেরু, বলিভিয়া ও ইকুয়েভারে, মংশা : আবু, জালন, বাদাম, টমেটোসহ ৪৫টি প্রজাতি।

পরবর্তী বছরগুলোতে অনেক প্রত্নতাদ্ধিক গবেষণার ফলাফল Vaydov-এর এইসর উক্তপের অবস্থান প্রমাণ করেছে।

সাম্প্রতিককালে শস্য উদ্ভিদের উৎপত্তি সম্পকে নানা তথ্যাদ Carl Sauer প্রশীত Agricultural Origins and Dispersals, Jack Harlan প্রণীত Crops and Man জাল Barbara Bender প্রণীত Farming in Prehistory শীর্থক পুস্তকে বিশদভাবে আলোচিত হয়েছে।

Sauer প্রস্তাব করেন যে, প্রায় দশ হাঙ্গার বছর পুরে দক্ষিণ পুর এশিয়ায়, রতম দের থাইল্যান্ডে কৃষিকাজের সূচনা হয়। এই অঞ্চল ১০° উত্তর অফাংশে অবস্থিত হওয়ায় স্ফুর বৃষ্টিপাত হতো এবং তাপামাত্রাও বেশি ছিল---উদ্ভিদের বৃদ্ধির জন্য উপযুক্ত অবস্থা। Sauer এর ামতনেসারে বৃহৎ নদীর অববাহিকার পরিবর্তে বৃক্ষরাজিসহ বনাঞ্চলে কৃষিকাজা শুরু হয়েছিল। তিনি আরও বলেন যে, কৃষির প্রাথমিক অবস্থায় অঙ্গজ জননের বঞ্ছেনীয় বৈশিষ্ট্য আতি দ্রুত স্থায়ী হয়।

Vavilov-এর ধারণা অনুযন্ধী শস্যা-উদ্ভিদের যে সুনিদিষ্ট কেন্দ্রে উৎপত্তি ঘটেছে, সে ধিধয়ে Harlan একমত হতে পারেন নি। তবে তিনি স্বীকার করেন যে, কতিপয় সুনিদিষ্ট কেন্দ্র ছিল, কিন্তু সেই সাথে তিনি আরও বলেন যে, একই সময়ে অনেক প্রজাতির ভিন্ন ভৌগোলিক পরিবেশে উৎপত্তি ঘটেছে, যাকে তিনি "নন–সেণ্টার" নামে অভিহিত করেছেন।

শস্য উদ্ভিদের বিবর্তনে শারীরতাত্ত্বিক দিক (Physiological Aspects of Crop Plant Evolution)

ধন্য প্রোটোটাইপের তুলন্দয় আবাদি শসেরে ধ্যাপক পরিবর্তন ঘটেছে। এসকল শসেরে ফলন বৃদ্ধির লক্ষ্যে মানুযের প্রচেষ্টার জন্য এটি সন্তব হয়েছে। বন্য উদ্ভিদের তুলনায় আবাদি উদ্ভিদের অধিক ফলন, উন্নত ওণগত মান এবং ফল ফেস্টে (shattering) না যাওয়ায় মানুযের ব্যবহারের জন্য অধিক উপযোগী হয়েছে। যুগ যুগ ধরে কয়েক হজোর উদ্ভিদ প্রজাতি থেকে মানুষ তার প্রয়োজনের জন্য কতকগুলো প্রজাতি ব্যহাই করেছে। এই বাছাইয়ের ক্ষেত্রে আদিম মানুষ বেশ পারদশী ছিল, কেননা আধুনিক মানুযের অবদান এক্ষেত্রে বেশ কম। শস্য উদ্ভিদের বিধতনে শারীরবৃত্তীয় দিকগুলো নিচে আলোচনা করা হলো।

১ স্বন্দবিস্তার এবং বর্ষিত বীজাকার (Reduced dissemination and increased seed size) : বন্য গম (Triticum boeoticum এবং T. dicoccides) এবং যবের (Hordeum spontaneum) পুল্পমঞ্জরীর রমকিস কণতঙুর। পরিপত্ম হলে এটি বিসরণের একক হিসেবে ক্ষুদ ক্ষুদ অংশে ভাগ হয়ে যায়। এদের আকৃতি, খুলযুক্ত হওয়য়ে এবং অন্যান্য বৈশিষ্ট্য থাকায় এবা খুল সহজেই মৃত্তিকায় গ্রোধিত হতে পারে। বীজ সংগ্রহের সময় বেশ কিছু সংখ্যক বীজ মৃত্তিকায় গ্রোধিত হতে পারে। বীজ সংগ্রহের সময় বেশ কিছু সংখ্যক বীজ মৃত্তিকায় গ্রোধিত হতে পারে। বীজ সংগ্রহের সময় বেশ কিছু সংখ্যক বীজ মৃত্তিকায় গ্রোধিত হতে পারে। বীজ সংগ্রহের সময় বেশ কিছু সংখ্যক বীজ মৃত্তিকায় গ্রোধিত হতে পারে। বীজ সংগ্রহের সময় বেশ কিছু সংখ্যক বীজ মৃত্তিকায় গ্রোধিত হতে পারে। বীজ সংগ্রহের সময় বেশ কিছু সংখ্যক বীজ মৃত্তিকায় গ্রে পাড় যায় এবং পারের মৌসুমে এগুলো থেকে নতুন উদ্ভিদ জন্দলাভ করে। পদ্যান্তরে, কিছু বিদু ট্রিডিগের, যেন্ডলোর শক্ত র্যাকিস থাকে, অধিক সংখ্যক বীজ সংগ্রহ করা সম্ভব হয় এবং পারবর্তী মৌসুমে আবাসন্থলের পাশে নাইটোজেন সমন্দ মৃত্তিকায় বপন করা হয়। চামাবাদ প্রবর্তনে সাথে শাজ বর্ষে করা হয়, এর ফলে বিস্তার কম কার্যকরী হয়। স্বন্দবিস্তার কার্যকর করার মারামে আবর্গদি উদ্ভিদ এবং তাদের বন্য পূর্বপুরুষের মধ্যে মধ্যে যে পার্থকা পরিলক্ষিত হয়ে, তা কেবল আইনকন (eincorn) এবং এমার গমেই ঘটে নি, অন্যান্য শস্য, যেমন- ভূটা, অবিদায়ী ফল বাছাই করা হয়েছে।

স্বন্ধ বিস্তারের সাথে সাথে বীজের আকার বৃদ্ধির দিকেও নজর দেয়া হয়েছে। যেমন ভিপ্লয়ড গমের ক্ষেত্রে, আবাদি T. monococcum-এর দানার আকার বন্য T. hoeoticum-এর দানার তুলনায় ২ থেকে ৩ গুণ বড়। একইন্ডাবে আবাদি Phaseolus–এর বীজ অনুরূপ বন্য প্রজাতির বীজের তুলনায় প্রায় ৫ থেকে ৮ গুণ বড়।

বড় দানার উদ্ভিদ থেকে শস্যদান। সংগৃহ করা সহজতর। বড় বীজ থেকে যে চারাগাছ জন্মণ্ড। সেগুলো অতিদ্রুত বৃদ্ধি পায়।

২ শস্য, আগাছা এবং অভিযোজনীয়তা (Crops, weeds and adaptibility) : ভূমিন্টিকেশনের প্রাথমিক পর্যায়ে অনাবশ্যক উদ্ভিদ হিসেবে আগাছার গুরুত্ব ছিল খুবই নগনার অনেক শস্য, যেমন ভূট্টা, কুমরা, আলু, রেডি ইত্যাদি প্রথমে মানুযের দৃষ্টি আকর্ষণ করেছিল। কারণ বসতবাড়ির আশপ্যশের জন্মিতে এগুলো প্রচুর পরিমাণে জন্মাতো। অন্যানা শস্য, যেমন- রাই (rye), এবং জই (oats) প্রথমে আগাছা হিসেবে যাত্রা শুরু করে এবং আধর্মিক শসতেয়নন গম ও যবের মতো কম অনুকূল পরিবেশেও তুলনামূলকভাবে অধিক উৎপ্রাদনশীল শস্যে পরিণত হয়।

আগাছার মতো অনেক সফল শস্য উদ্ভিদের বিভিন্ন পরিবেশে খাপ খাইয়ে চলার ক্ষমতা আছে। যেমন– সয়াবিন, আলু, গম, ধান প্রভৃতি শস্যের অনেক আধুনিক ভ্যারাংটিতে দিব। দৈর্ঘ্যের জন্য পুম্পায়ন বন্য ভ্যারাইটির তুলনায় অপেক্ষাকৃত কম বাধ্যতামূলক। প্রকৃতপক্ষে, সার্থ পৃথিবীতে জন্মানোর জন্য মেক্সিকান গম এবং IRRI-র ধান প্রজনন গবেষণার একটি অন্যতম প্রধান উদ্দেশ্য হলো দিবা–দৈর্ঘ্যে সাড়া না দেয়া ভ্যারাইটি উদ্ভাবন করা।

৩. আকারের পরিবর্তন : আবাদি উদ্ভিদ এবং তাদের প্রাচীন পূর্বপূরুষের মধ্যে সবচেয়ে সামঞ্জস্যপূর্ণ এবং স্থায়ী পার্থক্য হলো আবাদি উদ্ভিদের দানবাকৃতি (gigantism)। আকৃতি বৃদ্ধির ব্যাপারটা ঐসব অঙ্গের ফেত্রে বিশেষভাবে বর্তায় যা মানুষ তার প্রয়োজনের জন্য সন্থাহ করে (যেমন- দানা) এবং সেই সাথে সম্পূর্ণ উদ্ভিদের তুলনায় এই অংশের অনুপাত ও একটি গুরু পৃণ বিষয়। আবাদীকরণের (domestication) সাথে সাথে প্রাকৃতিক উপায়ে বীজ বিশ্বোজনের জন্য অবস্থায় টিকে থাকার জন্য অভিযোজনের গুরু কমে যায়। ফলে পাঞ্জত বস্তুর একটি বড় আংশ অনুসার জন্য অভিযোজনের গুরু কমে যায়। ফলে পাঞ্জত বস্তুর একটি বড় আংশ অন্যান্য অঙ্গের বিনিময়ে যাদের প্রয়োজন হিল বন্য অবস্থায় টিকে থাকার জন্য অভিযোজনের গুরু কমে যায়। ফলে পাঞ্জত বস্তুর একটি বড় আংশ অন্যান্য অঙ্গের বিনিময়ে যাদের প্রয়োজন হিল বন্য অবস্থায় টিকে থাকার জন্য হয়। যেমন বন্য গমের তুলনায় আধুনিক গমের দানা ভর্তির (grain filling) সময় অধিক পরিমাণে অ্যাসিমিলেট দানায় স্থানান্তারত হয় এবং অম্প পরিমাণে যায় কুশি (Tiller), মূল ও কাণ্ডে (Evans and Dunstanc, 1970)।

8. গঠনের পরিবর্তন (Changes in composition) : আধুনিক উদ্ভিদে গুণ্ণ আকারের পরিবর্তন নয়, সেই সাথে সংগৃহীত অংশের গঠনেরও ব্যাপক পরিবর্তন হয়েছে বন্য ইয়াম (Yants)-এর বিষাক্ত উপাদ্যন এবং লুপিনের (lupins) কটু পদার্থ দূরীভূত করা হয়েছে। মানুষের প্রয়োজনীয় অন্যান্য উপাদানেরও পরিবর্তন হয়েছে।

যেমন সুগারবিট ও আথের চিনি, ভুট্টার তেল, বাদাম, সম্নাবিন এবং বাই সরিযার তেল ও প্রোটিনের পরিমাণ বাড়ানো হয়েছে। যেমন- খ্রিষ্টপূর্ব যন্ঠ শতাব্দীতে ভূমধ্যসাগরের উপকৃলবর্তী অঞ্চলে সুগারবিট সালাদ উদ্ভিদ হিসেবে জন্মাতো। এর মূলের চিনির পরিমাণ বাড়ানোর কাজ গুরু হয় ঊনবিংশ শতাব্দীর প্রথম থেকে এবং গত একশ বছরে চিনির পরিমাণ ৬ শতাংশ থেকে বেড়ে ২০ শতাংশে দাঁড়িয়েছে। তেল অথবা প্রোটিনের নিদিষ্ট কোনো উপাদান বৃদ্ধির ক্ষেণ্ডেও সফলতা এসেছে। যেমন– ভুট্টা, গম ও যবের সস্যের (endosperm) প্রোটিনে লাইসিন নামক অ্যামাইনো অ্যাসিডের পরিমাণ বৃদ্ধির ফলে এর পুষ্টিগত মান বৃদ্ধি পেয়েছে।

এমনিভাবে বহুকাল ধরে প্রায় সকল শস্য উদ্ভিদ মানুম কতৃক বাছাই হয়েওে এবং এই বাছাইয়ের চাপে তাদের মধ্যে পরিবর্তনও হয়েছে। এদের ব্যবহারের পরিবর্তন হতে পারে এবং সেই সাথে ব্যছাইয়ের প্রকৃতিও ভিন্নতর হবে, কিন্তু শস্য হিসেবে এদের অভিযোজন মানুষের এক স্যুরণীয় কৃতিত্বপূর্ণ কাজ।

খাদ্য উৎপাদনের প্রারম্ভ (Food production beginning)

পৃধিবীতে মানুষের আবির্ভাব হয়েছে প্রায় ৩০ লক্ষ বছর আগে। এসময়ের প্রায় শতকরা ৯৯ ভাগ অংশে মানুষ বেঁচে থেকেছে পশু—পাখি এবং মাছ শিক্ষার করে এবং বন্য ফল- মুল ও লাতা-পাত্রা সংগ্রহ করে। কেবল আনুমানিক দশ হাজার বছর আগে থেকে মানুষ আবাসস্থলের চারপাশে উদ্ভিদ জন্মতে এবং পশুকে গুহুপালিত করতে শুরু করে। ধারণা করা হয় যে, বর্তমানে থাইন্যান্ডে প্রথম কৃষির সন্তন্য হয়। দশ হাজার বছর আগেরকার ধানও সয়াবিনের অবশিষ্টাংশ আবিষ্ণৃত ইয়েছে কান্তে এবং পেষণ প্রস্তরসই প্রত্নতান্ত্বিক প্রমাণ থেকে জানা যায় যে, প্রায় এক হাজার বছর পর মানুষ দানাশস্যের আধাদ করতে শুরু করে।

পুরাতন পৃথিবীর তুলনায় অপেক্ষাকৃত দেরীতে নতুন পৃথিবীতে (অর্থাৎ আর্মেরিকা) শস; উৎপাদন শুরু হয় এবং সন্তবত মেক্সিকোতে এটি ঘটে। খ্রিষ্টপূর্ব পাঁচ হাস্কার বছর আগে দক্ষিণ-মধ্য মেক্সিকোতে প্রথম শস্যের আবাদ শুরু হয়।

বিভিন্ন শসের মধ্যে সবস্রথম দানাশস্যের (cereals) চামাবদে আরস্ত হয়। এদের মধ্যে গম, যব ও মিলেট বেদিক যুগ হতে চাষ করা **হড়ে বলে ধারণা ক**রা হয়। রাই এবং জই অপেক্ষাকৃত নতুন শস্যা: মননৰ সভতোর ইতিহাসের প্রথম দিকে এসব শস্য সম্পর্কে মানুষ কিছুই জানতো না: অন্যতম প্রধান খাদ্যশস্য ধান সন্তবত তিন হাজার বছর পূর্বে দক্ষিণ–পূব এশিয়ায় প্রথম দেখা যায়। ভূট্টা সম্প্রতি মন্দুষের নিকট পরিচিতি লাভ করে। একে নতুন পথিবীর শস্য বলে। মধ্য আমেরিকা বা মেলিকে: ভুট্টার উৎপত্তিস্থল বলে ধারণা করা হয়।

জনসংখ্যা ও খাদ্য সরবরাই

رام

মন্দের মৌলিক চাহিদার মধ্যে খাদ্য অনতেম। ইতিহাস পর্যালোচনং করলে দেখা যায় যে, খাদ্য সরবরাহ ও জনসংখ্যার সাথে সবসময়ই একটি প্রতিযোগিতা চলেছে - বর্তমানের মত্যে অতীতিও দুর্ভিঞে বহুলোকের প্রাণহানি ঘটেছে। ১১২৫ সালে দুর্ভিক্ষে জার্মানির লোকসংখ্যা অধেক হয়ে যায়। ১৫০৫ সালে হাঙ্গেরিওে দুর্ভিক্ষ হয়। সপ্তদশ শতাব্দীর মাঝামাঝি পর্যস্ত ইউরোপে দুর্ভিক্ষ ছিল একটি সাধারণ ঘটনা। ১৮৭০-১১ সালে পারস্যের দশ লাখ মানুষ (মেণ্ট জনসংখ্যার ২০ শতাংশ) অনহোরে মারা যায়। ১৮৭৫-৭৮ সালে চীনদেশে খাদেরে অভাবে ৯৫ লাখ মানুষের প্রাণহানি ঘটে। ১৯৯০ চল কার্দ্বার রাগ্যায় ১৮৭৫-৭৮ সালে চীনদেশে খাদেরে অভাবে ৯৫ লাখ মানুষের প্রাণহানি ঘটে। ১৯৯০ চন সালের দ্র্ভিক্ষে রাশিয়ের অনেক মানুষের মৃত্যু হয়। রান্যিয়েও সবঁশোষ বড় রকমের দৃর্ভক্ষ হয় ১৯৯০ সালে ভলগা উপত্যকায়।

ি বতমনে বাংলাদেশসহ অন্যান্য উন্নয়নশীল দেশের একটি বড় সমস্যা হলো আদসেমস্যা। তাই খাদেংখ্যেদন বান্ধর প্রচেস্তা সকল দেশেই গুরু হয়েছে। আধক সংখ্যায় সন্তান উৎপাদন এবং াবজ্ঞানের কল্যাণে নিশুমৃত্যুর হার হ্রাস ও মানুষের আয়ুক্ষাল বৃদ্ধিন্তানিত করেণে জনসংখ্যা বেড়েই চলেছে।

১৯০০ সাল থেকে জনাৰস্যের ফলন দুই থেকে তিন গুণ বৃদ্ধি পেয়েছে এই ফলন বৃদ্ধিও একটি নির্দিষ্ট ঈম্মা আছে কৃষিজমির পরিমাণ বাড়ানোও ডেমন সম্ভব নয়। এাশয়াতে সেচ বংগ্রীত কৃষিজমির পরিমাণ খুব সামান্যই বড়োনে। যেতে পারে। দক্ষিণ এশিয়াতে আনুমানিক ৫০ মিলিয়ন হেন্টর জাঁমেও পান সেচ করা সম্ভব। রতমানে এশিয়াতে শসেরে উৎপদেন রেড়েছে মূলত উন্নত জাতের খবকোঁতর ধন ৬ গমের ভ্যারাইটি এবং সম্ভবর ভূট্টা ও সরগাম চাম করে। আমাদের খদে তালিকায় নানাশসা এক পুরু রপূর্ণ ভূমিকা পালন করে। ক্যালোরি ভিত্তিতে আমাদের সরাসেরি হালের যা নানাশসা এক পুরু রপূর্ণ ভূমিকা পালন করে। ক্যালোরি ভিত্তিতে আমাদের স্বাসরি হালের মান্তা এ শতকো নেয় সানান্সা এবং সম্ভবত হারেও ২০ শতেংশ মাংস, দুগ্ধজাত দ্রবায়া ৮ উডিয়ের মাধ্যমে পর্যাক্ষতারে যোগান নেয়।

অধিক খাদ্য উৎপাদনের উপায়সমূহ (Means for Increased Food Production)

গ্রাশয়া, আফিকা এবং লাভিন আমেরিকার উন্নয়নশীল দেশগুলোতে প্রত্যেক শছরেই খাদ্য ঘাটতি হচ্চেন আবাদি জামর পরিমাণ বৃদ্ধি করে অথব। হেন্টর প্রতি ফলন বৃদ্ধি করে খাদ্য উৎপাদন বাড়ানো যায়। কৃষিজ্ঞাত পদ্য ছাড়াও, কৃত্রিমভাবে তৈরি থানে এনা কত হণ্ডলে নিম্নুদেশনৈ নাইন যেমন- ছত্রাক এবং শৈবালের চায় করেও খাদ্যের সরবরাহ বৃদ্ধি করা যায়। ব চমনে পৃথিবলৈ ভাইন সবদেশেই আবাদি জমির পরিমাণ বাড়ানো বেশ জটিল। আনুমানক চাহত্ব বাজহন হেস্ট্র আবা পৃথিবীর স্থলভাগের প্রায় ১১ শতাংশ জমি আবাদি, পতিত এবা ফলের বালন আরম্ভ পৃথিবীর স্থলভাগের প্রায় ১১ শতাংশ জমি আবাদি, পতিত এবা ফলের বালন আরম্ভ শুথিবীর স্থলভাগের প্রায় ১১ শতাংশ জমি আবাদি, পতিত এবা ফলের বালন আরম্ভ পৃথিবীর স্থলভাগের প্রায় ১১ শতাংশ জমি আবাদি, পতিত এবা ফলের বালন আরম্ভ শুথিবীর স্থলভাগের প্রায় ১১ শতাংশ জমি আবাদি, পতিত এবা ফলের বালন আরম্ভ শিলিয়ন হেস্টর অর্থাৎ স্থলভাগের ১৯ শতাংশ জমি ব্যবহৃত হয় চারণ ভূমি হিলেনে প্রায়ের বাল জমি অর্থাৎ ৭০ শতাংশ জমিতে কোনো খাদ্য তৈরি হয় না কিংবা হলেও খুব সামান পরিমানে হয় সন্তাব্য আবাদি জমির পরিমাণ প্রায় ২,৬৬৬ মিলিয়ন হেস্টর। পৃথিবীর বিভিন্ধ জলবায়ুগত অঞ্চলো সন্তাব্য আবাদি ভূমি, চারণ ভূমি এবং অনাবাদি ভূমির পরিমাণ ৫ চনাস্ত বালিতে চলমনে হয়েন

সারণি ১৯০০ বরকাচ্ছাদিত অঞ্চল বাদে বিভিন্ন জলবয়েগত অক্ষান্ত সময়ত তামত প্রায়ত (বিলিয়ন হেক্টরে)

	জলবযুগত অঞ্চল	 ,	: আবাদি ভূমি	5144 	ান্থাম	- 5	শ হুম	د.] ۱	. ¨i
		হেশ্বর	2	হেশ্বর	4	<₽≴<		- - 22-1	; ;
<u>ک</u>	মেরুও উপমেরু	. 0	с	0	0	0.354	5.20	с .	ast I.
! <u>></u>	শী তন নাতিশীতোষ্ণ কোরিয়ান	6,98% 6,98%	ି, ଅନ	10, 1 800	 2,88 	1	2828 1		
9	শীতল নাতিশীওেম্ব্র	0.204	5.62	0.992	1,¢1	 • • • •	 <u>`</u>	 . \$	
, ×.	উষ্ণ নাতিশীতেষ্ণ	0,222	8,55	5,885	5.8		. :	\$;	
$ 1 \rangle$	্থ্যান্দম ওলীয়	12, 545	25.42	2.924	<u>১৯</u> ৩৮	12 843	14 a.C.	8.6.17	• 18
I I	শেষ্ট	0,56 e j	28.79	0,565	23.12	5.655	S. 18	02/2	

শস্য এবং বিশ্বের খাদ্য সরবরাহ (Crops and world food supply)

কালের বিবর্তনে মানুষ প্রায় তিন হাজার প্রজাতির উদ্ভিদ খাদ্য হিসেবে ব্যবহার করেও এবং বাদ্য মধ্যে মাত্র দুই শত প্রজাতি আবাদীকৃত হয়েছে। ডেনমার্ক থেকে প্রাপ্থ টোই মৃথের মনুষ্ঠ, এর পাকস্থলীর ভিতরের বস্তু Helback (1950) পরীক্ষা করেছেন, এশ্য আন্থারের সময় প্রায় ৮ জ প্রজাতির উস্ভিদ থেয়েছিল। বর্তমানে পাঁচটি দানশেস্য (cereals), তিনটি টিউন র শস্য, কাওপয় লেগ্যুম, আখ এবং সুগারবিট মানুযের প্রয়োজনীয় কার্বোহাইড্রেট ও প্রাটিন সরবরাহ করে যা সারাদ ১২ এ দেখানো হয়েছে। তোজা গুল্ফ ওজনের (edible div weight) দুই ও ঠায়ালেবও এলিক সরবরাহ করে দানাশস্য এবং শতকরা ৮০ ভাগই মাত্র ৫০টি ভাব্রন প্রজাতির ভাগ্য থেকে আসে মাত্র শতকরা ৮ তাগা। প্রোটিন সরবরাহের মধ্যে দানাশা মির্ব করে হার এবং চর্ত্বথাংশোরও কম আসে প্রাণী থেকে। সুতরাং দেখা যাচ্ছে যে মন্যের খানের ক্যেলার এব প্রাটিন উভয়েরই অধিকাংশ আসে উদ্ভিদ থেকে। এছড়েরের, দুরান্যায়ে মান্যান্য হারিন উত্থাংশোর ও কম আসে মাত্র এক চর্ত্বথাংশোরও কম আসে প্রাণী থেকে। সুতরাং দেখা যাচ্ছে যে, মান্যের খানের ক্যেলার এব প্রাচিন উভয়ের অধিকাংশ আসে উদ্ভিদ থেকে। এছড়েরের, দুরান্য স্থানান্য হারিন হান্য হার্য হার্য হার্যজান হার্য হার্য এক প্রত্যোগ্য নায় উদ্ভিদ প্রেক

বিভিন্ন শস্য	শুক্ত পদার্থ	প্রোটিন		
	(মেটিক টন × <u>১০^৭)</u>	(শেটিক টন × ১০ ^৩)		
 দ্বানা শস্য				
গম	<u>۹</u> , t	- 650 -		
<u>।</u> । धान	১৬,৭	30,2		
	201			
য্ব	>>.8	77 8		
সরগাম/মিলেট	<u>ج</u>	9.8		
অন্যান্য	 ٩.৬	<u></u>		
	ة, 80 <u>ر</u>	200's		
করাযুক্ত টিউবার		- 		
গোল আলু	<u> </u>			
মন্টি অনু এবং ইয়ম		22		
ক্যাসভো		- 1		
		- ····		
চিনি শস্য		-		
	<u>(</u> নিরী) <u>ও ৪</u>			
 সুগারবিট	1 <u>9,0</u>			
লগ্যম এবং ডেলবীজ	,	551		
স্যাবিন	8,5			
বদাম	<u>,</u> , .	्य •्र		
মটর		Q.8		
		- (9,2)		
ুলা-বীজ	$= \frac{(\mathbf{x}, \mathbf{o})}{\mathbf{v}}$	· - <u> </u>		
য়ৰ্	$\left \frac{1}{2} \right = \frac{1}{2} \left(\frac{1}{2} \right)^{-1} $	- · · · · · · · · · · · · · · · · · · ·		
अनगमा	(3,4)	1		
	76.5	$-\frac{\alpha_{0.96}}{\gamma}$		
শাক-সংখ্যি	\$ <u>.</u> b	+ <u>-</u> b.0		
	2,0	5.5 J		
< 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	 [1 28 G		
<u>ন্</u> য মাংস	२, ७	20.2		
- ডিম	4,1	2,0		
্তন মাজি	5,5	5.1		
- 174	30.2			
সর্বমেটি	1 345.5	\$1.4		

সারণি ১.২ : ডোজ্ঞ্য শুক্ষ পদার্থ ও প্রোটিনের বিশ্বব্যাপী উৎপাদন

্উৎস : FAO Production Yearbook and United Nations Statistic Yearbook.(1970) যে সমস্ত দ্রব্য বুব সামান্য কিংবা একেবারেই মানুদের বাদ্য ছিসেবে ব্যবহার না, তাদেরকে ব্র্যাকেটে রাবা হয়েছে।]

	প্রোটিন
(মেটিক টন × ১০ ^৭)	(মেট্রিক টন × ১০ ^৬)
<u>۹.۴</u>	<u> </u>
25,9	<u></u>
२७.৫	<u> </u>
>>`8	
<u> </u>	<u> </u>
<u>৭,৬</u>	<u> </u>
708'9 208'9	200'9
······································	<u>+</u>
<u></u>]
<u> </u>	
	T ·····
(নাব্য)e_8	-
· ·····	28.1
	.,
	9.C
	4.8
	(1,2)
	a jest and Maximum Annual Annua Annual Annual Annua
	(\$,44)
	1 <u>1</u> <u>1</u> <u>1</u> <u>1</u>
<u> </u>	
\$.6.	<u> </u>
2,6	<u>्र</u>
	1
¢.>	28.4
	<u>)</u>)> S
2 b	
<u> </u>	5.4
	29.0 259.0 25.8 9.5 9.5 9.5 20.0

সারণি ১.২ : ভোজ্ঞ্য শুষ্ণ পদার্থ ও প্রোটিনের বিশ্বব্যাপী উৎপাদন

[উৎস : FAO Production Yearbook and United Nations Statistical Yearbook.(1970) যে সমস্ত দ্রব্য খুব সামান্য কিংবা একেবারেই মানুমের খাদ্য ছিসেবে ব্যবহার হয় না, তাদেরকে ব্যাকেটে রাখা হয়েছে।]

খাদ্য উৎপাদনের বিকম্প উৎসসমূহ (Alternative Sources of Food)

১৯৬৭ সালে প্রকাশিত The Environment Game শীর্ষক পুস্তকে Calder লিখেছেন যে, "agriculture is simply failing us and will need to be replaced by synthetic methods of food production"। তবে এখন পর্যন্ত কোনো পদ্ধতি উদ্ভাবিত হয় নি যাতে সৌর কিংবা নিউক্লীয় শক্তি ব্যবহার করে ব্যাপকভাবে কার্বোহাইড্রেট অথবা এই জাতীয় যৌগ পদার্থ তৈরি করা যায়। কতকগুলো যৌগ পদার্থ, যেমন–১ ত-বুটানেডিয়োল এবং ২.৪–ডাইমিথাইল– হেপাটোনিক অ্যাসিড, যা পেট্রোলিয়ামজাত এব্য থেকে অম্প খরচে তৈরি করা সম্ভব, নিরাপদ এবং পরীঞ্চণ প্রাণীর শক্তির উৎস হিসেবে গ্রহণযোগ্য (Scrimshaw, 1966)। তবে শস্যের পরিবর্তে দীর্ঘযেদে এদের ব্যবহার নির্ভর করবে জীবাশ্য জ্বালানির বদলে সৌর অথবা নিউক্লীয় শক্তির সহজলভাত্তার উপর।

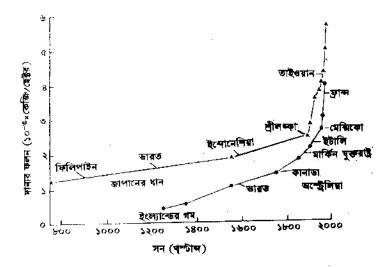
১২ নং সারণি থেকে প্রতীয়মনে হয় যে, ভোজ্য গুদ্ধ পদার্থের প্রায় শতকরা ১৩ ভাগ হলো প্রোটিন। যদি খাদ্যের ক্যালরির ১০ ১২০ প্রোটিন থেকে আব্যে এবং প্রাপ্ত বয়স্কদের খাদ্যে যদি ৬০ প্রোটিনও থাকে, তাহলে খাদ্যে প্রোটিনের মাত্রা পর্যাপ্ত ধরা যায়। তবে যে সকল অঞ্চলে নিমু প্রোটিন খাদ্য, যেমন- ধান অথবা শর্করাজাতীয় মূল খাদ্য হিসেবে বেশি পরিমাণে ব্যবহার করা হয়, সেক্ষেত্রে প্রোটিনের মাত্রা পর্যাপ্ত নয়। যাহোক, দানাশস্যের ফলন বৃদ্ধির সাথে সাথে প্রোটিনের পরিমাণ হ্রাস পায়। তাই ভবিষ্যতে প্রোটিনের বিকলপ উৎস সম্ভবত একটি গুরুত্বপূর্ণ ভূমিকা পালন করে।

President's Science Advisory Committee (1967) –এর এক হিসাবে বাৎসরিক মাছের উৎপাদন ৫.৫ থেকে ২০০×১০⁵ মেট্রিক টন। মাছের উৎপাদন বৃদ্ধি করে প্রোটিনের ঘাটতি অনেকটা পূরণ করা যাবে। শেধান থেকে তৈরি খাদ্য গুরুত্বপূর্ণ ভূমিকা পালন করবে। জ্বাপান, মার্কিন যুক্তরষ্টে, হল্যান্ড, চেকোল্লোভার্কিয়াসহ অনেক দেশে ব্যাপকভাবে শৈবালের চাষ হচ্ছে।

প্রত্যেকটি শৈধালের কোষ যাতে ভালভাবে কার্বন ডাই-অক্সাইড পায় তারজন্য উন্নতমানের যন্ত্রপার্তি ব্যবহার করেও শৈধালের ফলন ৮ থেকে ১৮ গ্রাম শুক্ষ ওজন প্রতি বর্গমিটারে প্রতিদিন ধ্য় (Tamiya, 1957 : Thomas, 1965)। অপরদিকে, শস্যের বৃদ্ধির হার এর তুলনায় অনেক বেশি। পানিওে কার্বন ডাই-অক্সাইডের ব্যাপন সূচক (coefficient) বায়ুমণ্ডলের তুলনায় ১ × ১০⁻ ⁸। এজন্যই শৈবালের বৃদ্ধির হার কম। সারা বছর ধরে শৈবাল সংগ্রহ করা যায় এবং দালানের ছাদেও এদেরকে জন্মানের যায়। তাই নগরায়নের ফলে আবাদি জমি যা নষ্ট হচ্ছে তা কিছুটা পূরণ করা সম্ভব। শৈবালে প্রাটিনের পরিমাণ অপেক্ষাকৃত বেশি এবং এতে অত্যাবশ্যকীয় অ্যামাইনো অ্যাসিডও বেশি আছে (Tamiya, 1957)। আরেকটি সুবিধা হলো যে, মাধ্যমের (medium) পরিবর্তন করে শৈবালের রাসায়নিক গঠনের পরিবর্তন করা যায়। তবে কালচারে সার্বফণিকভাবে বায়ু চলাচলের ধ্যবস্থা এবং কোয প্রাচীর পৃথিকীকরণ ব্যয়বহুল বলে উৎপাদন খরচ বেশি।

সাম্প্রতিককালে প্রোটিনের উৎস হিসেবে ইন্ট, ব্যাকটেরিয়া এবং ছত্রাকের উপর অধিক গুরুত্ব দেয়া ২য়েছে। অত্যবেশ্যকীয় অ্যামাইনো অ্যাসিডসহ প্রায় ৫০% প্রোটিন আছে ইন্টে; উভয় মহাযুদ্ধের সময় এটি ইউরোপে খাদ্য হিসেবে ব্যবহৃত হয়েছে। তবে এটি তেমন সুপাচ্য নয় এবং এর উৎপাদন খরচও বেশি। কাগজ উৎপাদনের উপজাত বস্তু সালফাইটে অথবা সস্তা ঝোলাগুড়ের উপর এটি জন্মানো যায়। অতি সম্প্রতি ইন্ফের এমন স্টেইন বাছাই করা হয়েছে যা পেটোলিয়াম থেকে উচ্চতর এন- অ্যালকেনম (এটি লুব্বিক্যান্য-এ অনভিপ্রেত) পৃথক করতে পারে। প্রতি বছরে সারা পৃথিবীতে ব্যবহৃত ২.১ × ১০^৯ টন পেটোলিয়ামে, এতে অ্যালকেনস-এর পরিমাণ ৫,৬ ×১০^৬ টন, যদি এই পদ্ধতি প্রয়োগ করা যায়, তাহলে প্রায় ৬২ × ১০^৬ টন এককোযী প্রোটিন তৈরি হবে যা লেগ্যমজ্ঞাতীয় শস্য কর্তৃক উৎপাদিত প্রোটিনের প্রয়ে সমান।

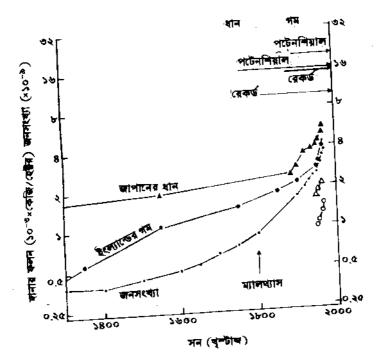
কতিপয় ব্যাকটেরিয়া যেমন- Micrococcus প্রেট্টোলিয়ামে জন্মনে। যায়। অন্য পদ্ধতির মধ্যে যেমন Penicillium এবং Aspergillus জাতীয় ছত্রাক ভুট্টা অথবা আলুর শকরায় জন্মানে। যায়। এক্ষেত্রে অবশ্য শক্তি উৎপাদনের জন্য শস্যের উপর নির্ভর করতে হয়, তবে দানাশস্য ও টিউবার শস্যের উপর নির্ভর করতে হয়, তবে দানাশস্য ও টিউবার শস্যের তুলনায় লেগ্যুমজাতীয় শস্যের ফলন অপেক্ষকেত কম হওয়ায় এই পদ্ধতি লাভজনক হবে। প্রাণী ও শিল্প-কারখানার বজ্য পদার্থ এবং অপাচ্য উদ্ধিদ অংশের উপর ব্যাকচেরিয়া জন্মিছে একদিকে যেমন প্রোটিনের উৎপাদন বৃদ্ধি পাবে, অপরদিকে পরিবেশ দুয়ণও কম হও জন্য হবে।


এটি নিঃসন্দেহে বলা যায় যে, খাদ্য উৎপাদনের বিকল্প পথ থাকলেও, শক্তি ও প্রোটিনের জন্য শস্য উদ্ভিদের উপর মানুযের নিভরশীলন্ড। ভাবযাতেও থাকবে ন

শস্যের ফলন

১৭৯৮ সালে যখন Malthus মন্তব্য করেন যে, খদ্যশেসের উৎপাদন বৃদ্ধি পয়ে গণিতিক হারে, কিস্তু জনসংখ্যা বৃদ্ধি পায় জ্যামিতিক হারে, তখন অবশ্য তিনি অনুমান করতে পারেন নি যে, নতুন পৃথিবী আবিচ্চারের ফলে (আমেরিকা) আবাদি জমির পারীমাণ অনেক বেড়ে যাবে। বর্তমানে উন্নত এবং উন্নয়নশীল দেশগুলোর সমগ্র জমির প্রায় ১১ শতাংশে চায়াবাদ হয়। সন্তাব্য আবাদি জমির পরিমাণ নির্ণয়ে ভিন্নতা থাকেলেও, Kellogg এবং Orvedal (1968) ধারণা করেন যে, আবাদি জমির পরিমাণ বর্তমানের ১.৪ × ১০^৯ হেস্কর থেকে কমপক্ষে ৩.২ × ১০^৯ হেস্করে বৃদ্ধি করা সন্তব।

সাম্প্রতিককালে অধিকাংশ দেশে জনসংখ্যার তুলন্দয় খাদনেশেরে উৎপাদন অপেক্ষাকৃত বেশি বেড়েছে। উগত দেশগুলোতে অধিকাংশ উৎপাদন বেড়েছে প্রতি একক জমিতে শস্যের ফলন বৃদ্ধির জন্য কিন্তু উগ্নয়নশীল দেশগুলোতে খাদ্যশসেরে অধেক উৎপাদন বেড়েছে আবাদি জমির পরিমাণ বাড়ানেরে জন্য (Revelle, 1966)। আফিকা এবং মধ্য ও দিক্ষণ–আমেরিকায় অপেক্ষাকৃত কম স্রুমি আবাদের জন্য ব্যবহাত হয়ে, গ্রন্থ খাটি আগও বাড়ানো সম্ভব। কিন্তু এশিয়া এবং উগত দেশগুলোতে ভবিষ্যতে খাদ্যের উৎপাদন বৃদ্ধি কেবল শস্যের ফলন বৃদ্ধির মাধ্যমেই সম্ভব হবে।


জাপানে ধানের ফলন এবং ইংল্যান্ডে গনের ফলনের এটতহাসিক ধারা ১.১ নং চিত্রে দেখানো হয়েছে। Matsuo (1959) এবং gavin (1951) কতৃক সরবরাহকৃত প্রাথমিক ফলনের তথ্যাদি স্বাভাধিকভাবেই অপযাপ্ত ; তবে বর্তমানে এসব দেশের ফলন বৃদ্ধির খার খুব বেশি। অন্যান্য দেশের ফলন বৃদ্ধির খার অবশ্য এতে। ব্যাপক নয়। যেমন কান্যন্ত, মার্কিন যুক্তরাষ্ট এবং অপ্টেলিয়েয় গমের নিমু ফলনের জন্য দায়ী এদেশগুলোর প্রতিক্ল আবহাওয়া। তাই উন্নতমানের শৃস্য উৎপাদন পদ্ধতি প্রয়োগ করে। এদেশগুলোরেও শ্রমের ফলন বৃদ্ধি হার স্থাব।

(১৬ ২.০ : জাপালের ধানের জলন এবং ইংল্যান্ডে গমের ফলনের ঐতিহাসিক ধারার সাথে করেকটি দেশের ১৯৬৮ সালের ধান ও গমের ফলনের তুলনা

পৃথিবীর অর্ধেকেরও বেশি মানুযের প্রধান খাদ্য ধান ও গম। ১.২ নং চিত্র পৃথিবীর লোকসংখ্যার পরিবর্তনের সাথে গম ও ধানের ফলনের পরিবর্তনের তুলনা করা হয়েছে। এই চিত্রে ধান ও গমের রেকড ফলন (যথাক্রমে জাপানে.Oatori ভ্যারাইটি এবং মার্কিন যুক্তরাষ্টে Gains ভারোইটি) এবং পেই সাথে ৪৫০ ক্যালরি প্রতি বর্গসেন্টিমিটারে প্রতিদিনে সূর্যালোকের জন্য সংগত পটেনশিয়াল ফলন দেখানে। হয়েছে। পৃথিবীব্যাপী সস্তাব্য সর্বোচ্চ ফলন পেতে হলে পানির ব্যবহার (শধরাঞ্চলো এবং শিল্প ক্রেঝনোর চাহিদার সাথে অবশ্য ইত্যমধ্যেই প্রতিযোগিতা শুরু হয়েছে), অনবায়নযোগ্য সার, গেমন- ফসফেট, নদী ও অন্যান্য জলাশয়ে নাইটোজেনঘটিত সার, আগ্যান্থানশক, ছত্রাকবারক এবং কীটনাশক রসোয়নিক পর্দাপ্থ এবং শস্য উৎপাদনের জন্য জীবাশ্য জ্লোনির ব্যবহার ব্যবহারে এবং বাজি করতে হবে।

শনের ফলনকে নৃত্তরে প্রকাশ করা হয়; যথান জৈবিক এবং অর্থনৈতিক (economic) । শদ্যের সম্পূর্ণ বয়োমাসকে জৈবিক ফলন বলে এবং এটি প্রধানত পরীক্ষণের ফলনের ক্ষেত্রে র্যবহৃত হয়। যেহেতু শদ্যের সকল অংশ উৎপাদনকারী বা ব্যবহারকারীর নিকট প্রয়োজনীয় নয়, সেহেতু (জাবক ফলন সবসময় গুরুত্বপূর্ণ নির্দেশক নয়। কতিপয় ফেন্রে শস্যের সকল অংশ বিধেত হয়: যেমন সুইড (swed), টারনিপ (turnip) ইত্যাদিতে। অন্যান্য শশ্যে কেবল একটি সুনিদিষ্ট অংশ ব্যবহাত হয় এবং তা মাঠ থেকে সংগ্রহ করা হয়। কয়েকটি শস্যের সক্পহীত অংশের নাম ১৩ জি সার্রারতে হয় এবং তা মাঠ থেকে সংগ্রহ করা হয়। কয়েকটি শস্যের সক্পহীত অংশের নাম ১৩ জি সার্রারতে দেখানো হয়েছে। ভিন্ন ভিন্ন শশ্যে জিন্ন জিন্ন অঙ্গ ব্যবহাত হয়। গোল আল্র ফেন্ড্রে ভূ-নিমুন্থ রূপান্তরিত কাণ্ড বা কন্দ হলো সঞ্চয়ী অঙ্গ যা মানুষ্যের খাদ্য হিসেবে ব্যবহাত হয়। সুগারবিটে সুজ্রেজ নিজ্ঞাশনের জন্য মূল সংগ্রহ করা হয়। গোলআলু এবং মূলীয় শস্যের এর বিটপ এবং মৃলের অবশিষ্টাংশ পশুযাদ্যরূপে ব্যবহৃত হয়। গোলআলু এবং মূলীয় শস্যের অঞ্চ (segerative) ঋংশ মানুষ্যের কাজে লাগে।

চিত্র ১.২ : পৃথিবীর জনসংখ্যা, জ্ঞাপানে ধানের ফলন (Δ) ও বিশ্বের ফলন (Δ) এবং ইংল্যান্ড গমের ফলন (০)ও বিশ্বের ফলন (০)–এর ঐতিহাসিক ধারা।

দানাশস্য এবং তেলজাতীয় শস্যে জনন (reproductive) অংশ ব্যবহৃত হয়। লেগ্যুমিনাস শস্যের বীজ অর্থনৈতিক গুরুত্বপূর্ণ অংশ। এ জাতীয় দানা-উৎপাদনকারী শস্যে তুলনামূলকভাবে খুব সামান্য অংশ ব্যবহৃত হয় এবং মূল, কাণ্ড ও পাতার বর্তমানে অর্থনেতিক গুরুত্ব খুব সামান্য বা নেই বললেই চলে। দানাশস্যের দানা উৎপাদনের যোগ্যতার নির্দেশক হলো সংগ্রহ সুচক (harvest index) অর্থাৎ দানা (ইকনমিক ফলন) ঃ সম্পূর্ণ বায়োমাস (biological yield)–এর অনুপাত। Austin (1980) মন্তব্য করেন যে, বর্তমানে সংগ্রহ সূচক বৃদ্ধির মাধ্যমে যবের ফলন বৃদ্ধি সম্ভব হয়েছে। পুরাতন ভ্যারাইটির হারভেস্ট ইনডের ছিল প্রায় ৪০ শতাংশ। ৬০ ব্যয়োমাস), কিন্তু আধুনিক ভ্যারাইটিগুলোতে এই মান ৫০ থেকে ৫৫ শতাংশ।

* [¥](সংগৃহীত অংশ	অর্থনৈতিক গুরুত্বপূর্ণ দ্রব্য
সুগারবিট	মূল	<u> </u>
জাল আলু	কন্দ	কন্দ
<u> બ</u> ૂર્યપૂચી	ফল	তেল এবং প্রোটিন
সরিয়া	বীজ	ডেল এবং প্রোটিন
তিশি		
(と)	বীজ	তেল এবং প্রোটিন
(>)	কাণ্ড এবং মূল	তন্ত
যব	বীজ	মানুয ও গবাদিপশুর খাদ্য
ধ্ন	বীজ	মানুষের খাদ্য
গম	বীজ	মানুষের খাদ্য
শুইড (Swede)	মূল এবং পাতা	পশুখাদ্য এবং মানুষের
		খাদ্য (কেবল মুল) 🗋 🗉
কেল (kale) এবং	ণাণ্ড এবং পাতা	পশুখাদ্য
GM (rape)		

সার্রাণ ১.৬ : কতরুগুলো শস্যের অর্থনৈতিক গুরুত্বপূর্ণ অংশ

যে সমস্ত শসং প্রধানত পশুআদার জন্য জন্মানো হয় (যেমন- কেল, ফরেজ রেপ), তাদের ক্ষেত্রে ভূ-উপরিস্থ সকল অংশই ব্যবহারযোগ্য ; তাই হারভেস্ট ইনডেক্স-এর ধারণা অনুপোযুক্ত। উপরস্ত, এক্ষেত্রে সরাসরি ওব্দ ওজনও ফলনের অর্থবহ নির্দেশক নয়। কারণ খাদ্যগ্রহণ এবং গবাদি পশুর বৃদ্ধির সাথে এসকল শস্যের গুণগত প্রকরণ সম্পর্কযুক্ত। সুপাচ্য জৈবপদার্থ ও সুপাচ্য ক্রুড প্রোটিন (crude protein) এসকল শস্যের অর্থনৈতিক ফলনের অধিকতর অর্থবহ নির্দেশক : অন্যান্য ফরেজ্র শস্য যেমন- ভূট্টা, সুইড এবং ঘাসের ক্ষেত্র একই বিষয় প্রযোজ্য।

শসেরে ফলন নির্ধারিত মান অনুসারে প্রকাশ করা হয়। খাদ্যশস্যের ক্ষেত্রে, দানাতে শতকরা ২৫ ভাগ গানিসহ টন/ হেক্টরে ফলন প্রকাশ করা হয়। মাঠ থেকে দানা সংগ্রহের সময় পানির পরিমাণের বেশ তারতমা হয়, তাই দানাতে পানির পরিমাণ একটি নির্ধারিত মানে রূপান্তরিত করে ফলনে একটি নির্ধারিত মানে রূপান্তরিত করে ফলনে তুলনা করা হয়। আর না শুকিয়ে সর্বোচ্চ যে পরিমাণ পানি থাকনে দানা–ভালভাবে মজুদ করা যায়, তার উপর ভিত্তি করে প্রত্যেক শস্যের দানায় পানির পরিমাণ নিধারণ করা হয়। সরিযার ক্ষেত্রে বীজে পানির পরিমাণ ধার হয় শতকরা ৯ ভাগ।

নিদিষ্ট পরিমণে চিনিস২ (ফেমন শতকরা ১৬ ভাগ) প্র**তি হেষ্টরে পরিক্ষার মূলের ওজন** (টন) সুজারাবটের ফলন হিসেবে প্রকাশ করা **হয়। খাদ্যশ্রস্যের ফেন্দ্রে যেমন অম্পদিনের ব্যবধানে** সম্পূল শস্য সংগ্রহ করা হয়, কিন্তু সুগারবিটের বৃদ্ধি সারা **শরৎকাল চলে এবং কারখানার চাহিদা** অনুযায়ী অনেক সময় আগে থেকেই মূল সংগ্রহ শুরু করতে হয়।

গোল আলুর ফলন কোনো নির্দিষ্ট মানে প্রকাশ করা বেশ কঠিন। একটি সাধারণ পদ্ধতি হলো সম্পূর্ণ কন্দের ফলন - তবে একটি নির্দিষ্ট আকারের (৪.১ সেন্টিমিটার ব্যাসের অধিক) কন্দকে বিক্রয়ের জন্য উপযুক্ত মান হিসেবে বিবেচনা করা হয়। এজন্য অধনৈতিক ফলনের পরিমাণ বেশ কমে যায়। ভালভাবে সংগ্রহ না করায় কিছু পরিমাণ কন্দ মাঠে থেকে যায়, এভাবেও ফলন কম হয়। ক্ষতিগ্রস্থ কন্দ ব্যাতিল করা হয়। তাই কেবল গুদাম থেকে বিক্রয়যোগ্য কন্দ হলে। গোল আলুর অর্থনৈতিক ফলন।

শস্য শারীরবিজ্ঞানের সংক্ষিপ্ত ইতিহাস

শস্য শরীরবিজ্ঞানের মূল লক্ষা হচ্ছে, শস্যের ফলনের উন্নয়ন এবং প্রকৃতপক্ষে এই লক্ষ্যে W.L. Balls মিশরের নীলনদের অববাহিকায় তুলা শস্য নিয়ে প্রথম গবেষণার কাজ শুরু করেছিলেন প্রায় ৭৬ বছর আগে। Balls এবং Holton (1915a,b) শস্য অবস্থায় মিশরীয়া তুলা গাঙের পরম্পরের মধ্যে দূরত্ব এবং বীজ বপনের সময়ের এদের বৃদ্ধি ও ফলনের উপর কি প্রভবে আছে তা বিশ্লেষণ করেন। তৃতীয় গবেষণা পত্রে Balls (1917) তুলার ফলনের উপর কি প্রভবে আছে তা বিশ্লেষণ করেন। তৃতীয় গবেষণা পত্রে Balls (1917) তুলার ফলনের উপর পরিবেশীয় বিভিন্ন প্রকরণের কি ভূমিকা আছে তা বিশ্লেষণ করেন এবং তিনি লক্ষ্য করেন ধ্যে, আনকগুলো আপাত পরম্পরবিরোষী বিষয়কে, ব্যাখ্যা করা যাবে শস্যের জীবনচক্রের বিভিন্ন ধাপকে, যা পরবর্তীতে ফলনের উপর গুরুত্বপূর্ণ প্রভাব রাথে, পর্যবেঞ্চণ করে এবং এগুলো পরিবেশের পীড়নে (stress) সংবেদনশীল। যেমন– তিনি লক্ষ্য করেন যে, জুলাই মাসে পানি সেচের জন্য ধাভাবিক মিশরীয় তুলার পুম্পায়নের কোনো পরিবর্তন হয় না, কিন্তু ফলের মধ্যে লিণ্ট হেয়ার (lint hair) কোয দের্ঘ্যে বৃদ্ধি পায়।

শস্য ও পরিবেশের মধ্যে পারস্পরিক সম্পর্ক বিশ্বেষনের জন্য ১৯০৫ সালে F. F Blackman কর্তৃক প্রকাশিত প্রভাবকের সীমায়িত সুত্রের উপর Balls নিভর করেন। সেই সঙ্গে ফলনের বিক্যাশের জন্য ক্রিটিক্যাল অবস্থা এবং প্রত্যেক অবস্থা নিয়ন্ত্রণকারী প্রভাবকের সনাক্তকরণের দশ বছরের মৌলিক ও ব্যাপক গবেষণার প্রেফিতে তুলা শস্যের শারীরতন্ত্বের বিভিন্ন দিক সম্পর্কে জানা সন্তব হয়। এতদসত্বেও Balls -এর গবেষণা চুক্তি নধায়ন না হওয়ায়, তিনি শস্য শারীরবিজ্ঞানের গবেষণা কর্মসূচি পরিত্যাগ করতে ধ্বধ্ব হন (Harland, 1961)।

Balls-এর গবেষণার পরবর্তী দশ বছরে ইংল্যান্ডে অনেক বিজ্ঞানী শস্যের বৃদ্ধি ও ফলন বিদ্লেষদের জন্য বিভিন্ন পদ্ধতি উদ্ভাবন করেন। ১৯২৪ সংলে লন্ডনে অনুষ্ঠিত Proceedings of the Imperial Botanical congress দেখলে এটি স্পষ্ট হয়। এওে The physiology of crop yield : a Survey of modern methods of attack বিষয়ে W. L. Balls, V.H. Blackman, F. G. Gregory, G. E. Briggs, R. A. Fisher, F.J. Maskell, F. L. Engledow প্রমুখ বিজ্ঞানী পর্যালোচনা করেন।

১৯২৫ সালে R. A. Fisher পরিসংখ্যানগত পরীক্ষণের ডিজাইন-সম্বলিত পুস্তক Statistical Methods for Research Workers প্রকাশ করেন। একই বছরে ইংল্যান্ডের রথামন্টেড–এ এই নতুন পদ্ধতির উ্পর ভিত্তি করে সর্বপ্রথম মাঠ পর্যায়ে গবেষণা গুরু করেন।

১৯১৯ সালে Blackman উদ্ভিদের বৃদ্ধি বিশ্বেয়ণের (growth analysis) ভিত্তিপ্রস্থর স্থাপন করেন। তিনি বলেন যে, উদ্ভিদের ওজন লগারিদমভাবে বাড়ে এবং উদ্ভিদের বৃদ্ধিকে efficiency index বা আপেফিক বৃদ্ধি থার (relative growth rate d) R G R) দ্বারা বর্ণনা করা যায়। Gregory (1917) প্রস্তাব করেন। যে, প্রতি একক পাতরে ফেগ্রের (area) জন্য উদ্ভিদের শুষ্ণ ওজন ধৃদ্ধির হারকে (একে নীট ফ্রান্টীকরণ হার বা NAR বলে) পাত্যর নীউ সালোকসংশ্বোযণের পরিমাপক হিসেবে ব্যবহার করা যায়। Fisher (1920) কিছু পরিমাজনা করে বৃদ্ধি বিশ্বোষণ পদ্ধতিকে এমন এক পর্যায়ে নিয়ে যান যাতে করে উদ্ভিদের শুষ্ণ পদার্থ (dry matter) তৈরিকে NAR এবং পাতার ফেত্রফলের বৃদ্ধি দিয়ে ব্যাখ্য। করা যায়।

রাথমল্টেড-এ মাঠশস্যের প্রথম বৃদ্ধি বিশ্লেষণ করেন Baspliste এবং Walson ১৯৩৪ সালে। তাঁরা সুগারবিট এবং ম্যাংগোশ্রু বিভিন্ন সময়ে ধপন করে এদের বৃদ্ধি বিশ্লেষণ করেন। প্রায় একই সাধরণ আলোচন্দ

সময়ে সুদানে Crowther এবং রোডেশিয়াতে (বর্তমানে জিম্বাবুয়ে) Heath তুলা শস্য নিয়ে একই রকম গবেষণা করেন। পরবর্তী বছরগুলোতে (১৯৩৯ সালে দ্বিতীয় মহাযুদ্ধের সময় কিছুটা স্তিমিত ২য়) বিভিন্ন ডারোইটি ও প্রজাতির শস্য ভিন্ন ভিন্ন কালচারাল (cultural) অবস্থায় জন্মিয়ে এনেক উপান্ত সংগৃহীত হয়। এসকল উপান্তের উপর ভিস্তি করে ১৯৫২ সালে Watson শস্যের ফলনের তারতমেরে জন্য শারীরতান্ত্বিক ভিস্তি বিষয়ক একটি পর্যালোচনা (review) প্রকাশ করেন। প্রকৃতপক্ষে, তিনিই শস্য শারীরবিজ্ঞানকে সকলের কাছে পরিচিত করান। তখন থেকে শস্য শারীরবিজ্ঞানের বিভিন্ন দিক নিয়ে গবেষণা পৃথিবীর বিভিন্ন দেশে বিশেষ করে অস্টেলিয়া, নিউজিলাদেও, জামানি, সোভিয়েত ইউনিয়ন, কানাজা, যুক্তরাজ্য ও যুক্তরাষ্টে চলতে থাকে।

সলোকসংশ্রেষণ (Photosynthesis)

প্রাথমিক অবস্থায় নীট আন্টাকরণ হারের উপর বেশি গুরুত্ব দেয়া হয়। যেহেতু এটি একটি উদ্ভিদের সবগুলে। পাতোর গড় যার এবং সাধারণত এক সম্ভাহ পর পর নির্ণয় করা হয়, সেহেতুত এটি সালোকসংশ্রেষণের হারের প্রকৃত পরিমাপক নয়। তাই Heath এবং Gregory (1938) মন্তব্য করেন যে, উদ্ভিদের অসজ দশায় বিভিন্ন প্রজাতি ও বিভিন্ন পরিবেশে NAR আয় একই থাকে (যদিও এই হার প্রকৃতপক্ষে ০,১২ থেকে ০,৭২ গ্রাম/ডেসিমিটার^২/সপ্তাহ)। তাঁরা আরও বলেন যে, বিভিন্ন প্রকার উদ্ভিদে গুল্ফ পদার্থ জমাকরণের বিভিন্নতার প্রধান নিয়ামক হলো পাতার বৃদ্ধির ধার- প্রতিটি পাতার আকার এবং নতুন পাতা উৎপাদনের হার। তাই পরবর্তী সময়ে শস্যের পাতার বৃদ্ধির উপর বেশি নজর দেয়া হয়। কিন্তু সাম্প্রতিককালের দুটি কারণে পুনরায় সালোকসংশ্রেষণের হারকে ফলনের প্রধান নিয়ামক হিসেবে গণ্য করা হচ্ছে। প্রথম কারণটি হলো ইনফ্রারেড গ্যাস অ্যানালাইজার (IRGA)–এর সাহায্যে সালোকসংল্লেযণের হার সঠিকভাবে এবং অল্পসময়ের ব্যাধানে নির্ণয়ের সুবিধা। দ্বিতীয় কারণ বর্তমানে জানা গেছে যে, বিভিন্ন শস্যের সালোকসংশ্লেষণের হার এবং গতিপথ ভিন্নতর। ১৯৬৩ সালে Hesketh এবং Moss লক্ষ্য করেন অন্যান্য উদ্ভিদের তুলনায় ভুট্টা, আখ এবং কন্তকগুলো গ্রীষ্মমণ্ডলীয় ঘাসের সালোকসংশ্রেষণের হার বেশি এবং এদের আলোর সম্পৃক্ততা **ধীরে ধীরে হয়। প্রায় একই সময়ে** Tarchevkii এবং Karpilov (1963) এবং Kortschak ও তাঁর সহকর্মীরা (1965) দেখান যে, এসকন উদ্ভিদের 14CO2 আন্তীকরণের প্রাথমিক উৎপাদিত বস্তু অন্যান্য উদ্ভিদ থেকে আলাদা —এটি 😋 ডাই-কাবোঝালিক আাসিড। ১৯৭০ সালে Hatch এবং slack-এর গবেষণার ফলাফল থেকে \mathbb{C}_4 এবং \mathbb{C}_3 উদ্ভিদের মধ্যে প্রধান পার্থক্যগুলো হলো সালোকসংশ্লেষদের হার, আলোক প্রখরতার প্রভাগ, তাপ ও অগ্রিজেন মাত্রা, আলোকশ্বসন, পাতার অন্তর্গঠন, ক্লোরোপ্লাস্টের গঠন, পরিবহনের হার, পানি ব্যবহারের দক্ষতা যা ফলনের শারীরতম্বের উপর ব্যাপক প্রভাব সৃষ্টি করে।

পাতার বৃদ্ধি ও ক্যানোপির বিকাশ

ইংলাদেও বৃদ্ধি বিশ্লেষণের প্রাথমিক অবস্থায় পাতার বৃদ্ধির গাণিতিক ফরমূলার উপর বেশি গুরুত্ব দেয়া ২০০০ Boysen Jensen (1932) বুঝতে পেরেছিলেন যে, উদ্ভিদ সম্প্রদায়গত অবস্থায় (community) থাকলে তাদের সালোকসংশ্লেষণের হার একক পাতার তুলনায় কম। কারণ সম্প্রদায়গত অবস্থায় কালোপির নিচের পাতাম পর্যাপ্ত সূর্যালোক পৌছায় না এবং ক্যানোপির পাতার কোলের (angle) উপর এই পার্থক্য নির্ভর করে। এ থেকে তিনি ভূমির (ground) ফেত্রফল এবং মোর্ট পা হার কেওফেলের মধ্যে একপ্রকার সম্পর্ক দেখতে পেয়েছিলেন যাকে ১৯৪৭ সালে D.J Watson পত্র ফেত্রফল স্চক (leaf area index বা LAI) বলে অতিহিত করেছিলেন। এই সূচক প্রত্তিনের ফলে শস্যের বৃদ্ধি বিশ্লেষদের ক্ষেত্র আরও প্রসারিত হয় এবং শস্য শারীরবিজ্ঞানের নতুন পথের সন্ধান দেয়। এরপর ১৯৫৩ সালে M. Moni এবং T. Sacki নামক দুজন জাপানী বিজ্ঞানী ক্যানোপির উপর পতিত আলেরে বিনষ্ট (extinction) হওয়ার সাথে LAL-এর একটি সম্পর্ক গ্রাপন করেন। এর মূল ভিন্তি হলো Beer-এর সূত্র ; এর ফলে শস্যের সালোকসংশ্লেষণ এবং এলোর প্রোফাইনের একটি পরিমাণগত বর্ণনা সহজতর হয়। ক্যানোপিতে আলোর এই বিনষ্টতা পাতার কোনো, আকার ও অন্যান্য বৈশিষ্ট্যের সন্দে সম্পর্কিত। Monsi এবং Saeki-এর এই তথ্য দু'ভাবে শস্য শারীরবিজ্ঞানকে প্রভাবিত করেছে। প্রথমত, জাপানে ধান প্রজননবিদগণকে একটি আদর্শ উদ্ভিদ প্রকার (ideal plant type) উদ্ভাবনের প্রচেষ্টাকে সুদৃঢ় করেছে। দ্বিতীয়ত, শসোর সালোকসংশ্লেশনের মডেলিং এর উপর গবেষণার দ্বার উন্দোচন করেছে। প্রাথমিক মডেলগুলেডে, সেমন Davidson এবং Philip (1958) এবং Sacki (1960)- এর মডেল, শস্যের গুসন সরাসরি LAI–এর সমানুপাতিক বলে ধরে নেয়া হয়েছিলো। তাই তাঁরা সিদ্ধান্তে উপনিত হন যে, ক্যানের্গপির গঠনের সাথে সংগ্রিম LAI–এর অবশ্যই সম্পর্ক আছে।

পরবর্তীকালে শস্যের শ্বসনের বৃদ্ধি ও LAI ৎচ্চির সাথে একটি পরোক্ষ সম্পর্ক দেখানে। হয়েছে যার ফলস্বরূপ নীট সালোকসংশ্রেযণের হার ও LAI-এর মধ্যে একটি সূচালে সর্বোত্তম অবস্থা না হয়ে 'ব্রড প্লেট্' (broad plateau) সম্পর্ক প্রদর্শন করে। বর্তমানে কম্পিউটারের উন্নতির সাথে সাথে শস্য সালোকসংশ্লেষণের মডেলেরও উন্নতি হয়েছে। অপর্বদিকে শস্যের শ্বসনের হার নির্ণয়ের পরীক্ষা নিরীক্ষা ধলতে গেলে অবহেলিত। তবে সাম্প্রতিককালে শস্য শারীরবিজ্ঞানীরা এ বিষয়েও গুকার আরোপ করেছেন। ধারণা করা হয় যে, শস্যের ফলন প্রধানত সীমায়িত হয় সালোকসংল্লেষণ এবং অ্যাসিমিলেট সরবর্ধাহের জন্য, কিন্তু বর্তমানে শস্য শারীরবিজ্ঞানীগণ উচ্চ ফলনে প্রতিবন্ধকতা সৃষ্টিকারী অন্যান্য বিষয়েও অধিকণ্ডর দৃষ্টি দিয়েছেন।

পরিবহণ (Translocation)

থ্লা উন্ডিদের বিভিন্ন অংশে শ**র্করা বিত**রণের পদ্ধতি উদ্ভাবনের জন্য Mason **এবং M**askell (1928) - এর গবেষণা পরিচালনার উদ্দেশ্য ছিল জলবায়ুগত এবং অন্যান্য কারণে সৃষ্ট কতকগুলে। সমসন, যেমন- ফুলের কুঁড়ি এবং অপরিপক্ব ফলের পতন, লিন্ট তন্তুতে চিনি ধনীভূত হয়ে সন্টুলোজ উৎপাদন এবং স্বভাব ও বিকাশের ভিন্নতার কারণ উদঘাটনের জন্য চিনির পরিবহণ এবং উদ্ভিদ দেহে এই পরিবহণের হার ও দিক নির্ণয়ের জন্য দায়ী প্রভাবকগুলো সম্পর্কে বিশদ জ্ঞান লাভ করা।

শস্য সালোকংশ্লেষণের (Crop Photosynthesis)মতো এ বিষয়ে গবেষণা তেমন অগ্রসূর হয় লি, এমন কি দ্বিতীয় বিশ্বযুদ্ধের পরে তেজস্থ্রিয় আইসোটোপের ব**হু**ল ব্যবহারের ফলে পরিবহণ সংক্রান্ত গবেষণা সহজ্ঞতর হওয়া সম্বেও পরিবহণ সংক্রান্ত অনেক বর্ণনামূলকও গবেষণা হয়েছে, কিন্দু এটি কিন্ডাবে নিয়ন্ত্রিত হয় এবং এটি শস্যের ফলনের উপর প্রভাব বিস্তার করে কি-না, সেসধ বিষয় জানা যায় অনেক পরে।

সঞ্চয়-ক্ষমতা (Storage capacity)

শস্য বিবাঠনের একটি অন্যতম প্রধান বৈশিষ্ঠ্য হলো যে, অনেক শস্য উদ্ভিদের ফলন অপের সঞ্চয় ক্ষমতা বৃদ্ধি পেয়েছে। এতদসত্ত্বেও ফলন সীমায়িত হওয়ার জন্য এখনও সঞ্চয় ক্ষমতা গ্রুত্বপূণ ভূমিক: পালন করে। তাই সঞ্চয়-ক্ষমতার উপাদানগুলোর বিশ্লেষণ শাস্য শারীরবিজ্ঞানের গবেষণার একটি স্তর-ত্বপুণ বিষয় হিসেবে চিত্রিত হওয়া উচিৎ। যদিও কন্তমন্ত্রিজ বিশ্ববিদ্যালয়ের Engledow এবং Wadham ১৯২৩ সালে এই বিষয়টির উপর গুরুত্ব আরোপ করেন, তথাপিও এই বিষয়টি অবহেলিত রয়েছে। এই অবহেলার জন্য দায়ী খুটি ফুল[ি]কারণের মধ্যে একটি হলো সে

সাধারণ একেলচনা

সময়ে বৃদ্ধি বিশ্বেষণকে আধক আশাপদ বিষয় বলে মনে করা হতো বলে এই বিষয়ে চলেম্বর্ডা দিকেই বিজ্ঞানীরা বেশি গুরুত্ব দিয়েছিলেন। দ্বিতীয় কারণ হলে। প্রায়–সলোওম কৃষি পরিচয়ায় ফলনের উপ্যদানগুলোর মধ্যে প্রথই ঝণাওক (negative) সম্পর্ক পাওয়া যয়ে। এ থেকে প্রতীয়মান হয়। যে, ফলনের সীমায়িতের জন্য সঞ্চয়ের ক্ষমতার চেয়ে এলসিমিলেটের সরবরাহ বোশ ওর্জাহপণ।

সালেকসংশ্রেষণের হার, এরাসিমিপ্রেট স্থানাস্তর এবং সঙ্গয়-ক্ষম এর মধ্যে 'ফিড বলক' (leed back) সম্পকের ক্রমবধমান উপলব্ধি এবং সঙ্গয়ের হার ও ব্যাপ্তিকালের কৌশলের বিষয়ে পর্যালোচনার জন্য পরিবর্তনশাল মডেলিং–এর চাহিমরে কারণে শস্য শারীর্রাবজ্ঞানের এই গুরুত্বপূর্ণ বিষয়ের উপর ভবিষয়ের ক্ষরে ওরুত্ব নেয়া হবে

আদশ উদ্ভিদ প্রকার (Ideal plant type)

ভরিষাতে শচ্য শার্টারতত্ত্তবিদদের দায়িত্ব হবে শস্যের ফলন এবং গুণগু আমন ব্যস্কর লক্ষেন কেয়নো কোনো বৈশিষ্ট্য ফলন বুদ্ধিও সহায়তা করে সেগুলোকে সনাক্ত করে উদ্ভিদ প্রজন বিদদেরকে প্রদান করান ইতঃমধ্যে **এবে**শা উদ্ভিদ প্রজনবিদিরা বিভিন্ন শস্যের ফলনে ওণগু এমান বৃদ্ধিতে যথেষ্ট অবদান রেখেছেনা, তবে ফলন আরও ব্যন্ধ করাতে হলে ফলনের শার্ষ্টারতাবিক ভিত্তি সম্পর্কে আরও জ্ঞান থাকা দরকারন

এজনা আদশ উদ্ভিদ প্রকার সম্পর্কে উদ্ভিদ প্রজনাবিদদের স্কপ্ত ধাবণা আবশাক। ১৯১৩ সালে Engledow এবং Wadham বলেজেন যে, উদ্ভিদের কোনো কোনো ধ্রেশিস্কা একট আজ ফলনাক দায়স্কণ করে ৬ রে কেরতে হবে এবং সংকরায়নের মান্তায়ে এসমন্ত প্রশাননী একনি উদ্ভিদ প্রকারে সায়ার্ঘের হারে হারে এবেরম ধ্রম্বার হারের হারের আর্মার দিন ভিল, কি দ্রুপ্রয়োজনীয় তথ্যটার এজের হারে তারা মূর একনা ম্রান্তার পারেন নি।

পরবার্তী বতরগুলোতে ব্যাস্কত বেশিস্কের তালিকা বাদ্ধ পেয়েছে এবা চেষ্টা সাথে সহজে দৃশনোনা অঙ্গসংস্কানিক বৈশিষ্কের তুলনায় শারীরত্যাত্বক বেশিষ্ট্যের উপর বেশি ওরাই দেয়। হয়েছে। জাপানের ধান প্রজননের উদ্দাহরণ দিয়ে এ বিষয়টি পরিক্ষার করা যেতে পারে।

সম্পানের জাতীয় কৃষি গবেষণা স্পেশনের প্রথম দিকের ওজাহপুণ গবেষণা প্রকালসর মধ্যে একটি ছিল বেশি সার প্রয়োগের ফলে ধানের লজিং (lodging) বন্ধকরণের বিষয়টি। উদ্ভিদ প্রজনন্দিস্পণ একমত হন যে, ধানের এমন ভারেস্টেটি উদ্ভবন করতে হারে যাতে খবন্ধায় কণ্ডে. উদ্ধে যারে কুনি (liller) উৎপদেনের ক্ষমতা এবং মঞ্জরীর (panele) সংখ্যা বেশি থ্যাক এক ভয়রাহাঁচ যাতে বিভিন্ন পরিবেশে অভিযোজিত হতে পরে, সে দিকটাতেও নজর দেয়া হয়।

Monsi এবা Saeki এর ছালো এবং উদ্ভিদ সম্প্রদায়ের সম্পর্কের বিশ্লেষণ নিদেশ করে যে, ফুদ্রাব্যার, খাড়া ও পুরু পাতা এবং ঘনসন্ধিবিষ্ট (compact) কুশি অবস্থার সুবিধা অনেক Tsunoda, 1959 , Murata, 1961)

াপগদের এথ ধরণ। গ্রীক্ষমগুলীয় রাজলে ও স্থায়স্থারত করা থম এবং আওজাইটক ধন মানস্থা একটিচিপ্রিয়ে উদ্ধিন প্রজনমবিদ্যুণ গ্রীক্ষমণ্ডনি, ব্যঙ্গলের নিয়ুভমিতে আবিক পরিমাণে সারওয়েশ করেও যাতে এথ ভারতিটি মাভিযোগন থাতে পারে, সে বিষয়ে যথেষ্ট সাফলা আজন করেটেনা Jennings, 1964)

মের্গ্রিকান গম এবং আন্তর্জাতিক ধান গবেষণা ইনস্টিটিউটের (IRRI) গবেষণা প্রকল্পের - উদ্ধেশ্য হলে। এমন ভ্যারাইটি উদ্ভাবন করা যা বিভিন্ন পরিবেশে খাপ খাওয়াতে পারে। এর জন্য সাম্বরণভাবে আদর্শ উদ্ভিদ প্রকারের প্রয়োজন হয়, তবে সেই সাথে অন্যান্য শারীরতান্বিক বৈশিষ্ট্য যেমন পুস্পায়ন নিয়ন্ত্রণের জন্য দিবা–দৈর্ঘ্যে সংবেদনশীল না হওয়া এবং জীবন চক্রের ব্যাস্টিকাল কম হওয়া তবে এসকল বৈশিষ্ট্য সর্বজনীনভাবে অভিপ্রেত নয়। যেমন উচ্চ অখ্যাংশ জন্মানেরে জন্য গমের কিছুটা দিবা–দৈর্ঘ্যে সংবেদনশীল আ হওয়া এবং জীবন চক্রের ব্যাস্টিকাল কম হওয়া তবে এসকল বৈশিষ্ট্য সর্বজনীনভাবে অভিপ্রেত নয়। যেমন উচ্চ অখ্যাংশ জন্মানেরে জন্য গমের কিছুটা দিবা–দৈর্ঘ্যের সংবেদনশীলতার প্রয়োজন আছে এই জন্য যে, তুযারপাত শেষ হয়ে যাওয়ার পরে যাতে এদের মঞ্জরীর বিকাশ ঘটে একইভাবে, ভাসমান ধানের (floating rice) ক্ষেত্রে ধন্যার পানি নেমে যাওয়ার পার পুষ্ণায়নের প্রয়োজন হয়, তা না হলে শস্য কর্তনের সময় হাস্ববিধার সন্থি হয়।

েত্রমানে পথিবীব্যাপী শস্যের উন্নতমানের ভ্যান্ধাইটি উদ্ভাধনের চেষ্টা চলছে এবং সেই সাথে শস্য উৎপদ্দনের কৃষিতাত্ত্বিক (agronomic) পদ্ধতির পরিবর্তনের উপরেও জোর দেয়া হয়েছে। সম্প্রতি আজেব নাইট্যোজেন সার, আগছেনোশক ও কীটনাশক রাস্যায়নিক পদার্থের ব্যবহার কমানোর জন্য সামাজিক চাপের সৃষ্টি হয়েছে এবং এর জন্য আদর্শ উদ্ভিদ প্রকারের ধারণারও পরিবর্তন ঘটছে।

থেষ্ট্রেড বৃদ্ধির শ্বভাবের এবং শস্যের গঠন শস্য সালোকসংশ্লেষণকে প্রভাবিত করে, সেহেতু গ্রতীতের মতো বর্তমানেও সালোকসংশ্লেষণের হার বৃদ্ধির উপর গুরুত্ব দেয়া হয়েছে। দ্রবেরে স্থানগুর, সঞ্চয়ের কৌশল ও ক্ষমতা এবং প্রোটিন ও লিপিড সংশ্লেষণের বিষয়েও ভবিষ্যতে আরও গুরুত্ব আরোপ করা হবে। এটি শস্যের ফলন আরও বৃদ্ধির লক্ষ্যে শস্য শারীরতস্ববিদদের জন্য প্রচুর সুযোগ সৃষ্টি করবে।

শস্য শারীরবিজ্ঞানের পরিসর (Scope of crop physiology)

শস্য উদ্ভিদের ধংশগতীয় গঠন এবং যে পরিবেশে এটি জন্দে তাদের পারস্পরিক ক্রিয়ার উপর শস্যের ফলন নিন্তর করে। জিনেটাইপ ও পরিবেশের বিভিন্নতা জলবংয়ুগত এবং কালচারাল পদ্ধতিসহ) শারীরভান্তিক পদ্ধতির মাধ্যমে ক্রিয়াশীল এবং যা আবার বৃদ্ধিকে নিয়ন্ত্রণ করে। তাই শারীরভান্ত্রিক পদ্ধতিগুলো এমন যন্ত্র যার মাধ্যমে বংশগতীয় গঠন ও পরিবেশ উভয়েই ক্রিয়াশীল হয়ে বৃদ্ধির পরিমণ্ণ এবং গুণগত মান তৈরি করে, যাকে আমরা ফলন বলি। তাই, শস্য শারীরবিজ্ঞানের মূল প্রতিপোদ্য বিষয় হলে। কিভাবে শস্যের অন্তসংস্থানিক বৈশিষ্ট্য ও শারীরতান্ত্রিক শারীরবিজ্ঞানের মূল প্রতিপোদ্য বিষয় হলে। কিভাবে শস্যের অন্তসংস্থানিক বৈশিষ্ট্য ও শারীরতান্ত্রিক শারীরবিজ্ঞানের মূল প্রতিপোদ্য বিষয় হলে। কিভাবে শস্যের অন্তসংস্থানিক বৈশিষ্ট্য ও শারীরতান্ত্রিক ক্রিয়া কল্যপ পরিবেশের সাথে ক্রিয়া করে শস্যের ফলন নিধারণ করে, সে বিষয়টি জনো। শস্য শারীর্হবিজ্ঞানের প্রায়োগিক দিক হলো বিভিন্ন মৃত্তিকা ও জলবায়ুগত পরিবেশে কি বিশারীরতান্ত্রিক প্রক্রিয়া ফলনক সীমায়িত করে, তা উদ্ঘাটন করা। এই তথ্যাদি পরিবেশের পীড়নকে (stress) স্থা করার জন্য প্রয়োজনীয় অক্সসংস্থানিক ও শারীরতান্ত্রিক বৈশিষ্ট্যসম্পন্ন ভ্যারাইটি উদ্ভাবনে উল্লিস্থাকননবিদদেরকে সাহায্য করবে।

তাই এন্টি প্রতীয়মান হয় যে, শস্য উৎপাদনের গবেষণায় শস্য শারীরবিজ্ঞান মধ্যমণি হয়ে থাকনে এবং কৃষিতপ্রবিদ, মন্তিকাবিজ্ঞানী এবং উদ্ভিদ প্রজননবিদদের গবেষণা এমন দিকে নিয়ে যেতে হবে, যাতে করে সরচেয়ে বেশি কার্যকরী শারীরতাদ্বিক প্রক্রিয়াগুলো সন্যাক্তকরণ এবং সবচেয়ে বেশি সুবিধাজনক পরিবেশ সৃষ্টি করঃ যাতে করে এই প্রক্রিয়াগুলো ভালভাবে প্রকাশ পায়: মতীতে উদ্ভিদ প্রজননবিদরা ফলন বৃদ্ধি করেছেন শস্যের সহজে দৃশ্যমান দোষ–জুটিগুলো পথাক্রমে বিল্পির মাধ্যমে। এই জুটিগুলো হলো বিভিন্ন রোগ, পোকামাকড়, শুব্দ আবহাওয়া, উচ্চ তাপমাত্রা এবং লউিং প্রতিরোধী ইত্যাদি। একটি সমস্যা হলো এই যে, প্রতিটি শারীরতাত্ত্বিক ও অঙ্গসংস্থানিক বৈশিষ্টা বিভিন্নভাবে ফলনকে প্রভাবিত করতে পারে। যেমন গমের পাত্তার কেণে (angle), সালোকসংশ্লেষণের উচ্চ হার, হুলযুক্ত (awn) মঞ্জরী, খর্বাকৃতি কাণ্ড অথবা স্বন্পসংখ্যক কুশি বাছাই করে বেশ জটিলতার সৃষ্টি হয়েছে। গুন্ধ আবহাওয়ায় হলো সুবিধাজনক, কিন্তু ভেজা আবহাওয়ায় এটি বিণ্ণু সৃষ্টি করে। খুবই ক্ষুদ্রাকৃতির কাণ্ড ক্যানোপিতে আলো বিস্তারের ফেত্রে অসুবিধা ঘটায়: ব্যাপক শারীরতাত্বিক গবেষণার মাধ্যমে কতিপয় অবাঞ্ছিত সম্পর্ক জ্যাণ্ডা সম্ভব, তবে বর্তমানে আমাদের প্রয়োজন কি কি বিষয় ফলনকে সীমায়িত করে সে সম্পর্কে ব্যাপক জ্ঞান লাভ করা।

ভবিষ্যতে মালেটপিল ক্রপিং-এর দিকেও নজর দিতে হবে। সেইসাথে স্বন্পচায়ে শস্য উৎপাদন, জ্বালানির ব্যবহার কমানো এবং শস্য উদ্ভিদ যাতে দক্ষতার সাথে ফসফেট এবং অন্যান্য সার ব্যবহার করতে পারে, সেদিকেও লক্ষ্য রাখতে হবে। সেচের পানির দুষ্ণ্রাপাতা এবং সেচ খরচ কমানোর জন্য শস্য যাতে অধিক দক্ষতার সাথে পানি ব্যবহার করতে পারে, সে বিষয়টিও লক্ষ্য রাখা প্রয়োজন।

দ্বিতীয় অধ্যায়

মৃত্তিকা পরিবেশ

ভূ-পৃষ্ঠের উপরের কঠিন স্তর যা শিলা খনিকের ভৌত, রাসায়নিক ও জৈবিক পদ্ধতিতে ক্ষয়প্রাপ্ত ২য় এবং পরবর্তী পঞ্চয়ে জীব ও তাদের পচনক্রিয়ার ফলে উৎপাদিত পদার্থের সাথে মিশ্রিত হয়ে যা সৃষ্টি হয় সেটি মার্ক্তর্ব: নামে পরিচিত

শিলার শ্রেণীবিভাগ

তিন প্রকারের শিলা আছে 🔉 আগ্রেয় (Igneous) শিলা, ২১ প্রালনিক (Sedimentary) শিলা। এবং ২১ রপান্তরিও (Metomorphic) শিলা

১, আগ্রেয় শিলা : সৃষ্টির প্রাথমিক পথায়ে পৃথিবী ছিল গলিত বস্তুর মতো কঠিন এবং ধীরে ধীরে শীওল ২তে হতে এটি কঠিন হয়। এই প্রাথমিক গলিত বস্তু কঠিন ২য়েই আগ্রেয় শিলার সৃষ্টি ২য়েছে এটি আবরে দৃষ্টি উপশ্বেণীতে বিভক্ত যথান কে, প্রুটোনিক (Plutonic) শিলা এবং ংখ) তলকের্দাক (Volcanic) শিলা।

(ক) পুটোনিক শিলা : পৃথিবী পৃষ্ঠের বৈশাল শিলা মূলত ভূ- ওলের অভ্যস্তরে গলিত বস্তু জমাট বেধে সৃষ্টি হয় এবং প্রাক ভূ-তারিক সময়ে (Pre-geological) বিভিন্ন প্রকার ভ আন্দোলনের কারণে এটি ভূ-পৃষ্ঠে চলে আসে ভূ-তলের অভ্যস্তরে শীতলীকরণ প্রক্রিয়া খুব ধীরে ধীরে হয় : শীতলীকরণের সময় কেলাস তৈরি হয় এবং তাই সে সময়কার তৈরি শিলা আধক ৬ব কেলাসিত : শীতলীকরণ খুব ধীরে ধীরে হলে বড় কেলাস এবং খুব দ্রুত হলে অপেক্ষাকৃত ক্ষুত্র কেলাস তৈরি হয় :

(খা) ভলকেনিক শিলা : কখনো কখনো ভূ–তলের অভ্যন্তর ২৩ে তরনাকার গলিত লাভা ভূ–পর্ষ্থে উঠে অংসে। একে বনা হয় আগ্রেয়গিরি। ভূ–পৃষ্ঠে এই লাভা দ্রুত শীতল হয়ে কঠিন বস্তুতে পারণত হয়। একেই বলা হয় ভলকেনিক শিলা।

২ পাললিক শিলা : প্রাথমিক অবস্থায় ভূ পৃষ্ঠে যে শিলা ভোঁর হয়েছিল তা বর্তমানে সে অবস্থায় নাই াবভিন্ন প্রকার ক্ষয়ীভবনের মাধ্যমে ধীরে ধীরে এর পরিবর্তন ঘটেছে াশিলার ক্ষয়ী হাত অংশগুলো বছু, পানি এবং মাধ্যাকযণজনিত শান্ধর প্রভাবে অন্যত্র সার যায়। প্রকাতপঞ্চে আয়োয় শিলা থেকেই পাললিক শিলার উদ্ভব হয়েছে। যোমন– ছোট ডোচ পাথরখণ্ড, বালি, পলিমাটি ইত্যাদি নদী বহন করে মোহনার দিকে নিয়ে যায়। পৃথিবীর পৃষ্ঠেদৃষ্ট শিলরে ৫ ভোগের ৪ ভাগই হলো পালালক শিলান উদ্ধে জিলা সমগ্র শিলার ৫০ তেখি নয়। ব্যক্তি প্রাণ্ড শিলার ৫ শিলারে ৪ ভাগেই হলো

৩, রূপান্তরিত শিলা : অত্যধিক চাপ ও তাপে আগ্নেয় ও পাললিক শিলার গঠন পরিবতিত হয়ে রূপাণ্ডরিত শিলা তৈরি হয়েছে। এভাবে বেলেপাথর (sand stone) কোয়াটজাইট (quartzite), ক্রেপ্টেন্ন ক্লেটে, চুনাপাথর কললসাইট i Calence অথবা আবেলে, গানাইট নিসে (gneiss) পরিবাওত হয়েছে তিন প্রকার শিলার উদাহরণ নিচে উপস্থাপিত হলো :

আগ্নেয় শিলা : গ্রানাইট, সিয়েনাইট (syenite), ব্যাসাল্ট (basalt), ভায়োরাইট(diorite), গ্র্যার্থ্রো (gabbro) এবং পেরিডোটাইট(peridotite)।

পাললিক শিলা : চুনাপাথর, ডলোমাইট (dolomite) বেলেপাথর, শেল (shaie) এবং কংগ্রোমারেট (conglomerate)।

রূপান্তরিত শিলা : নিস (gneiss), স্কিস্টস (schists), শ্রেট, খাবেল, ক্যালসাইট এবং কোয়ার্টজাইট।

শিলায় খনিজ কণা (Rock Minerals)

অনেক গুরুত্বপূর্ণ শিলায় নিমুলিখিত খনিজ কণা প্রচুর পরিমাণে থাকে।

কোয়ার্টজ (Quartz) : এটি সিলিকা বা সিলিকন ডাই–অক্সাইড ; অধিকাংশ শিলায় এটি উপস্থিত। যেসব শিলায় মুক্ত সিলিকা প্রচুর পরিমাণে থাকে (অর্থাৎ ক্ষারকের সাথে যুক্ত নয়), তাদেরকে এসিড (acid) শিলা বলে। এসিড শিলার উদাহরণ গ্র্যানাইট। ক্ষারীয় (basic) শিলায় (যেমন– ব্যাসাল্ট) খুব সামান্য পরিমাদে, যদি কিছু থাকে, মুক্ত সিলিকা আছে।

ফেলসপার (Felspar) : এটি একটি গুরুত্বপূর্ণ মৃত্তিকা সৃষ্টিকারী খনিজ পদার্থ : পটাশ ফেলসপার অর্থোক্লেজ ফেলসপার গঠন করে এবং এটি পটাশিয়াম অ্যালুমিনো সিলিকেট এবং এর সংকেত হলো K₂O, Al₂O_{3,} 6SiO₂, অ্যালবাইট (albite) ব্য সোডা ফেলসপার Na₂O, Al₂O₃ এবং অ্যানোরথাইট (anorthite) বা লাইম ফেলসপার CaO, Al₂O₂ ।

মাইকা (Mica) : মাইকা অপর একটি মৃত্তিকা সৃষ্টিকারী খনিজ পদার্থ। পটাশ মাইকা সংলা এবং স্বচ্ছ এবং এটি মাস্ফোভাইট (muscovite) মাইকা নামে পরিচিত। এর সংকেত K(OH)) Al₂Si₃O₁O। মাগেনেশিয়াম মাইকাকে বলা হয় বায়োটাইট (biotite) মাইকা ৷ ফেলসপার এবং অন্যান্য সিলিকেট খনিজ পদার্থের মতো মাইকা সহজে ফয়ীভবন হয় না।

অলিভিন (Olivine) : এটি ম্যাগনেশিয়াম সিলিকেট।

লোহাঘটিত খনিজ : হেমাটাইট (Fe2O3), ম্যাগনেটাইট (Fe3O4) এবং পাইরাইট (FeS2) 🗆

ক্যালসাইট : এটি ক্যালসিয়াম কার্বোনেট।

ভলোমাইট (Dolomite): এটি ক্যালসিয়াম- ম্যাগনেশিয়াম কার্বোনেট।

অ্যাপাটাইট (Apatite): এটি ক্যালসিয়াম ফসফেট।

ভূ–ত্বকে মৃষ্টিকা সৃষ্টিকারী গুরুত্বপূর্ণ থনিজ পদার্থের আনুপাতিক হার হচ্ছে : ফেনসপার ৬০গ, কোয়াটাইজ ১২গ, মাইকা ০গ, ফেরোম্যাগনেশিয়াম থনিজ ১৫গ এবং অন্যান্য ১০গ

শিলার ক্ষয়ীভবন ও মৃত্তিকার উৎপত্তি (Weathering of rocks and formation of soil) মৃত্তিকরে উৎপত্তির প্রথম ধাপে শিলরে খনিজ কণার ফয়ীভবনের ফলে মংতৃ-পদাথের উদ্ভব হয়। ফয়ীভূত এই আঁজব পদার্থের সাথে উদ্ভিজ কাঁচা জৈবপদার্থ এবং অণুজীবের ক্রিয়ার ফলে পচনশীল বস্তু জমা হয়। উদ্ভিদের পাতা ও কাণ্ড মৃত্তিকার পৃষ্ঠে এবং মৃত মূল মৃত্তিকার অভ্যত্ত জৈব পদার্থ সরবরাহ করে। বিভিন্ন অণুজীবের ক্রিয়ার ফলে এটি দ্রুত ভেঙে যায়। বায়ুজীবী অবস্থায় এবং পর্যাপ্ত পানি থাকলে এই ভাঙন দ্রুততর হয় এবং পরিশেষে হিউমাসে পরিণত হয়।

\$6

শস্য শারীরবিজ্ঞান

কতকগুলো ভৌত প্রক্রিয়ায় ক্ষয়ীভবন হয়ে শিলং এবং শিলা খণ্ডগুলো কোনো প্রকার রাসায়নিক পরিবর্তন ছাড়া ক্ষুদ্র ক্ষুদ্র কণায় পরিণত হয়। ভৌত ক্ষয়ীভবনের মাধ্যমণ্ডলোর মধ্যে বরফ জমা ও গলা, তাপমাত্রার হ্রাস–বৃদ্ধি, হিমধাহ, নদীপ্রবাহ, চেউ এবং বায়ুপ্রব্যাহ প্রধান।

(১) বরফ জমা ও গলা : ঠাণ্ডায় পানি যখন বরফে পরিণত হয় তখন এর আয়তন শতকর: ৯ ভাগ বেড়ে যায়। ফাটলের মধ্যে পানি ঢুকে জমে গেলে যে চাপের সৃষ্টি হয়, তার ফলে জিলা ভেঙে টুকরো টুকরো হয়ে যায়। ঠাণ্ডা ও নাতিশীতোফ্ষ অঞ্চলে যেখানে বৃষ্টিপাতের পরিমাণ বেশি, সেখানে বরফ গলা ও জ্রমা শিলার ক্ষয়ীভবনে গুরুত্বপূর্ণ ভূমিকা পালন করে।

(২) তাপমাত্রা : তাপমাত্রার হ্রাস-বৃদ্ধির ফলে পদার্থের আয়তনের সংকোচন এবং প্রসারণ ঘটে। তবে শিলা তাপ কুপরিবর্ত্তী বলে শিলাপৃষ্ঠের উচ্চ তাপ কেবলমাত্র সামান্য অভ্যন্তরে প্রবেশ করতে পারে। উচ্চতাপে শিলাপৃষ্ঠ আয়তনে বৃদ্ধি পায় বলে তা অবশিষ্টাংশ থেকে আলগা হয়ে আসে। আবার, দিন ও রাতের তাপমাত্রার পরিবর্তনের ফলে পাশাপাশি সংলগ্ন ভিন্ন ভিন্ন খনিজে বিভিন্ন ধরনের প্রসারণ ও সংকোচন ঘটে। ফলে শিলাস্থ স্ফটিকগুলো আলগা হয়, যাতে করে শিলা ভেঙে য়ায়।

(৩) **হিমবাহ :** চলমান বরফ পানির স্রোতের নিয়ম অনুযায়ী চলে এবং স্রোতের মতোই কাজ করে। তবে এদের মধ্যে পার্থক্য এই যে, বরফ একটি কঠিন পদার্থ এবং কঠিন শিলাকে বিচূর্ণ করার ক্ষমতা পানির তুলনায় বেশ্বি।

(8) নদীপ্রবাহ : নদীপ্রবাহের সাথে যে প্রচুর পলি, নুড়িপাথর এমন কি স্থানচ্যুত বড় পাথর থাকে তাতে করে শুধু যে, উপত্যকাই গভীর ও বিস্তৃত হতে থাকে তাই নয়, এগুলো বিভিন্ন প্রদাথকে বিচূর্ণ করে মৃত্তিকা গঠন করার মতো অবস্থায় নিয়ে যায়।

(৫) চেউ : চেউ এর ক্রিয়া সমুদ্র ও নদীর তীরেই সীমাবদ্ধ। অনেক জায়গায় চেউ এর ফলে সম্বল্লতীরবাতী পাহাড়ের শিলা ভেঙ্কে ছোট ছোট টুকরো ও নুড়িতে পরিণত হয়।

(৬) নায়ুপ্রবাহ : বায়ুগ্রবাহ, বিশেষ করে ধুলিকণায় পূর্ণ থাকলে, শিলাস্থ খনিজ পদার্থকে এক ঘগণের সৃষ্টি করে। ধুলিঞ্চড় বিপুল ওজনের পদার্থ এক জায়গ্য থেকে অন্য জায়গ্যায় বয়ে নিয়ে যায় এবং সে সময় কণাগুলোর একে অপরের স্যথে ঘর্ষণ হয়।

রাসায়নিক ঋষী ওপনের ফলে আদি শিলা বিগলিত হয়ে নতুন বস্তুর সৃষ্টি ২য়। তাই, আদি শিলার কোনো কোনো খনিজ আংশিকভাবে, আবার কোনোটি সংম্পূর্ণরূপে অদৃশ্য হয়, আর নতুন যে বস্তুঃ সৃষ্টি হয়, তা আদি খনিজ থেকে সম্পূর্ণ আলাদা প্রকারের।

গত্মর উপস্থিতিতে রাসগ্রনিক জয়ীভবন প্রধানত ঘটে পানিতে দ্রবীভূত কার্বন উংই অক্সাইড, এক্সিজেন এবং জৈব পদার্থ পচনের ফলে সৃষ্ট জিব অ্যাসিড খনিজে চোয়ানোর ফলে। এক্সেরে জারণ, পানিযোজন, কার্বোন্টোযোজন এবং আদ্রবিশ্লেষণ ঘটে। ফেরাস এবং সালফাইউ আফন জারিত ২য়। রাসায়নিক ক্ষয়ীভবন তীবতর হয় যদি তার পূর্বে শিলাতে ভৌত ক্ষয়ীভবন গঠি থাকে। তাপমাত্রা ব্রাদ্ধ পেলে রাসায়নিক পরিবর্তন বৃদ্ধি পায়। তাই নিমু তাপমাত্রা অপেক্ষা এক্সডাপে রাসায়নিক ক্ষয়ীভবন বেশি হয়।

জিপসামের মতো খনিজ কণা সহজে এবং দ্রুও পানিতে দ্রবীভূত হয়ে শিলা থেকে পৃথক হয়। ৰায়ুমণ্ডলের কার্যন ভাই- অক্সাইড পানিতে দ্রবীভূত হয়ে ক্যালসাইটের উপর ক্রিয়া করে কণ্ডলসিয়াম বাইকার্যোনেট তৈরি করে, যা সহজেই পানিতে দ্রবীভূত হয়। পানিযোজিত হয়ে লৌহের অঞ্চাইড নতুন পদার্থে পরিণত হয় যা রাসায়নিক ক্ষয়ীভবনে কম বাঁধার সৃষ্টি করে। পর্শনেডে দ্রবীভূত কার্বন ডক্টে-অক্সাইডের পটাশ ফেলসপারের উপর ক্রিয়ার ফলে ক্লে, সিলিসিক (siliciec) অ্যাসিড এবং পট্যশিয়াম হাইড্রোক্সাইডে পরিণত হয়। ক্লে হলো এক প্রকার অ্যাল্মিনিয়াম সিলিকেট।

K2O. AL2O3. 6SiO2 + 11H2O =AL2O3. 2SiO2.2H2O + 4H4 SiO4 + 2KOH কেয়েলিম স্থিলিমিক পটাশিয়াম অংখা চীনা ক্লে এসিড হাইড়োয়াইড

শিলার অধিকাংশ সিলিকেট কণা এভাবেই ক্ষয়ীভূত হয়। তাই পানি শুধুমাত্র দ্রাবক হিসেবেই কাজ করে না, শিলার আর্দ্রবিশ্লেষণও ঘটায়।

বায়ুমণ্ডলের খুব সামান্য মাত্রার কার্বন ডাই-অক্সাইড, নাইট্রক আগিড, আগমেনিয়া এবং সালফিউরিক অ্যাসিড পানি কর্তৃক খনিজ কণার ক্ষয়ীভবনের মাত্রা বাড়িয়ে দেয়। বায়ুমণ্ডলের নাইট্যোজেনের অক্সাইড এবং অ্যামোনিয়া বৃষ্টির পানির সাথে মিশে নাইট্রিক অগসিড এবং অ্যামোনিয়াম হাইড়োক্সাইডে পরিণত হয়। খুব সামান্য পরিমাণ অন্ধ্রিজন পানিতে দ্রবীভূত হয়ে লোহার্ঘটিত যৌগের জারণ ঘটায়।

ভৌত ও রাসায়নিক ক্ষয়ীতবন ছাড়াও জীবন্ত উদ্ভিদ ও প্রাণীর প্রভাবেও ক্ষয়ীতবন হয়, একে জৈবিক ক্ষয়ীতবন বলে। জীব অবশ্য সরাসরি শিলার ক্ষয়ীতবন করে না। উদ্ভিদের মূল শ্বসনের সময় কার্বন ডাই অপ্লাইড তৈরি করে। এতে ক্ষয়ীতবন ত্বরাদ্বিত হয়। আধার মূল শিলার ভিতরের ফাটল ও ছিদ্রকে বড় করে, যার ফলে সেগুলোর ভিতর দিয়ে পানি অতি সহজে চোয়াতে পারে। কীটপতঙ্গ মৃত্তিকায় গর্ত করে। তাতে পানি ও বায়ু মৃত্তিকার নিচের স্তরে প্রবেশ করে এবং অন্তর্ভূমি এভাবে কীটপতঙ্গ দ্বারা ক্ষয়ীতবনের জন্য উদ্ধুক্ত হয়ে যায়।

ভাগ্ডা শিলাখণ্ডে প্রথমে লাইকেন ও মস জন্মায় এবং জীবনচক্র সমাপ্তির পর এদের দেহাবশেষ খনিজ কণার সাথে মিশে যায়। এর ফলে শৈবাল, ছত্রাক, ব্যাকটেরিয়া, পোটোজোয়া এবং বিভিন্ন কীটপতঙ্গ এতে বসবাস গুরু করে। মৃত্ত উদ্ভিদ ও প্রাণীর উপর এদের ক্রিমার ফলে জৈব পদার্থ খনিজ কণার সাথে মিশে যায়। মৃত্তিকায় বসবাসকারী কেঁচো উদ্ভিদের পচা অংশ খাওয়ার সময় প্রচুর পরিমাণ মাটিও থেয়ে ফেলে এবং পৌষ্টিক–নালীর ভিতর দিয়ে এটি আবার বেরিয়ে আসে এসময় অবশ্য মৃত্তিকার গঠনের পরিবর্তন হয় এবং জৈব পদার্থের সাথে ভালভাবে মিশে যায়। তাই এই মৃত্তিকা বেশ উর্বর।

উপরোক্ত আলোচনা থেকে এটি সুস্পষ্ট যে, ক্ষয়ীভবনের ফলে মৃত্তিকার উৎসবস্তু তৈরি হয়। আর পরের ধাপ হলো উৎসবস্তু থেকে মৃত্তিকা তৈরি হওয়া। এ দুটি প্রক্রিয়ার একটি শেষ হলে অপরটি গুরু হয়, তা নয়। ক্ষয়ীভবনের জন্যই মৃত্তিকা গঠন সম্ভবপর হয়, তবে সঙ্গে ক্ষয়ীভবনও চলতে থাকে, যতক্ষণ পর্যন্ত ক্ষয় হওয়ার মতো খনিজ পদার্থ অবশিষ্ট থাকে।

মৃত্তিকার গঠন প্রক্রিয়ার সাথে সাথে মৃত্তিকার প্রোফাইল বিকাশ শুরু হয়। মৃত্তিকা সাধারণত বিভিন্ন স্তরে গুরীভূত থাকে। ভূ–পৃষ্ঠ হতে ক্রমান্বয়ে নিচের দিকে মৃত্তিকা বিভিন্ন স্তরে সক্ষিত। প্রতিটি স্তরকে বলা হয় হরাইজন (horizon)। যে মৃত্তিকার প্রোফাইল গঠন হয়েছে তাকে 'পরিণত প্রোফাইল' বলা হয়।

মৃত্তিকা প্রোফাইল প্রধানত তিনটি স্তরে বিভক্ত। সর্বোচ্চ স্তরকে শীর্ষমৃত্তিকা' (top soil or A), মধ্যের স্তরকে অন্ত:মৃত্তিকা (sub-soil or B) এবং সর্বনিম্ন স্তরকে ফায়ীভূত শিলাস্তর (weathered rock or C) বলা হয়। খনিজ পদার্থ এবং হিউমাসের প্রকৃতি অনুসারে মৃত্তিকার রঙ্জের তারতম্য ঘটে। 'A' স্তরে জৈব পদার্থের পরিমাণ বেশি থাকে, কিন্তু অজৈব পদার্থের পরিমাণ

্রুম থাকে এই স্তরের যুক্তিকার রঙ গাঢ় বর্ণের এবং উদ্ভিদের মুল ভালভাবে বিস্তারলাভ করে। 'B' স্তরে এজের পদার্থের পরিমাণ বেশি, কিন্তু জৈব পদার্থের পরিমাণ কম। এ অংশে পানি চলাচল অগত্য কম এবং বয়েুর পরিমাণ কম থাকায় এখানে মূলের বৃদ্ধি সীমিত। এ অংশের রঙ্জ হাক্ষ র্পের এইটার বা সর্বনিয়ু স্তর 'C'---আলগা কঠিন শিলা ও শিলাচুর্ণ দ্বারা গঠিত।

মৃত্তিকা সৃষ্টিকারী উপাদানসমূহ

প্রধানত মাতৃ-পদার্থ, জলবয়ে, উদ্ভিদরাজি (vegetation), তৃ সংস্থান (topography) , সময় এবং জীবন্যসূহকে মৃত্তিকা সৃষ্টিকারী উপাদনে হিসেবে চিহ্নিত করা হয়।

(১) মাতৃ-পদাথ : মৃত্তিকার পুষ্টি উপদেন, বিক্রিয়া, বুনট এবং গঠন প্রধানত নির্ভর করে ম র পদর্থের উপর। সুনিক্ষাশিত অবস্থায়, লোহাসমৃদ্ধ মাতৃ-পদার্থ (যেমন- ব্যাসল্ট, ডোলিরাইট) থেকে যে মৃত্তিকা সৃষ্টি হয়, তাতে লোহার পরিমাণ বেশি এবং এর গঠন ও ভাল। অপরপক্ষে, যে সমস্ত মাতৃ-পদার্থে লোহার পরিমাণ কম, কিন্তু কোয়াটজ বেশি, সেক্ষেত্রে মৃত্তিকার গঠন ভাল নহ এবং এটি সহজেই ফয়প্রাপ্ত হয়। কি প্রকারের ক্লে তেরি হবে তাও মাতৃ-পদার্থ নিয়ন্ত্রণ করে। কিন্তু ভারিকোন্দে উপস্থিতিতে যদি চোয়ানো চলতে থাকে, মাতৃ-পদার্থে প্রকৃতি যাই হোক না কেন, ডারিকান্দে মৃত্তিকায় কেয়োলিনিটিক (kaolinitic) ক্লে তৈরি হয়। পাললিক শিলা এমন পদার্থ দিয়ে গঠিত হাতে কমপক্ষে একবার ক্ষয়ীভবন হয়েছে এবং এতে ক্ষয়ীতবনের জন্য সামান্যই পদার্থ থাকে এবং এ পেকে যে মৃত্তিকা তৈরি হয় তাতে পৃষ্টি উপাদান খুব কম থাকে।

(২) জলবায়ু : মৃতিকা সৃষ্টিকারী উপাদানগুলোর মধ্যে এটি সবচেয়ে বেশি প্রভাবশালী। গুপমাত্রা এবং বৃষ্টিপাও মৃতিকার গঠনকে প্রভাবিত করে। গ্রীষ্মমণ্ডলীয় অঞ্চলে সারা বছরই গ্রাপমাত্রা অপেঞ্চাকৃত বেশি এবং যেখানে বৃষ্টিপাতের পরিমাণ এবং বিস্তার পরিমিত, সেক্ষেত্রে নার্তিশীতোয্য অঞ্চলের তুলনায় মৃত্তিকা তাড়াতাড়ি সৃষ্টি হয়। কেননা নিমুতাপে রাসায়নিক অগ্রীতবন এবং অণুজীবের ক্রিয়া হাস পয়ে। যেথেতু রাসায়নিক ক্ষয়ীতবন এবং চোয়ানোর পরিমাণের উপর বৃষ্টিপাতের প্রত্যক্ষ প্রভাব আছে, সেহেতু বৃষ্টিপাতের পরিমাণগত ও কালগত পরিবার্তনের সাথে মৃত্তিকা সৃষ্টির সম্পর্ক আছে।

শুক এলাকয়ে, যেখানে বৃষ্টিপাতের ভুলনায় বান্সীয়ভবন বেশি, রাসায়নিক ক্ষয়ীভবন কেবল মৃত্তিকরে উপরিস্তরে সীমাবদ্ধ এবং এর গতিও বেশ মন্থর। ক্ষয়ীভবনের জন্য সৃষ্ট দ্রবণীয় পদওাগুলো চুইয়ে নিচে চলে যেতে পারে না, কিন্তু বান্সীভবনের জন্য উপরিস্তরে জম্য থাকে। এর প্রতিও বেশ মন্থর। ক্ষয়ীভবনের জন্য সৃষ্ট দ্রবণীয় পদওাগুলো চুইয়ে নিচে চলে যেতে পারে না, কিন্তু বান্সীভবনের জন্য উপরিস্তরে জম্য থাকে। এর প্রকৃতি অধিকাংশ ক্ষেত্রেই ক্ষারধর্মী। মৌসুমী (monsoon) এলাকায় যেখানে বৃষ্টিপাতের পরিমাণ মংগেরুক্ত বেশি এবং বয়াকালের যে সময়ে বান্সীভবনের জন্য উপরিস্তরে জম্য থাকে। এর প্রকৃতি অধিকাংশ ক্ষেত্রেই ক্ষারধর্মী। মৌসুমী (monsoon) এলাকায় যেখানে বৃষ্টিপাতের পরিমাণ মংগেরুক্ত বেশি এবং বয়াকালের যে সময়ে বান্সীভবনের ভুলনায় বৃষ্টিপাত বেশি হয়, কেবল তখনাই চোয়ানে হয়, সেক্ষেত্র অতিরিক্ত দ্রবীভূত লবণ অপসারিত হয় এবং মৃত্তিকার বিক্রিয়া নিরপেক্ষ কিংধা নাহনের অন্তরিক্ত দ্রবীভূত লবণ অপসারিত হয় এবং মৃত্তিকার বিক্রিয়া নিরপেক্ষ কিংধা নাহনের অন্তরিক্ত দ্রবীভূত লবণ অপসারিত হয় এবং মৃত্তিকার বিক্রিয়া নিরপেক্ষ কিংধা নাহনের অন্তর্থনী হয়। গ্রীশ্বমণ্ডলীয় যে সমস্ত এলাকায় ব্যয়ের অধিকাংশ সময়ই বন্সীভবনের ভুলনায় বৃষ্টিপাতে বেশি হয়, যে সমস্ত এলাকায় মৃত্তিকা বেশি অপসারিত হয় বলে প্রেজি হালেরে (Sesquioxide)–এর তুলনায় বর্দ্ধ বাদী হয়। চোয়ানো বৃদ্ধি পেলে কেয়েনির্নিনিটিক (kaofinitic) ক্লে (ক্যাটায়ন বিন্সিয় ক্ষমটা বেশি হয়, তবে সোমেইলিটিক কেয়ের ক্রে হয়। বাদি চিন্তিক (জে লেটানের ক্লি হয়। আজানে ক্য হয়, তবে সোমেইলিটিক কেরে হের হয়। বাদি চোয়ানো কম হয়, তবে সোমেইলিটিক কেরে ৪০ এবং ১০০ থেকে ১০০ মিলিইকুইভালেন্ট/১০৫ গ্রাম) তেরি হয়।

(৩) উদ্ভিদরাজি : বিভিন্ন প্রকার প্রাকৃতিক উদ্ভিদরাজি, যা বৃষ্টিপাতের পরিমাণের সাথে সম্পকযুক্ত, ভিন্ন ভিন্ন পরিমাণে উদ্ভিদের অংশ, যেমন– মূল**ুন্নের স্বভাব ও** গভীরতা, চোয়ালো প্রতিরোধ এবং ফলিজ মৌল ধরে রাখ্যর মাধ্যমে মৃত্তিকা সৃষ্টিতে ভূমিকা রাথে। (8) ভূ-সংস্থান : কোনো জমির ভূ-সংস্থানের প্রকৃতি অনুযায়ী জলধায়ুর কাজকে মন্থর কিংবা ত্বরান্ধিত করতে পারে। যেমন- নিম্নাঞ্চলে পানি জমে স্থায়ী জলাভূমির সৃষ্টি করে কিংবা সাময়িক বন্যা দেখা দেয়। সমতল এলাকায় মৃত্তিকা প্রোফাইল ভালভাবে বিকশিত হতে পারে বলে এখানে পরিণত মৃত্তিকা দেখা যায়। আবার ভূমিক্ষয় ঢাল থেকে কিছু ক্ষয়ীভূত পদার্থ সরিয়ে নেয় খলে সুস্পষ্ট মৃত্তিকা প্রোফাইলের বিকাশ ও গঠন ব্যাহত হয়। এক্ষেত্রে জাল বেঙে দ্রুত পানি অপসারিত হয় বলে চোয়ানো খুব কম হয়। ভূ-সংস্থান মৃত্তিকার তাপমাত্রকেও প্রভাবিত করে

(৫) সময় (Time): শক্ত শিলার (যেমন– গুগনাইট) ক্ষয়ীভবন হতে কয়েক হ'জার বছর সময় লাগে, কিন্তু নরম শিলার (যেমন– টুনাপথের) ক্ষয় হতে কম সময় লাগে। মাতৃ পদংথের উপর জৈবিক এবং রাসায়নিক নিয়ামকগুলোর বহু বছর ক্রিয়ার ফলে মণ্ডিকার হরাইজনের সৃষ্টি হয়। মাতৃ–পদার্থ বহু বছর ধরে থাকলেও যদি সুবিকশিত হরাইজন না থাকে, অপরিণত (Young) মৃত্তিকা বলে। পরিণত মৃত্তিকায় তিনটি হরাইজন থাকে। কাজেই মৃত্তিকার বয়স পরিমাপ করা হয় তার প্রোক্ষাইল বিকাশের পূর্ণতা দিয়ে, মাতৃ–পদাথের ভূ-তাত্বিক বয়স দিয়ে নয়।

(৬) মৃত্তিকাস্থ জীবকুল : উদ্ভিদের মূল শিলা ও খনিজ পদার্থ ভেদ করে ধায় এবং বায়ু ও পানি চলাচলের পথ তৈরি করে। মৃত মূল পচে বিভিন্ন প্রকার জেব ও অজৈব জ্যাসিও তেরি করে। এই পচনের জন্য ব্যাকটেরিয়া এবং ছত্রাক অংশগ্রহণ করে। শ্বসনের জন্য মূল থেকে নিগত কর্বেন ডাই অক্সাইড পানির সঙ্গে বিক্রিয়া করে কার্বোনিক অ্যাসিও তেরি করে। এসব পদার্থ মৃত্তিকার প্রোফাইল ও গঠনকে প্রভাবিত করে। প্রাণীজগতের অগুর্ভুক্ত যেসব জীব মৃত্তিকা সৃষ্টিতে সহায়তা করে তাদের মধ্যে কোঁচো, ইদুর, পিপড়া ইত্যাদি প্রধান। এরা গর্ত করে মৃত্তিকার হয় হিল-গুলেকে মিনিয়ে দেয় এবং মৃত্তিকার গঠন ব্যাহত করে।

মৃত্তিকার ভৌত গুণাগুণ (Physical Properties of Soil)

মৃত্তিকার বুনট (texture), গঠন (structure), আপেঞ্চিক ঘনন্ন (apparent density), সচ্চিদ্রন্তা (porosity), রঙ্জ ইত্যাদি মাটির ভৌত গুণাবলীর অন্তর্গত

মৃত্তিকার বুনট (Soil texture) : এটি মৃত্তিকার গুরুত্বপূর্ণ ভৌত গুণাবলী। নুড়ি, বালি, পর্নি (sitt) এবং কর্দম (clay) ইত্যাদি বিভিন্ন আকারের মৃত্তিকার কণার আনুপাতিক হারকে মৃত্তিকার বুনট বলে। নুড়ি এবং কাঁকর ব্যতীত, মৃত্তিকার খনিজ কণার ব্যাস অনুযায়ী কতকগুলো শেণীতে বিভক্ত করা হয়েছে। আমেরিকান কৃষি বিভাগ (USDA) এবং আন্তজাতিক পদ্ধতির (International System) শ্রেণীবিন্যাস ২.১ নং সারণিতে দেখানো হয়েছে।

যুত্তিকার কণা		কণ্যর ব্যাস (মিলিমিটার)		
`		আমেরিকান কৃষি বিভাগ	ঞাত্তজাতিক পদ্ধতি	
_(≩)	নুন্ডি	২০ এর বেশি		
(খ)	এত্যন্ত মোটা বালি	২,০ থেকে ১,০		
(୩)	মোটা ধালি	১,০ থেকে ০,৫০	২, <i>০০</i> ্থকে ০,১	
(घ)	মধ্যম বালি	<u>০,৫০ থেকে</u> ০,২৫		
(%)	মিহি বালি	0,50 (274 0,50	০০২ থেকে ০০০১	
(Σ)	গ্ৰন্থ্যন্ত মিহি বালি	0,50 (RTA 0,00	-	
(৬)	পলি	০.০৫ থেকে ০.০০২	0,0\$, % (4-0,00\$	
(Gr)	 কৃদম	০,০০২ এর কম	০.০০২ এর কম	

সারণি ২.১ : মৃত্তিকার কণার শ্রেণীবিন্যাস

শস্য শারীরবিজ্ঞান

্মায়ে মাচির কণাগুলো, বিশেষ করে ক্ষুদ্রাকার কণাগুলোর অবশ্য পৃথকভাবে থাকে না, এক সঙ্গে দিলা গেঙে থাকে। উপরোঞ্জ ব্যাসের কণাগুলোর অনুপাতের উপর মৃত্তিকার গুণাগুণ অনেকাংশে দিন্ডর করেন বিভিন্ন শ্রেণীর বুনট উপরোক্ত কণাসমূহের বিভিন্ন হারে সংমিশ্রণের জন্য সৃষ্টি হয়। এর উপর ভিত্তি করে মৃত্তিকার বুনটকে নিমুনিখিত কয়েকভাবে ভাগ করা হয়েছে।

(১) বেলে মাটি : এ মৃত্তিকায় শতকরা ০ থেকে ২০ ভাগ কর্দম এবং ৮০ থেকে ১০০ ভাগ বালি এবং নৃট্টি-পাথর থাকতে পারে। এগুলোর মাঝে বড় আকারের রন্ধস্থান থাকে, তাই বায়ু চলাচল শুল হয়। বেলে মৃত্তিকা তাড়াতাট্টি গুকোয় এবং এর পানি ধারণক্ষমতা বেশ কম। বালি ও নুড়িতে কোনো পৃষ্টি উপাদান থাকে না বলে, এ মৃত্তিকায় উদ্ভিদের বৃদ্ধি ভাল হয় না।

(২) পলি মাটি : এ মৃত্ত্তিকা নদীবাহিত। এতে প্রায় ২০% থেকে ৩০% কর্দম, ৫০% থেকে ৬০% পাল এবং ভিতর দিয়ে সহজে বাতাস ও পানি চলাচল করতে পরে। অবশ্য এতে জৈব পদার্থের পরিমাণ কম থাকে

(৩) কাদা মাটি: এ মৃত্ত্তিকায় কর্দমের পরিমাণ ৩০% এর বেশি। মেটা কর্ণার অনুপাত নিত্তন্ত কম। এর পানি ধারণ ক্ষমতা বেশি, কিন্তু বায়ু চলাচল ভালভাবে হয় না। এ মাটি ভেজা অবস্থায় আঠালো এবং ধীরে ধীরে গুকায়। তখন একে কর্মণ করা বেশ কঠিন এবং বড় বড় ঢেলার সৃষ্টি ২৪।

(৪) দো-আঁশ মাটি: এতে স্যধরেণত ০০ থেকে ২০০ কর্দম, ০০ থেকে ৫০০ বালি এবং ৩০০ থেকে ৫০০ পলি থাকে। দো- আঁশ মৃত্তিকার পানি ধারণ ক্ষমতা, পানি শ্যোমণ ক্ষমতা, নমনীয়তা এবং বায়ু চল্যচল ক্ষমতা মধ্যম। এ মৃত্তিকা বেশ উর্বর এবং শস্য উৎপাদনের জন্য বেশ উপযোগী। (৫) বেলে-দো-আঁশ : এ মাটি অনেকাংশে দো-আঁশ মাটি অনুরূপ। দো-আঁশ মৃত্তিকার তুলনায় এতে কিছু বেশি পরিমাণে বালি (৫০০ থেকে ৮০০) থাকে।

মৃত্তিকার বুনটের পার্থক্যের জন্য মৃত্তিকার গুণাগুণ কিভাবে পরিবর্তিত হয় তা ২.২ নং সারণতে দেখানো হয়েছে।

সারণি ২.২ : মৃত্তিকার বুনট দ্বারা প্রভাবিত কতিপয় মৃত্তিকার গুণবেলী

	মাটির গুণাবলী		বুনট শ্ৰেণী	
1	• •	বালি	দো-আঁশ	কৰ্দম
્રિયા	ৰাতাম্পয়ন (acration)	িখুব ভাল	ভাল	খারাপ
51	ক্যাটায়ন বিনিময় ক্ষমতা (CEC)	কম	মধ্যম	উচ্চ
5	পানি নিক্ষাশন	ঁ খুব ভাল	ভাল	থাবাপ
8	ক্ষমসাধন (crodibility)	সহজ	মধ্যম	কষ্টকর
¢ :	থবেশাতা (permeability)	ত লা	মধ্যম	ধীর গতিতে হয়
24	হাপঝারা	তাডাতাডি	মাঝারি গতিতে	ধীর গতিতে
		গ্রন্য হয়	গ্রম হয়	গরম হয়
41	চাধাবাদ (tillage)	সহজে হয়	মোটামুটি হয়	কষ্টকর
Ъ :	পানি ধারণ ক্ষমঙ	কম	মাঝারি ধরনের	উচ্চ

বুনট সম্পর্কে ধারণা মাটি। ব্যবস্থাপনায় সাহায্য করে। মোটা বুনটের মাটি খুব সহজে প্রবেশ করে। এবং এর ডেওর দিয়ে। বাতাস ও পানি সহজেই চলাচল করতে পারে। কিস্তু এ মাটি পানি। অথবা

মৃত্তিকা পরিবেশ

উদ্ভিদের পুষ্টি উপাদনে ধরে রাখতে পারে না এবং সেজন্য এ মাটি অনুবর এবং দেও গুকিয়ে যায়। মিহি কর্দম কণা অধিকাংশ পুষ্টি উপাদনে আটকিয়ে রাখে, কিন্তু এ মৃত্তিকায় বাতাস, পানি ও উদ্ভিদের মূল সহজে প্রবেশ করতে পারে না। মূলের বৃদ্ধি ব্যাহত হলে উৎপাদনিও কমে যায়। মাঝামাঝি বুনটের মৃত্তিকা শস্য উৎপাদনের জন্য বেশি উপযোগী। কারণ এ মৃত্তিকায় যেমন বাওসে ও পানি সহজে চলাচল করতে পারে, তেমনি পানি ও পুষ্টি উপাদান ভালভবে আটকে রাখতে সক্ষম। মোটা বুনটের মাটির বেশি পরিমাণে সার লাগবে এবং পানি ও পুষ্টি উপাদান ধরে রাখতে সক্ষম। মোটা বুনটের মাটির বেশি পরিমাণে সার লাগবে এবং পানি ও পুষ্টি উপাদান ধরে রাখতে সক্ষম। মোটা বুনটের মাটির বেশি পরিমাণে সার লাগবে এবং পানি ও পুষ্টি উপাদান ধরে রাখতে সক্ষম। মোটা বুনটের মাটির বেশি পরিমাণে সার লাগবে এবং পানি ও পুষ্টি উপাদান ধরে রাখতে সক্ষম। মোটা বুনটের মাটির বেশি পরিমাণে সার লাগবে এবং পানি ও পুষ্টি উপাদান ধরে রাখতে সক্ষম। মোটা বুনটের মাটির বেশি পরিমাণে সার লাগবে এবং পানি ও পুষ্টি উপাদান ধরে রাখতে জন্য এর জৈব পদার্থের পরিমাণ বৃদ্ধি করতে হবে। মোটা বুনটের মৃত্তিকায় পানি বেশিক্ষণ আটকিয়ে থাকে না, তাই ঘন ঘন অন্স পরিমাণ সেচ দেয়া ভলে। ভারি কর্দম মৃত্তিকার ভিতর দিয়ে রাতাস চলাচল ব্যাহত হয় ; এজন্য এতে যথোপযুক্ত পানি নিব্দাশনের ব্যবস্থা করা প্রয়োজন। মিহি বুনটের মৃত্তিকাতে বেশি ভেজা অবস্থায় কাজ করা উচিত নয়, সেক্ষেত্রে জমাট বেঁধে বড় বড় ঢেলায় পরিণত হতে পারে। শস্য উৎপাদনের ব্যাপারে জমির গুণান্ডণ যাচাহযের সময় জমির উপরিতল এবং অন্তঃতল মাটি, উভয়েরই বুনট বিবেচনা করতে হবে।

মাটির গঠন

মাটি গঠন বলতে বুঝায় বালি, পলি এবং কর্দম কণার অবস্থান এবং একটি বিশেষভাবে দলাবদ্ধ হয়ে থাকে। এ কণাগুলো বিভিন্ন আকার ও আয়তনের গুচ্ছ ব্য পেড (ped) হিসেবে একত্রিত হয়ে থাকে। এই কণাগুলোর একত্রিকরণের ফলে ফাঁকা জায়গা বা **রন্ধস্থা**নের (pore space) শৃষ্টি ২৪। যখন ছোট ছোট কণাগুলি বড় বড় কণার রন্ধ্রস্থানে পুঞ্জীভূত অবস্থায় থাকে, তাকে পুঞ্জিভূত গঠনবিন্যাস (aggregate Structure) বলে। আবার যখন একটি ছোট দানার চারদিকে জনেকগুলো অধিকতর ছোট দানা একত্রিত হয়ে একটি বৃহত্তর যৌগিক দানা তৈরি করে, তাকে গুচ্ছতা (flocculation) গঠন বিন্যাস বলে। পুঞ্জীভূত গঠনবিন্যাস অপেক্ষাকৃত ক্ষণস্থায়ী ভেঙে এবং কর্যণ, বৃষ্টিপাত, অণুজীব ইত্যাদির ক্রিয়ার ফলে ভেঙে যায়।

মাটি গঠনবিন্যাস শস্য উৎপাদনের জন্যে গুরুত্বপুণ ভূমিকা পালন করে। কারণ মৃত্তিকার রক্সস্থান (pore space) মৃত্তিকার ভৌত অবস্থা নির্দেশ করে, যার উপর শস্যের মুলের বৃদ্ধির উপযুক্ততা নির্ভর করে। রক্সস্থান থেকে মূল অক্সিজেন গ্রহণ করে। রক্সস্থানে জমাকৃত পানি মূল কর্তৃক শোষিত হয়। **রক্সস্থান** বড় হলে, চোয়ানোর জন্য পানি মৃত্তিকার অনেক গভীরে চলে যায়। এর জন্য মৃত্তিকার পানি ধারণ ক্ষমতা কমে যাওয়ার মূল কর্তৃক পানি পরিশ্যেশ অপযান্ত হয় অপ্রদিকে রক্সস্থান ছোট হলে মৃত্তিকা বেশি পানি ধরে রাখতে পারে, ফলে মূলের পানি পরিশ্যেশ পর্যান্ত হয়।

মাটির মৃত্তিকার মোট আয়তন (V) থেকে ঐ আয়তনে অবস্থিত কঠিন পদাথ (Vs) ধিয়োগ করলে যে আয়তন পাওয়া যায় তাকে বন্ধস্থান বলে। এক আয়তনে যে বন্ধস্থান থাকে তার শতকরা ধারকে রক্সময়তা (porosity) বলে।

অথাৎ **বস্তুময়তা** =(V-Vs)/V × 100

মাটির একক ওজনকে এর আয়তন ধ্বারা ভাগ করলে পাওয়া যায় মৃত্তিকার ধনন্থ। একে আপাত ঘনত্র বলা **হ**য়

প্রকৃতপক্ষে, অধিকাংশ কর্মিত মৃত্তিকার রন্ধ্রময়তার পরিসর ৪০ থেকে ৬০ শতাংশ (সারণি ২.৩) ; তবে পুঞ্জীভূত হওয়ার মাত্রার তারতমেরে জন্য একই মৃত্তিকায় এটি ভিন্ন ভিন্ন হয়। আপাত ঘনত্বের পরিসর হলো ১ থেকে ২ গ্রাম কঠিন পদার্থ প্রতি ঘনসেন্টিমিটার ভেজা মৃত্তিকায়। এটি নির্ভর করে মৃত্তিকার উপাদান, পুঞ্জীভূত হওয়ার মাত্রা এবং পানির পরিমাণের উপর। সাধারণত ম'ওকার গভীরতা বৃদ্ধির সাথে সাথে ব্রন্ধময়তা হ্রাস পায় এবং আপাত ঘনত্র বৃদ্ধি পায়। ২০০০ সারজি বিভিন্ন প্রকার মৃত্তিকার ব্রদ্ধময়তা ও অপার্ত ধনার দেখানো হয়েছে।

২)৪ সারণি বিভিন্ন প্রকার মৃত্তিকার রঞ্জস্থানের শিশুরে দেখানো হয়েছে। এক্ষেপ্তে ব্রহ্মস্থানের আকার তিনটি পেণীতে ভাগ করা হয়েছে। ২৫৭ - (ক) বৃহলাকার রন্ধস্থান যা মাধ্যাকর্ষণের বিরুদ্ধে প্রদান ধরে রাখতে পারে না এদের রাক্ষ ৩০ মাইক্রোমিটারের বেশি), (খ) অতিক্ষুদ্র রন্ধস্থান যা শান্ধগুভাবে পানি ধরে রাখতে পারে (০)২ মাইক্রোমিটার ব্যাসের কম) এবং (গ) মাঝামাঝি রন্ধস্থান ১ থেকে ১০ মাইক্রোমিটার) যা উদ্ভিদের পরিশোষণের জন্য মোটামুটি পানি ধরে রাখতে পারে।

সাবজা ২ ৩ : ক'রপয় মৃত্তিকার রন্ধতার রন্ধ্রময়াও এবং আপাত ঘনত

i attis		রক্সময়তা (∵.) 		আপাত ঘনহ (গ্রাম প্রতি ঘনসেটিমিটার)
107		1 - Sd		.
্ষ হ	rer.	88		2,8
÷⊅i≮ -	বদন্দ্র	40		: 2,3
- ধিব	্রির পদাধযুক্ত কদম	'''''''''''	· · · _	, .

্সার্কা ২,১ : তিন প্রকার মৃত্তিকার বন্ধ্রন্থানের বিস্তার।

শুদী		সম্পূর্ণ আয়ন্তনের অনুপাত			
		মোটা বলে	কৰ্দম দো-আঁশ	ভারী কর্মম	
[†] কঠিন বস্থ		10.85	L 0.88	0,90 -	
পানি ও বয়েপ্	C + C /		0,20	0.08	
' রক্ষের বরস	মাহজোমিচার	0,\$8	0,29	10,20	
	्र ः ११:७ ५०	୍ତ୍ତ୍ୟ	9 LW	0 2 2	
I.	মাহজোমিচার	0.05		т I	
	10.3				
I	মাইক্রেমিটার			İ	

বসজীরী প্রান্থদের মুলের বনস ৫৮১০^{০০} থেকে ৫২১০^{০০} সেন্টিমিটার এবং মূলবোমের ব্যাস আনুমানিক ১৮১৮ - গ সেন্টিমিটার , মৃত্রিকার ওপরের ওরে যেখানে সবচেয়ে বেশি পরিমাণে মূল থাকে, সেখানে মত্ত্রিকার আয়তনের ৬ ৩ থেকে ১,৫ **শত্যাংশের বেশি মূল** থাকে না এবং কাদম মত্ত্রিকার তুলনায় বেলে মৃত্ত্রিকায় বেশি থাকে। পরীক্ষার ফলাফল পেকে জানা গেছে যে, প্রায় ২০০ মাইজ্যোম্যার কম বাংসের রন্ধ্রের ভিতর দিয়ে মূল প্রকে করতে পারে না। বয়জীবী উদ্ভিদের মূল ১ পেকে ২ মিটার পর্যন্ত গভীরে যায়। মত্ত্রিকার পূঞ্জীভূত কণার আক্রারের পার্থক্যের জন্য মূলের প্র প্রাক্তর বিভাবে মার্ড মন্ট্রিকার যায়। মত্রিকার পূঞ্জীভূত কণার আক্রারের পার্থক্যের জন্য মূলের প্র প্রার্থের বিভিন্নতা হয

মাটির কৈব পদার্থ

চান্তদ ও জীবজন্তু মত অবস্থায় মৃতিকায় মিশিত হয়ে মাটি জৈন পদাথের অস্তভুক্ত হয়। এটি মৃতিকার এমন একটি উপাদনে যা মৃতিকার ভৌত ও রাসায়নিক গুণাগুণ, মৃত্তিকাস্থ অণুক্ষীবের কার্যকলাপ এবং উদ্ভিদের বৃদ্ধিকে প্রভাবিত করে। তাই শস্য উৎপাদনের জন্য মৃত্তিকায় জৈব অদ থের সারমান বন্ধি করা অপরিহায় বিভিন্ন উৎস থেকে মাটি জৈব পদার্থ পায়। প্রধান প্রধান উৎস হলো : (১) মূল ও শস্য কওঁনের পর শস্যের অবশিষ্টাংশ থেকে, (২) উদ্ভিদের পাতা ও অন্যান্য পতনশীল অন্ধ থেকে, (৩) জেব সার প্রদানের মাধ্যমে এবং (৪) মৃত্তিকায় বসবয়সকারী প্রাণীর মলমূত্র ও মৃতদেহ এবং অণুজীব থেকে। টাটকা জৈব পদার্থ মৃত্তিকায় প্রদান করলে, কতকগুলো অণুজীবের ক্রিয়ার ফলে এটি আকার ও গঠন হারায় এবং বিগলিত হয়ে মাটির সাথে পুরোপুরি মিশে যায়। জেব পলর্থের অর্ধ-পচা অবস্থাকে বলে হিউমাস এবং হিউমাস তৈরির পদ্ধতিকে বলে হিউমিফিকেশন।

উদ্ধিজ্জ ও <mark>প্রাণিজ অবশেষ মৃত্তিকার অন্ড্রন্তরে বা উপরে বিভিন্ন অবস্থায় বিগলিত ২</mark>য়। তপেমাত্রা, আর্দ্রতা, বায়ু ও কার্বন[°]ঃ নাইটোজেন অনুপাত (C % N) এবং অণুজীবের উপর বিগলনের হার ও উৎপার্দিত বস্তুর প্রকৃতি নির্ভর করে। ত্রপমাত্রা বেশি হলে বিগলন ক্রিত হয় ; এর জন্য গ্রীষ্মমণ্ডলের উচ্চস্থানের মৃত্তিকায় প্রধানত হিউমাস কম থাকে। জেবিক বিগলনের জন্য আর্দ্রতার প্রয়োজন, ক্বিস্তু পানি অতিরিক্ত হলে বায়ুর অভাব দেখা দেয় এবং বিগলনের হার হ্রস পায়। মৃত্তিকাস্থ কতিপয় ছত্রাক ও ব্যক্রটেরিয়া বিগলনে অংশগ্রহণ করে। টাটকা জৈব পদার্থে থকে সরল কার্বোহাইডেট, যেমন- চিনি ও **শ্বেতসা**র, প্রোটিন, সেলুলোজ, লিগনিন, মোম এবং রেজিন। শক্তির জন্য অণুজীব দ্রুত চিনি ও শ্বেতসার ব্যবহার করে। জারণযোগ্য কার্বন প্রচুর পরিমাণে সহজলভা হয় বলৈ মৃত্তিকায় ব্যাকটেরিয়া, ছত্রাক এবং অ্যাকটিনে মাইসিটিসের সংখ্যা ও কার্যকারিতা বৃদ্ধি পায় এবং কার্বন ডাই–অক্সাইড নির্গত হয়। কার্বোহাইড্রেট নিঃশেষ হলে মৃত্তিকায় জৈব পদার্থ এবং কার্বনের পরিমাণ কমে যায়। ব্যাকটেরিয়ার ব্যবহারের জনা সেন্বোজ সহজলভা নয়, কিন্তু এর উপর প্রথমে ছত্রাক ক্রিয়া করে সরল পদার্থ তৈরি হলে ব্যাকটেরিয়া ক্রিয়াশীল হয়: প্রেটিন ভেন্ধে অ্যামাইনো অ্যাসিডে পরিণত হয়। কার্বোহাইড়েট নিঃশেষ হলে ব্যাকটেরিয়াও কার্যকলাপ থেমে যায়। মাটির লিগনিন, মোম এবং রেজিনের খুব একটা প্রবিত্তন হয় না এবং এর সাথে মৃত ব্যাকটেরিয়ার কোষ মিশে মৃত্তিকায় স্থায়ী যৌগ পদর্থির সৃষ্টি হয়। একেই বলে হিউমাস এবং এটি কলেন্ডীয় প্রকৃতির ক্ষুদ্র ক্ষুদ্র কণা দ্বারা গঠিত। এটি গাড় রঞ্জের সানাহীন এবং কর্দমের সাথে ভালভাবে মিশে থাকে। কর্দমের মতো হিউমাস ঋণাত্বক আধানবিশিষ্ঠ, তাই এটি ক্ষারক ধরে রাখে। হিউমাসের কাটোয়ন বিনিময় ক্ষমতা বেশি, প্রতি গ্রামে ২০০ থেকে ৬০০ মনিইক্টেড্যান্সেট ; কর্দমের এই মান ৮০ থেকে ১০০ মিনিইকুইেড্যান্সেট। মৃত্তিকার দবণ থেকে হিউমাস ফসফেট উপশোষণ (adsorption) করে, কিন্তু অন্যান্য অ্যানায়ন, যেমন- সানফেট, নাইটেট ইত্যাদি পারে না।

মাটির জৈব পদার্থের ভূমিকা বিবিধ এবং অধিকাংশ ক্ষেত্রেই শস উৎপাদন ও মুন্তিকা সংরক্ষণের পক্ষে উপকারী। মৃত্তিকার উপর জৈব পদার্থের উপকারী প্রভাবগুলো হলো- মৃত্তিকার দলা গঠন ও দলা স্থিতিশীল করার জন্য প্রয়োজনীয় পদার্থ সরবরাহ করে, মৃত্তিকার পানি ধারণ ক্ষমতা বাড়ায়, মৃত্তিকার উপরিতল দিয়ে পানি গড়ানো ও ভূমিক্ষয় উপরিতল সহায়তা করে এবং অণুক্তীব ও উদ্ভিদের জন্য প্রয়োজনীয় নাইটোজেন ও অন্যান্য পুষ্টি উপাদান সরবরাহ করে।

মাটির উপর জৈব পদার্থের উপকারী প্রভাব থাকায় মৃত্তিকায় জৈব পদার্থের পরিমাণ বাড়ানে। সরকার। কর্ষণের ফলে মাটির বায়ু চলচল বৃদ্ধি পায়, ফলে জৈব পদার্থের জারণও বেশি হয়। মূল এবং শস্যের অবশিষ্টাংশ মৃত্তিকায় কিছুটা জৈব পাদার্থের যোগান দেয়। জেব সার, বিশেষ করে অবের্জনা সার ও সবুজ সার জমিতে প্রয়োগ করে জমির জেব পদার্থের পরিমাণ বড়োন্যে যায়।

মাটির পানি (Soil Water)

মাটির একটি উল্লেখযোগ্য উপাদান ২চ্ছে পানি বা আর্দ্রতা যা কঠিন মৃত্তিকা কণ্যর মাথের রন্ধস্থানের অংশবিশেষ পূর্ণ করে। পানি মৃত্তিকার অনেক ভৌত ও রাস্যোনিক বিত্রিয়াকে এবং উদ্ভিদের যান্ড ও ফলনকে প্রভাবিত করে। উদ্ভিদ যে পানি ব্যবহার করে তার অধিকাংশই উদ্ভিদের মলা মৃত্রিক। প্রেকে পরিশোষণা করে নেয়া, যদিও অঙ্গপ পরিমাণে বৃষ্টি বা শিশির থেকে প্রতক্ষেত্রগেও গ্রহণ করতে পারে। অনেক সময়ই উদ্ভিদ জন্মানোর পক্ষে পানি একটি সীমাবদ্ধতা হয়ে দড়েয়। মৃত্রিকার পানি মৃত্ত্রিকার বায়ু ও তাপমাত্রার সম্পর্ক নির্ধারণ করে। মৃত্তিকা ও পানির যথাগথ বানস্থাপনা শসক্ষে ভালভাবে বৃদ্ধি পেতে সহায়তা করে। মৃত্তিকার ব্যয়তন, গ্রহণের ও অবন্ধান এবং তার জমাট বাধার মাত্রার উপের মৃত্তিকান্থ পানির পরিমাণ নির্ভার করে।

۰.

একটি নির্দিষ্ট আয়তনের মৃত্তিকায় (V) থাকে কিছু আয়তনের কঠিন পদার্থ (Vs), পানি (Vw) এবং বায়ু ও জলীয় বাঙ্গ (Va)। সুতরাং V=Vs+Vw+Va। পূর্বেই উল্লেখ করা হয়েছে যে, (V-Vs) হলো মৃত্তিকার রব্রুস্থান এবং (V-Vs)/V হলো রন্ধ্রময়তা।

মাটিঙ্গ পানির পরিমাণকে (Q)আয়গুনের ভিস্তিতে Vw/V অথবা ওজনের ভিস্তিতে Mw/Ms (Mw=মৃত্তিকার পানির ওজন এবং Ms=১০৫° সেলসিয়াস তাপমাত্রায় মৃন্তিকা ওকানোর পর ওজন) প্রকাশ করা হয়। উত্তয় ফেত্রেই পানির পরিমাণকে শতকরা হিসেবে প্রকাশ করা হয়। মাটির পানির ওজন ভিস্তি থেকে আয়তন ভিস্তিতে রূপান্তরের জন্য মৃত্তিকার আপাত খন(এর (pb) প্রয়োজন। pb=Ms/V এবং মৃত্তিকার গভীরতা বৃদ্ধির সাথে সাথে আপাত ঘনত্বও বদ্দি পায়।

ভালভাবে দানাবাধা কোনো মৃত্তিক্য পানিতে সম্পৃক্ত হওয়ার পর যদি চোয়ানোর যথেষ্ট সুযোগ দেয়া হয়, তখন কিছু পান্ধি মাধ্যাকর্ষণের টানে নিচে নেমে যায় এবং এর আর্দ্রতা তুলনামূলকভাবে স্থিতিশীল অবস্থায় আসে। ১/৩ অ্যাটমোসফিয়ার টানে যে পানি ধরা থাকে তা এরপ চলাচলের আওতায় পড়ে। এভাবে স্থুল রন্ধের সবটুকু এবং এমন কি বড় কৈশিক রন্ধের পানিও নিচে নেমে যায়। কোনো হরাইজন থেকে যখন অতিরিক্ত পানি সরে যায়, মৃত্তিকার তখনকার অবস্থাকে মাঠের ধারণ ক্ষম চা (field capacity) বলে। ভারি বুনটের মৃত্তিকার এবং উচ্চ কলয়েডযুক্ত মৃত্তিকার মাঠ ধারণ ক্ষমতা বেন্দি। জৈব পদার্থও অনুরূপ প্রভাব বিস্তার করে। স্বাভাবিক অবস্থায় পানি চোয়নোর পর মৃত্তিকার আর্দ্রতার পরিমাণ মাঠের ধারণ ক্ষমতার সমান হয়। উইন্টিং বিন্দুতে চাডাting point) এসে উন্তিদ স্থায়ীভাব মিইয়ে পড়ে।

উদ্ভিদের জন্য কি পরিমাণ পানি লভ্য তা এই দুই সুস্থিতি মানের পার্থক্য দ্বারা প্রকাশ করা ২৪। উইল্টিং কিন্দু হচ্ছে মৃত্তিকার আর্দ্রতার সেই অবস্থা যখন উদ্ভিদের মূলের জন্য পানি মুক্ত করা ৩.তা অনন্যাসে হয় না যা প্রস্থেদনের দ্বারা যতটুকু হারায় তার ফতিপূরণ করতে পারে। যখন ডার্য়ী উইল্টিং ঘটে তখন মৃত্তিকাতে টানের পরিমাণ প্রায় ১৫ অ্যাটমোসফিয়ার। এ টানের সময় পানির পাতলা ফিল্ম মৃত্তিকার কণাগুলো ছিরে থাকে। এসময় কৈশিক পরিবাহকতা শূন্য হয় এবং পানির চলাচল ঘটতে পারে তার বাষ্ণীয় অবস্থায়।

ার্টিতে পানি থাকলেই যে, উদ্ভিদের জন লেন্ড্য হবে তা নয়। তাই পানি পর্টেনশিয়াল (water potential, ψ) মৃত্তিকায় পানির পরিমাণের গুরুত্বপূর্ণ নির্দেশক। পানি পর্টেনশিয়ালের সংজ্ঞা হলো : তুলা পরিমাণ তাপবিশিষ্ট অবস্থায় একটি নির্দিষ্ট উচ্চতায় এবং একক স্ট্যান্ডার্ড বায়ুমণ্ডলীয় চাপে রক্ষিত কিছু পরিমাণ বিশুদ্ধ পানি থেকে অতি অলপ পরিমাণ পানি মৃত্তিকার পান্যতে স্থানান্তর করতে যে পরিমাণ কাজ করতে হবে, তাকে বলে পানি পটেনশিয়াল।

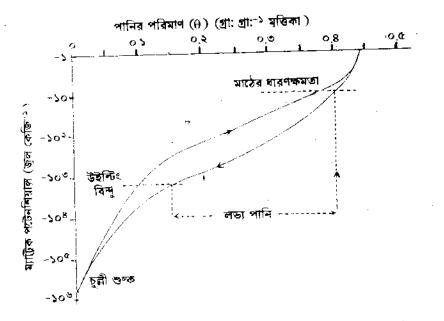
এটি একটি সুধিধাজনক শব্দ, কারণ বিশুদ্ধ পানির তুলনয়ে এই পানি কি পরিমাণ কাজ দরতে সঞ্চম তা নির্দেশ করে। বিশুদ্ধ পানির পটেনশিয়াল শূন্য। যেহেতু কৈশিক ধল এবং দরীভত পদার্থের জন্য তরল পদার্থের মুক্ত শক্তি কমে যায়, সেহেতু মৃত্তিকার পানির পটেনশিয়াল ধনসময়ই ঝণাত্রক। উচ্চ পটেনশিয়াল থেকে পানি সধসময়ই নিম্নু পটেনশিয়ালে স্থানাগুরিত হয়। পানি পটেনশিয়াল সাধারণত প্রকাশ করা হয় প্রতি একক ভর (mass), আয়তন (অর্থাৎ চাপের একক) অথবা মোল (mole) এ। উল্লেখ্য যে, 1 Kg⁻¹≡1KPa(1Pa≈1Jm⁻³)≡0.018Jmol.† ≡o.o1 bar ≡o.oo987 atm. ≡10.17 m পানি।

মাটির পানির পটেনশিয়ালের তিনটি উপাদান আছে। (১) অসমোটিক পটেনশিয়াল (ψ_π) . অসমোটিক পটেনশিয়াল আবির্ভূত হয় মৃত্তিকার পানিতে দ্রব যুক্ত হওয়ার জন্যে। লখু (diluce) দ্রবণে দ্রবের প্রকৃতি (অর্থাৎ আয়ন, অবিভক্ত নন–ইলেক্টোলাইট অথবা বৃহৎ কণা) দ্রারা এট প্রভাবিত হয় না, কেবলমাত্র সংখ্যা গুরুত্বপূর্ণ। নিমের সমীকরণের সাহাযে এটি প্রকশে করা হয় : প্রত্য-RTCs. এক্ষেত্রে Cs=মোলাল ঘনত্ব (Cs=১, যখন প্রতি কেজি পানিতে ১ মোল অবিভস্ত দ্রব থাকে), R=গ্যাস ধ্রুবক (=8.315 JK⁻¹mol⁻¹) এখং T=তাপমাত্রা (K)। দ্রব কণা পানির শক্তির অবস্থা প্রভাবিত করে; কিন্তু প্রদেয় চাপ অথবা মাধ্যকের্যণ শক্তির জন্য পানি চলাচল প্রভাবিত করে না। তবে অবশ্য অর্ধভেদ্য পর্দার ভিতর দিয়ে পানি চলাচলকে নিয়ন্ত্রণ করে।

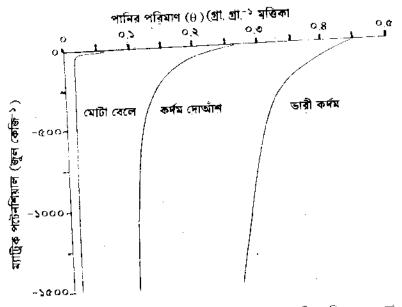
(২) ম্যাট্রিক পটেনশিয়াল (ψ_τ): এটি মৃত্তিকার ম্যাট্রিস্তর শোষণ ক্ষমতার সাংগ সম্পর্কিত। কর্দম এবং হিউমাসের কলয়েডের সাথে হাইড্রোজেন বন্ধনীর মংধ্যমে পানি দটভাবে লেগে থাকে। এদের সাথে যখন অতিরিক্ত পানির স্তর জমা হয়, তখন ক্রমাগত দৃটতা কমতে থাকে। সর্বশেষ স্তরের পানি তেমন দৃটভাবে লেগে থাকে না বলে উদ্ভিদ কর্তৃক এটি পরিশোষিত হয়। তাই দৃটভাবে উপশোষিত (adsorbed) পানি উদ্ভিদের তেমন কোনো কাজে লাগে না

মাটির ম্যাটিঞ্জের মধ্যবর্তী ক্ষুদ্র ক্ষুদ্র রক্সের মধ্যেও কিছু পানি অপেযনক হা শিথিলভাবে লেগে থাকে পৃষ্ঠটান (surface tension) বলের এখানে প্রাধান্য আছে। যে বলে পানি লেগে থাকে তা রক্তের ব্যাসের সাথে বিপরীতভাবে সম্পর্কযুক্ত, অর্থাৎ রক্তের ব্যাস কম হলে বল বৃদ্ধি পায় এবং উদ্ভিদ কর্তৃক পানি পরিশোষণের জন্য শক্তি বেশি ব্যয় করতে হয়। পানির মুক্ত শক্তির পরিবতনের সাথে পানিপূর্ণ মৃত্তিকার রক্তের ব্যাসের (Dµm) সম্পর্ক নিমুরপ :

ψτ= −4δ/D dyn cm⁻²≘ −2.9×10²/D JKg⁻¹, এক্ষেত্রে δ থলো পানির পৃষ্ঠটান।


(৩) **প্রেসার পটেনশিয়াল** (ψρ): মৃত্তিকার শীর্ষে অবস্থিত মুক্ত পানি যে চাপ দেয় তাকেই বলে প্রেসার পটেনশিয়াল। তাই সম্পৃক্ত মৃত্তিকায় ওয়াটারে টেবিলের নিচে পানির প্রেসার পটেনশিয়াল ধনাত্বক হয়, কিন্তু অসম্পুক্ত মৃত্তিকায় মান শূন্য। সম্পৃক্ত মৃত্তিকায় ψ_τ এর মান শন্য এবং অসম্পৃক্ত মৃত্তিকায় এটি ঋণাত্বক এবং ψ_π এর মান সবসময়ই ঋণাত্বক।

সুতরাং মৃত্তিকার পানির পটেনশিয়ালকে নিমুলিখিতভাবে প্রকাশ করা যায়-


$\psi_8 = \psi_\pi + \psi_\tau + \psi_\rho$

থেহেতু অধিকাংশ ক্ষেত্রে ψ_ρ এর মান খুব কম এবং ψ_π সবসময়ই আলাভক এবং সাধারণত কম, তাই ψ_π মৃত্তিকার পানি পর্টেনশিয়ালের গুরুত্বপূর্ণ উপাদনে।

ম্যাটিক পটেনশিয়াল এবং আর্দ্রতার সম্পন্ধ থেকে মৃত্তিকার পানির বৈশিষ্ট্য সহজে হ ব্যাগণ করা যায় (চিত্র ২.১)। মৃত্তিকার অনুধ্ব ৩০ মিলিমাইক্রন ব্যাসের মৃত্রিব। যদি পানি হারা পণ থাকে, তাকে বলে মাঠের ধারণ ক্ষমতা (ψτ প্রায় 10J kg⁻¹); উইন্টিং বিন্দুতে মহাটিক পটেনশিয়ালের মান প্রায় –-1500 J Kg⁻¹। পূর্বেই উল্লেখ করা হয়েছে যে, এই দুই কিন্দু মধ্যবতী পানি উদ্ভিদের লভ্য পানি। এখানে উল্লেখ্য যে, ২.১ চিত্রের বক্র রেখার কির্ছুটা স্থানচুটা ঘটেছে এবং এটি ঘটেছে মৃত্তিকা ভিজ্ঞানো হচ্ছে না গুকানো হচ্ছে তার উপর ভিত্তি করে। একে বলে হিস্টেরিসিস (hysteresis) প্রভাব।

চিত্র ২.১ : ম্যাটিক পর্টনন্দিয়াল এবং দো-আঁশ মৃন্ডিকার পানির পরিমাণের সম্পর্ক।

চিত্র ২.২ : মার্গ্রেক প্রটেনশিয়াল এবং তিন প্রকার মৃত্তিকার লভ্য পানির পরিসরের সম্পর্ক :

ম্যাট্টিক পটেনশিয়াল এবং তিন প্রকার মৃত্তিকার লভ্য পানির পরিসধের সম্পর্ক ২.২ bta দেখানো হয়েছে। মোটা বেলে, দো-আঁশ এবং মৃত্তিকার লভ্য পানির পরিমাণ বথাক্রমে ০.০৬, ০.১৯ এবং ০.৪০ গ্রাম প্রতি গ্রাম মৃত্তিকায়। এখানে মৃত্তিকার আপাত ঘনত্ব ধরা হয়েছে যথ্যক্রমে ২.০, ১.৬ এবং ১.২ গ্রাম প্রতি ঘন সেটিমিটারে এবং এটি নির্দেশ করে যে, মৃত্তিকার প্রতি মিটার গভীরে পার্টি জমা রাখার ক্ষমতা ১২০, ১৯৬ এবং ২০০ মিলিমিটার।

মাটি বায়ু (Soil air)

মৃত্তিকার উৎপাদন ক্ষমতার জন্য মৃত্তিকার কঠিন ও তরল অংশের মতো মৃত্তিকার বায়ুর বিভিন্ন উপাদান সমানভাবে প্রয়োজনীয়। উদ্ভিদের মূল, মৃত্তিকায় বসবাসকারী প্রাণী ও অণ্জীবের শ্বসনের জন্য অঞ্জিনের প্রয়োজন। পুষ্টি উপাদান দ্রবীভূতকরণে ও উদ্ভিদের জন্য এগুলো লভকেরণে কার্বন ভাই–অক্সাইড সাহায্য করে। মিথোজীবী ও অ মিথোজীবী ব্যাকটেরিয়া হারা সংবয়নকৃত নাইটোজেন উৎপাদনের উৎস হঙ্ছে নাইটোজেন গ্যাস। জলীয় বাংশ উদ্ভিদ ও অণুজীবক শুজকরণ থেকে রক্ষা করে এবং মৃত্তিকরে অভ্যস্তরে পানি স্থানন্তরে সহায়তা করে।

ধায়ুমগুলের বায়ুর তুলনায় মৃত্তিকার বায়ুতে প্রায় দশ গুণ বেশি কার্বন চাই—অক্সাইড, নুই ওদ বেশি জলীয় বান্স এবং অপেক্ষাকৃত কম পরিমাণে এক্সিজেন ও নাইটোজেন থাকে (সারণি ২.৫) এই মাত্রা অবশ্য মৃত্তিকার অণুষ্ঠীব, উদ্ভিদ ও প্রাণীর কার্যকলাপের জন্য স্বান্স পরিবর্তনশীল এই কার্যকলাপ এবং মৃত্তিকার জ্বণুষ্ঠীব, উদ্ভিদ ও প্রাণীর কার্যকলাপের জন্য স্বান্স পরিবর্তনশীল এই কার্যকলাপ এবং মৃত্তিকার জ্বণুষ্ঠীব, উদ্ভিদ ও প্রাণীর কার্যকলাপের জন্য স্বান্স পরিবর্তনশীল এই কার্যকলাপ এবং মৃত্তিকার জ্বণুষ্ঠীব, উদ্ভিদ ও প্রাণীর কার্যকলাপের জন্য স্বান্স পরিবর্তনশীল এই কার্যকলাপ এবং মৃত্তিকার জ্বণের ব্যাপনে বাধাণ্ডস্থ হয় বলে সাম্যাবস্থায় পৌছতে পারে ন অধিকাংশ বিনিময় ঘটে আণবিক ব্যাপনের (moleculor diffusion) মাধ্যমে এবং এটি Fick ১.৫ সূত্র মেনে চলে। এক্ষেত্রে মৃত্তিকার ব্যাপন সূচক (coefficient) ধরা হয় 0.66SD', D হলে' মৃত্ত বায়ুতে গ্যাসের ব্যাপন সূচক, S হলো মৃত্তিকার আংশিক আয়তন যা বায়ুপূর্ণ এবং রদ্ধ এম্বল ২ওয়ার জন্য 0.66 হলো ব্যাপন পথের অতিরিক্ত দৈর্ঘেরে পরিমাপ। অথাৎ পানিতে সম্পূর্ণ এবং বন্ধ এম্বল মৃত্তিকার ব্যাপন সূচক শূন্য এবং উইল্টিং রিন্দুর দিকে শুকানোর জন্য এটি বৃদ্ধি পায়। কার্যন উন্থ অক্সাইড তৈরির হার প্রায় ২ থেকে ২০ গ্রাম প্রতি বর্গমিটারে প্রতিদিন এবং এটি বিন্ডর করে তাপসাত্রা, উদ্ভিদের উপস্থিতি এবং পানির পরিমাণের উপর। এত বোশ পরিমাণ কাবন ড'ই অক্সাইড তৈরি এবং বিনিময়ের হার মন্থর হলেও , কেবল দীর্ঘ সময়ের জন্য জলাবদ্ধতা বাদ দিলে শস্যের মূল তেমন আক্সিজন ঘাটতির সন্দুর্থীন হয় না।

সারণি ২.৫ : ব্যয়ুমগুল ও মৃত্তিকার বায়ুর উপাদানের তুলনা (আয়তনের শতকরা হার:

	নাইট্টোজেন	অগ্নিজেন	কাৰ্বন ডাই এব্যাইড	া জনীয় বাষ্ণ	
বয়্বেমণ্ডল	૧৮.૨	20.9	0.00	२.०	
মৃত্তিকার বায়ু		20.2	0.00	२.०	

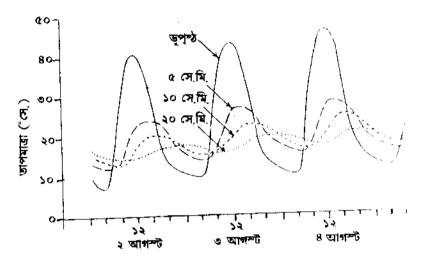
মৃত্তিকার সঠিক বায়ু ধারণ ক্ষমতা হচ্ছে মোট রন্ধ পরিসরের সেই অংশ যা বায়ু দিয়ে ভাঁত, পানি দ্বারা নয়। আর্লতার পরিমাণের সাথে এই মনে সবসময় পরিবাঁতত হয়। মৃত্তিকার গঠনের সাথেও এর পরিবর্তন হয়। মৃত্তিকার বায়ুতে ঝতু অনুযায়ী আরিজেন ও কার্বন ডাই অক্সাইজের ধনদ্বের তারতম্য ঘটে। এ তারতম্য অধিকাংশ ক্ষেত্রেই ঝতু অনুয়ায়ী আর্ল্ড তা ও তাপমাত্রার ২ংশ বৃদ্ধির জন্য ঘটে। উপরিস্তরের ৩০ সেটিমিটারের মধ্যে মৃত্তিকার বায়ুতে কার্বন তাই অক্সাইজের পরিয়াণ উষ্ণ মাসগুলোতে শীতল মাসের চেয়ে বেশি। এসব পরিবাতন জিব রসোহাঁনক পরিবাতনে সাথে জড়িত।

মাটির তাপমাত্রা (Soil Temperature)

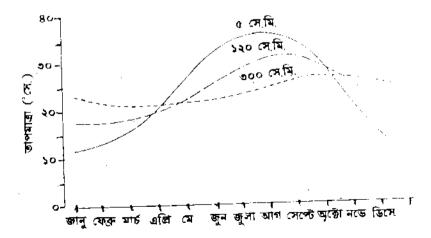
গানি, বগ্যু বা খনিজ উপাদানের মতো মৃত্তিকায় তাপমাত্রা এবং উদ্ভিদ ও অণুষ্ঠীবের কার্যকলাপ। এবং মৃত্তিকায় সংঘটিত রাসায়নিক বিক্রিয়ার জন্য খুব গুরুত্বপূর্ণ।

তাপের প্রধান উৎস সূর্য। মৃত্তিকায় জৈব পদার্থের জারণের ফলেও সামান্য পরিমাণ তাপ উৎপত্র ২য়। মৃত্তিকার অভ্যস্তরভাগ থেকে পরিবাহিত তাপের পরিমাণ খুব নগণ্য। সৌরবিকিরণের ৯৬৫ শোষণ করে কথ্য কটন মৃত্তিকা, নদীবাহিত (alluvial) মৃত্তিকা ৪০৫ এবং তৃণাচ্ছাদিত মৃত্তিকা গেমণ করে প্রায় ৬০৫।

িভিন্নভাবে মৃত্তিকা তাপ হারায়। কিছু পরিমাণ তাপে দিবার্ভাগ মৃত্তিকার অভ্যন্তরে পরিবাহিত হয়, আবার রাতে ভূ–পৃষ্ঠে পুনরায় পরিবাহিত হয়। রাতে অপেক্ষাকৃত শীতল বায়্মগুলে মৃত্তিকা তাপ বিকিরণ করে। কিছু পরিমাণ তাপ ব্যয় হয় মৃত্তিকার পানির বাষ্পীভবনের জন্য।


মাট্টর রঙ সৌরবিকিরণ শোষণকে প্রভাবিত করে। কৃষ্ণ বর্ণের মৃত্তিকা স্বচেয়ে বেশি তাপ শোষণ করে এবং পিঙ্গল, লাল, ধুসর এবং সাদা মৃত্তিকা ক্রমাগত কম তাপ শোষণ করে। উদ্ভিদের আবরণ মৃত্তিকা কতৃক সেইরবিকিরণ শোষণের মাত্রা কমিয়ে দেয় এবং রাতে মৃত্তিকা থেকে তাপের পুনঃবিকিরণ হাস করে ; তাই তাপমাত্রার উঠানামা কমিয়ে আনে। উদ্বুক্ত মৃত্তিকার তাপমাত্রার উঠানামা বেশি দেখা যায়। এটি তাড়াতাড়ি গরম হয় এবং বেশি তাড়াতাড়ি ঠাণ্ডা হয়।

মটির বিভিন্ন উপাদানের আপেক্ষিক তাপের (specific heat) পরিসর ০.১ থেকে ১.০। বালির আপেক্ষিক তাপ সর্বনিমু (০.১), অন্যান্য খনিজ কণার প্রায় ০.১৫, হিউমাসের ০.২১ এবং পর্নির ১.০। মৃত্তিকার অন্যান্য উপাদানের তুলনায় পানির আপেক্ষিক তাপ ৫ থেকে ৬ গুণ বেশি, ৬ংই মৃত্তিকার আপেক্ষিক তাপের উপর পানির প্রভাব সবচেয়ে বেশি। গড়ে মৃত্তিকার আপেক্ষিক তাপের পরিসর ০.২০ থেকে ০.২০।


ালির তাপ পরিবাহকতা (conductivity) অপেক্ষাকৃত বেশি এবং মৃত্তিকার মিহি কণা থুব কম তাপ পরিবহণ করে। ভেজা মৃত্তিকার তাপ পরিবাহকতা সবচেয়ে বেশি। কিন্তু আর্দ্রতা নির্জের তাপমাত্রা বৃদ্ধির জন্য প্রচুর পরিমাণ তাপ শোষণ করে, তাই প্রাথমিক অবস্থায় কম তাপ পরিবাহিত হয়। যখন মৃত্তিকার তাপমাত্রা বৃদ্ধি পায়, তখন মৃত্তিকার পানির বেশি বাষ্পীভবন হয়, ফলে মৃত্তিকার তাপমাত্রা কমে যায়। এর ফলে মৃত্তিকার উপরের স্তরের তুলনায় নিমুস্তরে তাপমাত্রা কম থাকে হান্ধা, মৃত্তিকার তুলনায় ঘন সন্ধিবিষ্ট মৃত্তিকা বেশি তাপ পরিবহণ করে; কর্ষণের জন্যে দ্বাতিকার মৃত্তিকা হান্ধা হয়ে যাওয়ার মৃত্তিকার নিমুতলের তাপমাত্রা অস্বাভাবিক রকম বৃদ্ধি পায় না

পানি গ্রীঅমগুলীয় অঞ্চলের মৃত্তিকা তাপমাত্রাকে কমিয়ে দেয়। যেহেতু মৃত্তিকার তুলনায় পানির আপেঞ্চিক তাপ ৫ গুণ বেশি, সেহেতু সৌরবিকিরণের জন্য শুষ্ণ মৃত্তিকার মতো ভেজা মৃত্তিকার তাপমাত্রা ধৃদ্ধি পায় না। দ্বিতীয়ত, ভেজা মৃত্তিকায় সবসময় বাষ্ণীয়ন্ডবন হয় যা মৃত্তিকার তাপমাত্রা উল্লেখযোগ্যভাবে হাস করে। এক গ্রাম পানির বাষ্ণীভবনের জন্য যে তাপের প্রয়োজন তা ৫০৯ গ্রাম পের্নন অথবা ২৬৯৫ গ্রাম মৃত্তিকার তাপমাত্রা ১' সেলসিয়াস কমিয়ে দেয়, যদি বাঞ্লীতবনের জন্য সম্পূর্ণ তাপশক্তি মৃত্তিকা থেকেই পায়। প্রকৃতপক্ষে, সম্পূর্ণ তাপশক্তি মৃত্তিকা থেকে আফ না, এতে বায়ুমণ্ডলের অবদানও কিছুটা আছে।

দিনে ও রাতে বায়ুমণ্ডলের তাপেমাত্রার ব্যাপক পরিবর্তন হয় এবং এর প্রভাব মৃত্তিকার তপ্পমাত্রার উপর পড়ে। মৃত্তিকার তাপমাত্রার তারতম্য দুম্ভাবে প্রকাশ করা যায় — দৈনদিন (diurnal) তারতম্য (চিত্র ২.৩) এবং ঋতু অনুযায়ী (seasonal) তারতম্য (চিত্র ২.৪) : মৃণ্ডিকার গভীরতার জন্যও তাপমাত্রার তারতম্য হয়। শুধুমাত্র উপরিতলের মৃত্তিকায় দৈনদিন তারতম্য বেশি হয়। ৩০ সেন্টিমিটার গভীরতায় তা কদাচিৎ ৩° সেলসিয়াসের বেশি, ৬০ সেটিমিটারে তা ২ সেলসিয়াসে পৌছতে পারে এবং এক মিটার গভীরে দৈনদিন তাপমাত্রার তারতম্য প্রকৃতপক্ষে শুন্য।

চিত্র ২.৩ : উম্মুক্ত মৃত্তিকার পৃষ্ঠে (o) ও ৫, ১০ এবং ২০ সেন্টিমিটার গভীয়ে গ্রীষ্মকালে পর পর তিন দিনের তাপমাত্রার দৈনদিন তারতম্য।

চিত্র ২.৪ : – উন্তর গোলার্ধের উন্দুক্ত মৃত্ত্বিকার ৫, ১২০ এবং ৩০০ সেটিমিটার গভীরে তাপমজান ি ক্ষতুগত পরিবর্তন।

দিনে সূথধশি যতক্ষণ মৃত্তিকায় পতিত হয়, ওাপ ততক্ষণ নিচের দিকে চলাচল করে। কিন্তু রতে মৃত্তিকার উপরিতল অস্তঃতলের মৃত্তিকার চেয়ে শীতল হয়ে যায় এবং তাপ উপরিতলের দিকে চলাচল করে এবং এরপর ধায়ুমণ্ডলে চলে যায় যদি বায়ুমণ্ডল মৃত্তিকার চেয়ে ঠাণ্ডা হয়। এডাবে মৃত্তিকায় তাপমাত্রার বৃদ্ধি ও প্রাস হয়। তাপমাত্রার নিয়মিত দৈনন্দিন পরিবর্তন ছাড়াও, মৃত্তিকায় তাপমাত্রার বৃদ্ধি ও প্রাস হয়। তাপমাত্রার নিয়মিত দৈনন্দিন পরিবর্তন ছাড়াও, মৃত্তিকার তাপমাত্রার বৃদ্ধি ও প্রাস হয়। আপমাত্রার নিয়মিত দৈনন্দিন পরিবর্তন ছাড়াও, মৃত্তিকার তাপমাত্রার বৃদ্ধি ও প্রাস হয়। আতু অনুযায়ী তাপমাত্রার তারতম্য ভূ–পৃষ্ঠের অনেক নিচে পর্যন্ত প্রসারিও হয়। এটি ১০ মিটার বা আরো গভীরে পৌছতে পারে। ঝতু অনুযায়ী তাপমাত্রার স্বায়িও হয়। এটি ১০ মিটার বা আরো গভীরে পৌছতে পারে। ঝতু অনুযায়ী তাপমাত্রার স্বায়িক তারতম্য দেখা যায় নাতিশীতোফ্ব অঞ্চলের মহাদেশীয় জলবায়ুতে। কারণ, গুন্দিকাল ও শীতকালে মৃত্তিকার উপরিতলের তাপমাত্রার পার্থক্য সর্বাধিক।

কৃত্রিমভাবে মার্টির তাপমাত্রা নিয়ন্ত্রণের ক্ষমতা স্বীমিত। মার্টির তাপমাত্রাকে প্রভাবিত করার সবচেয়ে কার্যকর একটি পদ্ধতি হচ্ছে বান্সরোধক ব্যবহার। এর জন্য শস্যের অবশিষ্টাংশ, কাগজ এবং প্রাশ্চিক ব্যবহার করা হয়। পরিক্ষার ও প্রচ্ছ পলিথিনের ভিতর দিয়ে তাপ্তশক্তি প্রবেশ করে, কিন্তু মৃত্তিকা থেকে বিকিরণ খুব কমিয়ে দেয় ও বাঙ্গীভবন দমন করে এবং এভাবে মৃত্তিকার তাপমাত্রাকে খুব বাড়িয়ে দিওে পারে।

মাটির বিক্রিয়া

মাটির রবণের একটি গুরুত্বপূর্ণ বৈশিষ্ট্য হচ্ছে এর বিক্রিয়া। যেসব অঞ্চলে বেশি বৃষ্টিপাতের জন্য উপরিস্তর থেকে যথেষ্ট পরিমাণে বিনিময়যোগ্য ক্ষারক চুইয়ে নিচে চলে যায়, সে অঞ্চলে হাইড়োজেন আয়নের প্রাধান্য বৃদ্ধি পায়। তাই আর্দ্র অঞ্চল অম্লমৃষ্টিকা (acid soil) ব্যাপকভাবে পাওয়া যায়। অপরদিকে, যেখানে তুলনামূলকভাবে বেশি পরিমাণে ক্ষারক সম্পন্তি ঘটে, সেখানে ক্ষার মৃদ্ভিকা (alkaline soil) ব্যাপকভাবে পাওয়া যায়। কালেসিয়াম, ম্যাগনেসিয়াম এবং সেডিয়ামের কার্বোনেট জাতীয় লবণও মৃত্তিকং দ্রবণে হাইড়োজেন আয়ন অপেক্ষা হাইড়োরিল অয়েনকে প্রাধান্য দেয়। শুক্ষ এবং প্রায় শুক্ষ অঞ্চলে ক্ষার মৃত্তিকা বেশি পাওয়া যায়। মে অঞ্চলে হাইড়োজেন আয়ন হাইড্রেক্সিল আয়নকে পুরোপুরি ভারসাম্যে আনে, সেখানে নিরপেক্ষ মাটি পাওয়া যায়।

কর্দম কণা ঝণাত্বক আধানবিশিষ্ট। তাই এর চারদিকে ক্যাটায়ন লেগে থাকে। শস্য উদ্ভিদের মূল এগুলোকে পরিশোষণ করে। ক্ষয়ীভধনের ফলে সৃষ্ট দ্রবণীয় লধণ বৃষ্টির পানিতে চুইয়ে মৃতিকার অভান্তরে চলে গেলে উদ্ভিদ কর্তৃক পরিশোষণের জন্য ক্যাটায়ন আর বেশি অবশিষ্ট থাকে না, তাই কর্দম কণায় এদের স্থান দখল করে হাইড়োজেন আয়ন। সিক্ত হলে মৃত্তিকার দ্রবণে হাইড়োজেন আয়ন পৃথক হয়ে যায় এবং অমু বিক্রিয়া দেখায়।

অধিকাংশ উদ্ভিদ নিরপেক্ষ এবং সামান্য অন্ন মৃত্তিকায় জন্মাতে পারে। কিন্তু মৃত্তিকার অন্ন তা বৃদ্ধি পেলে সাধানে উদ্ভিদের বৃদ্ধি ব্যাহত হয় এবং মৃত্তিকায় ব্যাকটেরিয়ার ক্রিয়াকলাপ কমে যায়। কিন্তু মৃত্তিকান্ত ছত্রাক এবং কতকগুলে। অন্ন প্রতিরোধী উদ্ভিদ উচ্চ অন্নতা সহ্য করতে পারে। তবে অন্নতার একাট নির্দিষ্ট সীমা অতিক্রম করলে শস্য উৎপাদন ব্যাহত হয় এবং স্বাভাবিক শস্য উৎপাদনোর জন্য বিভিন্ন পদ্ধতি অনুসরণ করে মৃত্তিকায় অন্নতা হাসের প্রয়োজন হয়। এর জন্য কথনে। কথনো জনিতে চুন প্রয়োগ করা হয়। কার্বন ডাই-অক্সাইডের উপস্থিতিতে মৃত্তিকার চুন অন্বরত দ্বনীয় বংইকার্বোনেটে পরিণত হয় এবং চোয়ানোর জন্য নিচে চলে যায়। তাই প্রতি বছর না ধলেও ২/ ৩ বছর পর পর জমিতে চুন প্রয়োগ করা চরাজ করা দের জন্য নি

কম বৃষ্টিপতে অঞ্চলে ক্ষয়ীভবনের ফলে সৃষ্ঠ দ্রবণীয় লবণ সম্পূর্ণরূপে চুইয়ে যায় না এবং মৃত্তিকরে উপরি গুরে এর পরিমাণ বেশি থাকে। দ্রবণীয় লবণে যদি অধিক মাত্রায় সোডিয়াম থাকে, তাহলে কর্দম মৃত্তিকায় এটিকে গুরুত্বপূর্ণ ক্ষারক হিসেবে গণ্য করা হল। সিজ হলে কলনের চারদিকে দ্বৈত আয়নিক স্তরের সোডিয়াম আয়নশ্সোডিয়াম হাইড্রোক্সাইড তেরি করে এবং এর জন মৃত্তিকা ক্ষারীয় বিক্রিয়া দেখায়। মৃত্তিকাস্থ ব্যয়ুর কার্যন ডাই-অগ্রাইডের সঙ্গে লোটি হাফ হাইড্রোক্সাইড যুক্ত হয় এবং সোডিয়াম কার্ব্যেনেট তৈরি করে এবং মৃত্তিক র সোডিয়ান কলোলেট তৈরি করে এবং মৃত্তিকার P^H দাও থেকে ১০ পর্যন্ত বৃদ্ধি করে।

মৃত্তিকায় যে দ্রবদীয় লবণ জমা হয় তা প্রধানত ক্লোরাইড এবং সালফেট, কদাচন ন হয়েন যথন মৃত্তিকার লবণের অধিক খনমাত্রার জন্যে শস্যের বৃদ্ধি প্রভাবিত হয়, সেই মৃত্তিকাকে লবণ জ মৃত্তিকা বলে। সোডিয়াম কার্বোনেটও যদি মৃত্তিকায় থাকে, সেই মৃত্তিকা জাগ্রীয় বিক্রিয়া চেত্তায় এব-এই মৃত্তিকাকে জার মৃত্তিকা বলে। এই দুম্প্রকার মৃত্তিকার সীমারেখা অবশ্ব খুব কচলক ছি লবণাক্ত মৃত্তিকা সহজেই ক্ষার মৃত্তিকায় পরিণত হতে পারে, অবশ্য দুম্রকার মৃত্তিকার বিশেষ্যে এব-পার্থক্যও আছে। লবণাক্ত মৃত্তিকার বাঙ্গীভবনের ফলে দ্রবীভূত লবণ মৃত্তিকার সাজকরে বেশ-ওন্দ হয়ে সাদা-আবরণের সৃষ্টি করে, একে বলা হয় সাদা ক্ষার হ ক্ষার মৃত্তিকার সোডিয়াম কাবেনেট জৈব পদাথ দ্রবীভূত করে এবং বাঙ্গীভবনের ফলে মৃত্তিকার উপরিস্তরের ধূসর অথবা কালো রতেন আবরণ সৃষ্ট করে, একে বলে কালো ক্ষার।

শুক্ষ এলাকায় শস্য উৎপাদনের জন্য জমিতে সেচ দেয়া হয়। কিন্তু সেচের জমি সুনিক্যাশত না হলে, ঐ জমিতে প্রচুর পরিমাণে লবণ জমা হয়ে অনুর্বর হয়ে যায়। আবার সেচের প্রানিতে যাদ অধিক পরিমাণে লবণ থাকে, তাহলে, মৃত্তিকায় দ্রবীভূত লবণের মাত্রা বেড়ে যায়।

লবণের উপস্থিতিতে কর্দম কণার আকুঞ্চনের (flocculation) ২৫০ মৃত্তিক দল দাব ধর বেশি পরিমাণ দ্রবীভূত লবণের জন্য মৃত্তিকার দ্রবণের অসমোটিক পটিনশিয়াল বেড়ে যায়, কাল উদ্ভিদ তার প্রয়োজনমত্যে পানি মৃত্তিকা থেকে পরিশোষণ করতে পারে না। অপর'নকে ভাঙতের মূল দিয়ে পানি উদ্ভিদ থেকে মৃত্তিকায় ঘন দ্রবণে বের হয়ে আসে। ফলে প্রেয়োপ্লাক্ষ সংকুচি হাংজে মূল দিয়ে পানি উদ্ভিদ থেকে মৃত্তিকায় ঘন দ্রবণে বের হয়ে আসে। ফলে প্রেয়োপ্লাক্ষ সংকুচি হাংজ মূল দিয়ে পানি উদ্ভিদ থেকে মৃত্তিকায় ঘন দ্রবণে বের হয়ে আসে। ফলে প্রোয়োপ্লাক্ষ সংকুচি হাংজ মূল দিয়ে পানি উদ্ভিদ থেকে মৃত্তিকায় ঘন দ্রবণে বের হয়ে আসে। ফলে প্রেয়োণ্লাক্ষ সংকুচি হাংজ মৃত্তিকার দেশে বিভিন্ন উদ্ভিদ প্রজাতির ক্ষার মৃত্তিকা সন্তা করার ক্ষমতা বিভিন্ন লবশ্যজ মৃত্তিকার দেশেরে মাত্রা ৭.৫ থেকে চারো লবণাক্ত মৃত্তিকা পুনরুদ্ধারের একটি ওরু দ্বপুণ প্রদাহ হলো মৃত্তিকায় পর্যাপ্ত পরিমাণ ক্ষতিকারক, লবণমুক্ত পানি প্রয়োগ ; এর ফলে লবণান্তর্ধায় দ্বয়ে ধুয়ে দুরে সরে যায়।

ক্ষার মৃষ্টিকা পুনরুদ্ধারের জন্য কতকগুলো পদ্ধতি অনুসরণ করা ২য়। ক্ষাত্রকারক জন্য কুন্ড পানি দিয়ে ক্ষার মৃষ্টিকা ভালভাবে ধুয়ে নিলে ক্ষারত্বের পরিমাণ কমে ধায়। জিপসাম কোলাসভা-সালফেট) মৃষ্টিকায় প্রয়োগ করলে, এটি স্বোডিয়াম কার্বোনেটের সাথে বিক্রিয়া করে কালসিঙা-কার্বোনেট এবং সোডিয়াম সালফেট তৈরি হয়। মৃত্তিকার অ–আকুঞ্চন পদার্থ সোডিয়ান কার্বোনেট প্রতিসারিত হয় সোডিয়াম সালফেট তৈরি হয়। মৃত্তিকার অ–আকুঞ্চন পদার্থ সোডিয়ান কার্বোনেট প্রতিসারিত হয় সোডিয়াম সালফেট তৈরি হয়। মৃত্তিকার অ–আকুঞ্চন পদার্থ সোডিয়ান কার্বোনেট প্রতিসারিত হয় সোডিয়াম সালফেট ছারা যা কদর্মকে আকুঞ্চন করে। কসমের সোডিয়ান কার্বে ক্যালসিয়াম দ্বারা প্রতিসারিত হয় এবং ক্যালসিয়াম কর্দম তৈরি হয়। এর জন্য মৃত্তিকার জ্বলৈ ক্যালসিয়াম দ্বারা প্রতিসারিত হয় এবং ক্যালসিয়াম কর্দম তৈরি হয়। এর জন্য মৃত্তিকার জ্বালসিয়াম দ্বারা প্রতিসারিত হয় এবং ক্যালসিয়াম কর্দম তেরি হয়। এর জন্য মৃত্তিকার জ্বালসিয়াম দ্বারা প্রতিসারিত হয় এবং ক্যালসিয়াম কর্দম হৈরি হয়। এর জন্য মৃত্তিকার জ্বালসিয়াম দ্বারা প্রতিসারিত হয় এবং ক্যালসিয়াম কর্দম হোর্দ্ধি পায়। এখন জ স্থাতকা খাডার্বিকভাবে কর্যণ করা যায় এবং এতে স্বাভার্বিক শস্য জন্মানো যায়। তার ভারা বাে লোনে জালনে বেন্দি দিলে সোডিয়াম সালফেট এবং অন্যান্য দ্রবন্দীয় লবণ দুরীভূত্ত হয়। তবে লোনো কোনে ক্ষেত্র জিপসামের পরিমাণ জনেক লাগ্বে, প্রতি একরে প্রায় চার টন যা খুব ব্যয্যাজনে লয়।

ক্ষার মাটি পুনরুদ্ধারের জন্য সালফার ব্যবহরে করা হয়। প্রতি একরি এক খেকে ৬৬৬ চন সালফার ব্যবহাত হয়। মৃত্তিকস্থে সালফার ব্যকেটেরিয়া দ্বারা জার্বিত হয়ে নালফিউরিক অন্যন্ত পরিণত হয়। চুনের সাথে সালফিউরিক অ্যাসিড বিক্রিয়া করে ক্যালাসয়ত সালফেচ ৫০% হল ব

S---

আবার মৃত্তিকার সোঁডিয়াম কার্বোনেটের সাথে বিক্রিয়া করে সালফার থেকে সালফিউরিক অ্যাসিড তেরির হার খুব মন্তর এবং সালফার প্রয়োগ ব্যয়সাঁপিক্ষ।

ভূমিতে চুনের ঘাটতি হলে এটি প্রয়োগ করে ফার মৃত্ত্রিকা পুনরুদ্ধার করা যায়। কিন্তু এটি দ্রবণীয় এবং চলনশীল না করতে পারলে মৃত্তিকার নিমুস্থ স্তরে প্রবেশ করতে পারে না। ক্যালসিয়াম কার্বেনেটের দ্রবণীয়তার হার নির্ভর করে মৃত্তিকার কার্বন ডাই–অক্সাইডের উপর। জৈব পদার্থ প্রযোগ করলে মত্তিকার জৈবিক ক্রিয়াকলাপ বৃদ্ধি পায় এবং অধিক পরিমাণে কার্বন ডাই–অক্সাইড তেরি হয়। এটি ক্যালসিয়াম কার্বেনেটকে দ্রবীভূত হতে সহায়তা করে এবং উৎপাদিও বাইকার্বেনেটে দ্রবণের নিমুস্তরে প্রবেশে সহায়তা করে। একই সাথে সোডিয়াম কার্বোনেট বাইকারোনেটে প্রবিণ্ড হয় এবং এর জন্য মৃত্তিকার pH হ্রাস পায়।

নিমু জলাভূমি অঞ্চলে যেখনে পানি নিক্ষাশনের ধ্যবস্থা ভাল না, সেফেত্রে ফারকর পরিলক্ষিত হয়। বদ্ধ পানিতে ধান গাছের বৃদ্ধি সন্তোযজনক, কারণ এর মূলে অস্নিজন সরবরাহের বিশেষ ব্যবস্থা আছে। জলাভূমি পুনরুদ্ধারের একটি প্রধান পদক্ষেপ হলো পানি নিক্ষাশনের সুবন্দোবস্ত করা।

মাটির ক্ষয় (Soil crosion)

অনেক দেশেই মৃত্তিকার ফয় একটি বিরাট সমস্যা। মৃত্তিকা কর্তৃক শোষণের তুলনায় বৃষ্টিপাড যদি বেশি হয়, তাহলে অতিরিঞ্জ পানি গড়িয়ে চলে যায়। মৃত্তিকার উপর দিয়ে পানি বেশি দুর গড়ালে, আশপশশ থেকে আরো পানির ধারা যোগ হয়ে এর আয়তন ও বেগ ক্রমাগত বৃদ্ধি পায়। এতে ধাবমণন পানির মৃত্তিকা ফয় করার ফমতা বেড়ে যায় এবং এর সাথে প্রচুর পরিমণ মৃত্তিকা কণা অনগ্র বাহিত হয়। একেই বলা হয় মৃত্তিকার ফয়। শুষ্ণ চাযাবাদ (dryland forming) এবং মৃত্তিকা ক্ষম নিয়ন্ত্রণের সমস্যা সম্পর্কযুক্ত ; উভয়ফেত্রেই উদ্দেশ্য এক এবং তা হলো পানির গড়ালো হাস করা এবং মৃত্তিকায় পানি ও মাটি কণা সংরক্ষণ করা। মৃত্তিকার পানিশোষণ ক্ষমতা বৃদ্ধি এই সমস্যা সম্পর্কযুক্ত ; উভয়ফেত্রেই উদ্দেশ্য এক এবং তা হলো পানির গড়ালো হাস করা এবং মৃত্তিকায় পানি ও মাটি কণা সংরক্ষণ করা। মৃত্তিকার পানিশোষণ ক্ষমতা বৃদ্ধি এই সমস্যা সমাধানের প্রধান উপায়। মাটির ব্যবহার সঠিকভাবে না করার জন্য, মানুযও অনেক সময় মৃত্তিকা ফয়ের মাত্রা বাড়িয়ে দেয় এবং এর জন্য উর্বর ভূমিও অনুর্বর ভূমিতে পরিণত ২০ পারে

প্রাকৃতিক অবস্থায়ও বৃষ্টিপাত এবং ৰায়ুপ্রবাহ মৃত্তিকা কণা দূরে সরিয়ে নিয়ে যায়। তবে গাছপালার আচ্ছাদন থাকলে প্রাকৃতিক মৃত্তিকা ফয়ের মাত্রা অনেক কমে যায়। বর্তমানে যে হারে গাছপালা নিধন চলচ্ছে, তাতে ব্যাপক এলাকা ভূমিফয়ের আওতায় পড়ছে। চাযের জমি অনেকদিন পণ্টিত রাখলে এদের ভূমি ফয় হয়।

বায়ুপ্রবাহ এবং ধাবমান পানি মৃত্তিকা ক্ষয়ে প্রধান নিয়ামকা বিশাল ওলাকায় যদি পাহাড় কিংবা জনা কোনো প্রতিবঞ্চকতা না থাকে, তাহলে বায়ুপ্রবাহের বেগ বেড়ে যায়, বিশেষ করে পাশাপাশি এলাকায় যদি, তাপমাত্রার পার্থকা বেশি হয় এবং এর ফলে বায়ুমণ্ডলের চাপের খুব বেশি তারতম্য হয় নির্ভিবা গাড়পালা দারা আদ্রোদিও থাকলে বায়ুপ্রবাহ তেমন ক্ষতি করতে পারে না। যদি মত্তিকা উন্মুক্ত থাকে এবং কর্ষণের ফলে মৃত্তিকা ধুলিকণায় পরিণত হয়, তাহলে প্রবল বায়ুপ্রবাহ মত্তিকা উন্মুক্ত থাকে এবং কর্ষণের ফলে মৃত্তিকা ধুলিকণায় পরিণত হয়, তাহলে প্রবল বায়ুপ্রবাহ প্রচুল পরিমণ, উপরিস্তরের মৃত্তিকা জন্যও পরিষে দেয়। জৈব পদার্থ সমৃদ্ধ উর্বর উপরিস্তরের মত্রিকা দরীভূত হওয়াতে এসব জমিতে শস্য উৎপাদন ব্যাহত হয়। কখনো কখনো বায়ুপ্রবাহ বালিকণা চাযের উৎপাদন ব্যাহত হয়। কখনো কখনো বায়ুপ্রবাহ বালিকণা চাযের জমিতে ছড়িয়ে দেয়, এজনা চাযাবাদের ফতিসাধন হয়। বায়ুপ্রবাহের দিকে ঘন সন্ধিরিষ্ট গাড়পালা লাগালে বায়ুপ্রবাহ জনিত মৃত্তিকা ক্ষয় রোধ করা যায়। নিম্রালাখত প্রভাবকসমূহ মৃত্তিকার ক্ষয় হেরান্নিত করে।

<mark>১) বৃষ্টিপাত :</mark> বৃষ্টিপতের পরিমাণ এবং এর প্রতদের হার দ্রাঁওকার করা প্রায় লাগ । ৫০০ জন মৃত্তিকা ক্লত পানি শোষণ করে এবং মৃত্তিকা পানি দ্বারা সংখ্ ও হলে, ১৫ জনি এশের ক্লাইন যায়। মৃত্তিকার ধারণ ক্ষমতার অতিরিস্ত বৃষ্টিপাতের পানি পরিয়ে হলে ১৫

<mark>২, মাটির বৈশিষ্ট্য :</mark> মৃত্তিকার পানি ধারণ ক্ষমতা বৃদ্ধি করে মার্ভিকার মন্দ কমানে নিয়া মালকার কতকগুলো বৈশিষ্ট্র যেমনা বুনট, গঠন, সংশক্তি প্রবণান্তা ইত্যাদ প্রাম দারণ ক্ষমতার হাজালির করে।

(ক) পানির শোষণ ও চোয়ানো : মৃত্তিকার বৃষ্টির পর্যায়বা একা ফলত মানত করে মৃত্তিকার বুনট, গঠন এবং জৈব পদগর্থের পরিমাণের উপরা মানকা আদ মলত মান কলা করা দিয়ে গঠিত হয়, তাহরে বৃষ্টির পানি সহজেই চুহুয়ে মানজনার নিদ্ধ গুলে হলে মানজা বা বিজ্ঞা করা দিয়ে গঠিত হয়, তাহরে বৃষ্টির পানি সহজেই চুহুয়ে মানজনার নিদ্ধ গুলে মানজা মানজা বা বিজ্ঞা জারী মৃত্তিকার কলাগুলো খুব সূক্ষ ২ওয়ায় পানির চোয়ানো বাধাগুত হয়। জেন জনাত মানজা দলাবাধাতে সহায়তা করে, তাই পানি শোষণ ও চোয়ানো বৃষ্ঠি করে । এমাড়া জেনজামানজা বেশ কিছ পরিমাণ পানি শোষণ করে।

(ব) মাটি সংশক্তি প্রবণতা (cohesiveness) : যদিও হান্ধ: মৃতিকার পানে এনেশ ক্ষম বেশি, তথাপি ভারী মৃত্তিকার কণাগুলো দৃট্ভাবে লেগে থাকে, কিও হান্ধ: মৃতিকার হান্দ্র হান্দ্র লেগে থাকে, তাই এর সংশক্তি প্রবণতা কমন কলম মৃত্তিকার সংশাদ হার্বনার একে হালে আ পানি শোষণ ক্ষমতা কম এবং গড়িয়ে পড়া বেশি হওয়ার জনা ক্ষয় বেশ হয়

(গ) মাটির চাল (stope): ভূমির ঢালের উপর পানি গুড়ানে জিতর কার্বন চাল্ জিন বেশিক্ষণ বৃষ্টির পানি শেষণ করতে পারে না, গড়িয়ে অনাত্র চাল যায়। উলি বর্তনার জিলান গড়িয়ে যায়

(ম) মৃত্তিকার পানি : গুল্ফ মৃত্তিকা দ্রুও পানি এশাগণ করে, ১২ প্রাথমক করেওরে না মা। সিন্তু হওয়ার সাথে সথে এর শোধন ক্ষমতা কমে যায় এবং পানি পর না বৃদ্ধ পশ। ৩. মাটির আছ্লাদন : মন্তিকার উপর প্রাকৃতিক উদ্ধিন্যান্টর আগ্রাক্য মাওল কয় লোক স্ রাখকরী। উদ্ভিদবন্তিত চাম করা জমির মৃত্তিকার ক্ষয় বেশি হয়। বাষ্টর হেগ্রাক আঁ এন হল মৃত্তিকার কণা পৃথক হয়ে যায়। পানিওে দ্রবীভত ক্ষুদ্র কণাগুলো পানিতে রবীভত হয়ে মাওল পানির সাথে মিশে যায়। পানিতে দ্রবীভত ক্ষুদ্র কণাগুলো পানিতে রবীভত হয়ে মাওল পানির সাথে মিশে যায়। পানিতে দ্রবীভত ক্ষুদ্র কণাগুলো পানিতে রবীভত হয়ে মাওল প্রকার কণা পৃথক হয়ে যায়। পানিতে দ্রবীভত ক্ষুদ্র কণাগুলো মৃত্তিকার রন্ধকে বন্ধ করে দিয়ে পান চায়ানো ব্যাহত করে। মৃত্তিকায় বৃষ্টির ফোটার আগ্রাওলো মৃত্তিকার রন্ধকে বন্ধ করে। দিয়ে পান চোয়ানো ব্যাহত করে। মৃত্তিকায় বৃষ্টির ফোটার আগ্রাওলা মৃত্তিকার রন্ধকে বন্ধ করে। দিয়ে পান চোয়ানো ব্যাহত করে। মৃত্তিকায় বৃষ্টির ফোটার আগ্রাওলা ব্যাহিকার রন্ধকে বন্ধ করে। দিয়ে পান চোয়ানো নাই হার্জ কেনে। মুত্তিকায় বৃষ্টির ফোটার আগ্রাওলাকে বান কয়, হাই শার্কার মন্দ্র মৃত্তিরোধে ফার্লি কায়করী। সাধারণ লাগ্য উদ্ধিদের কুশি (tiller) বেশ হয়, সাল্যান পান হার বিস্তার লাভ করে মৃত্তিকাকে ভালভাবে ধরে রাখে উণ্ডায়ে হাসিল আয়ার স্বন্ধি নাজ হাল হারকে মন্তর করে। এসমন্ত কারণে পানি গড়িলো এবা দিয়ে যাসের আয়ান্দা পান হার হারাকে মন্তর করে। এসমন্ত করেণে পানি গড়ানো এবা মৃত্তিকার কয়ে বারে মন্দ্রের হয়ে মান্দারণ করা বার্জ হাল্যাদনকরি উল্লি।

প্রাকৃতিক বন্যাঞ্চলও মৃত্তিকার ক্ষয় হাস করে। বনাড়মিতে বৃষ্ণা, ্রার রাজিনা মন্দ্র জ্যার্জের থ্যকে । বৃক্ষেরা বড়া বড় প্রান্তা প্রযুৱ পরিমাণে প্রানি ধ্যার রাখে এবা প্রারে রাজি মানক মান বন্যঞ্জলের মান্তব্যায় প্রয়ানীল জৈর প্রদায় রেশি থ্যকে যা প্রানি ধ্যার নামে মানে মানে মান্তব্যায় হয়।

মান্টির শোষণ ক্ষমতার চেয়ে বেশি বৃষ্টিপ্রত হলে মান্ডিকার মন্দ হয়। নাজা মন্দ্রিন গিয়াগুলগীন নয় নৃত্তরে মত্রিকার শেষেণ ক্ষমতা ব্যন্ধ করা সভাব নারাত্রতা মেন্দ্র মন্দ্রিজার ময়ন্দ্রে ১টিই অন্দরণ করা হয়।

ৃত্তীয় অধ্যায় বায়বীয় পরিবেশ

শস্যের বৃদ্ধি ও ফলনের উপর বায়বীয় পরিবেশের (Aerial Environment) থথেষ্ট প্রভাব আছে গ্রীন হাউজের নিয়ন্ত্রিত পরিবেশে সৌরবিকিরণ, তাপমাঞ্রা, ফটোপিরিয়ড, পানির সরবরাহ এব-বায়ুর গ্যাসীয় উপাদান শস্যের চাহিদা অনুযায়ী পরিবর্তন করা যায়। কিন্তু মাঠে জন্মানো শস্যের ক্ষেত্রে বায়বীয় পরিবেশের এ সকল উপাদানের পরিবর্তন ঘটানো প্রায় অসন্তব। এই নিয়ন্ত্রণের জ্বোব এবং বায়বীয় পরিবেশের এ সকল উপাদানের পরিবর্তন ঘটানো প্রায় অসন্তব। এই নিয়ন্ত্রণের অভাব এবং বায়বীয় পরিবেশের পরিবর্তনশীল প্রকৃতির জন্য, শস্য উৎপাদনের সীমাবদ্ধতার সৃষ্টি হয়। বছরের বিভিন্ন সময়ে তাপমাঞ্রার পরিবর্তন হয়, আবার একদিনের বিভিন্ন সময়েও এর যথেন্দ্র তারতমা হয়। শস্যের সর্বোচ্চ বৃদ্ধির জন্য সৌরবির্কিরণ অপর্যাপ্ত হতে পারে। পানির সরবরায় অত্যন্ত কম কিংবা অতির্রিক্তি হওয়ার জন্যও শস্য উৎপাদন ব্যাহত হয়। বায়ুপ্রবাহ বিভিন্নভাবে শস্যের বৃদ্ধি ও ফলনকে প্রভাধিত করে।

যেহেতু ধায়বীয় পরিবেশের বিভিন্ন উপাদান শস্যের বৃদ্ধি ও ফলনকে নিয়ন্ত্রিও করে, সেহেতু শস্যের উপর এসব উপাদানের প্রভাব সম্পর্কে জ্রান থাকা আবশ্যক। তবে অনেকক্ষেত্রেই এহ প্রভাব জটিল এবং তথ্যের স্বল্পতা আছে। বায়বীয় পরিবেশের প্রধান প্রধান উপাদান সারণি ৩,১ এ উপস্থাপিত হয়েছে।

সৌরবিকিরণ বা আলো

শস্য উৎপাদনে সৌরবিকিরণ বায়বীয় পরিবেশের একটি গুরুত্বপূর্ণ উপাদান। এটি প্রধানত আফলে দ্বারা প্রভাবিত হয় ; নিরক্ষরেখা বরাবর এর মান সারা বছরে প্রায় একই রকম, কিস্তু ৫০ অক্ষাংশের উপরে সারা বছরের দশ গুণ বা ততোধিক তারতম্য হয়। যেমন সিঙ্গাপুরে বছরে অধিকাংশ সময়ে ৪০০ থেকে ৪৫০ ক্যানোরি/বর্গসেন্টিমিটার/প্রতিদিন। অপরপক্ষে, যুক্তরাজে ডিসেম্বর মাসের গড় ৫০ এবং জুন মাসে ৪০০ থেকে ৪৫০ ক্যালোরি/বর্গসেন্টিমিটার/প্রতিদিন। এটি মেঘের জনাও প্রভাবিত হয়। আক্ষাংশের জন্য দিবা দৈর্ঘ্য বা আলোককালেরও তারতম্য হয়। এবং কতিপিয় শারীরবৃঞ্জীয় প্রক্রিয়া, যেমন পুষ্ণায়ন এবং কদ তৈরিকরণ এর দ্বারা প্রভাবিত হয়।

সারলি ০.১ : বায়বীয় পরিবেশের প্রধান প্রধান উপাদান

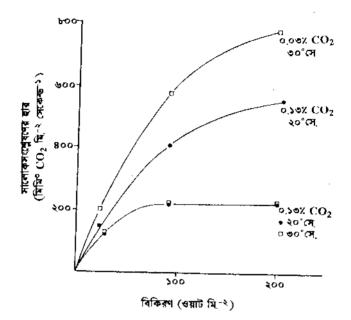
সৌরবিকিরণ আলো : প্রখরতা, গুলগাত মান এবং আলোককালে তাপমাত্রা খাতৃগাত এবং প্রাতার্তিক তার চম্য তৃ্যারপাত আর্দ্রতা বাদ্বপ্রবাহ : বেগ, চাপ ভবং দিক মেঘ, কুয়াশা (mist) এবং ঘন কুয়াশা (fog) অধ্যঃক্ষেণণ (precipitation) :বৃষ্টিপাত, শিশির, বরফ, শিলাবৃষ্টি (sleet) বায়ুর গুঠন : কার্বন ভাত অক্সাইড এবং দ্যাশ আলোর নিম্নলিখিত তিনটি দিক শস্য উৎপাদনে গুরুত্বপূর্ণ ; যথা--

(ক) কি পরিমাণ প্রখরতা,

(খ) কতটুকু আলোককাল বা ফটোপিরিয়ড এবং

(গ) গুণগত মান–আলোক বর্ণালীর বিস্তার।

শস্য উদ্ভিদের কতিপয় গুরুত্বপূর্ণ শারীরবৃত্তীয় প্রক্রিয়া যা আলো দার। এভাবিত ২০০১০ ব নং সারণিতে দেখানো হয়েছে। এটি সুস্পষ্ট যে, বীজের অচ্চুরোদগম থেকে শুরু করে অসভালাজ, পুস্পায়ন এবং বীজ ও মুকুলের সুস্তাবস্থার জন্য আলোর প্রয়োজন।


সারণি ৩,২ : উদ্ভিদের আলো–নিয়ন্ত্রিত কতিপয় প্রক্রিয়া

প্রতিয়া	অ্যলের প্রভাব	
অস্কুরোগগম	অন্ধকার–এবং আলে৷–আবশ্য ক বীজেল উপর প্রভাব	
কান্ড দীৰ্ঘীকরণ	পাশ্ধুৰতা (etiolation) প্ৰভাগ	
পাতার প্রসারণ (expansion)	পূর্ণ প্রসারণের জন্য কীর্ঘ সময় আলোর এণেজন	
ক্লেরেফিল সংশ্লেষণ	ক্লোরোফিল সংশ্রেষণের জন েয়ালের ৬০৫।জন	
কাণ্ড এবং পাঁতার চলন	শস্য উৎপাদনে এর গুরুও কম	
পুষ্পায়ন	ফটের্গিরিওডিজম এবং পুন্সায়ন নিয়খন	
মুকুলের সুস্তাবন্থ।	ছেট দিনে ফটোপিরিওডিক সংবেধ নের জল্জ আলেশ	

(ক) আলোর প্রখরতার গুরুত্ব

মবুজ উদ্ভিদের সালোকসংলেষণ প্রক্রিয়া আলোর প্রথরতার উপর নিডরশীল সালোকসংশেষণার হারের সঙ্গে আলোর প্রথরতার সম্পর্ক নিণীত হয়েছে (Gaastra, 1962)। যদি তাপমারা দণ কার্বন ডাই-অক্সাইড সীমিত না হয়, তাহলে আলো বৃদ্ধির সাথে সালোকসংশ্লেষণের হার বাদ্ধ পায় (চিত্র ৩,১)। তাই প্রাথমিক অবস্থায় শস্যের বৃদ্ধির হার নির্ভর করে আলোর প্রথর চা বন-ভার শোষণের (interception) অনুপাতের উপর। কি পরিমাণ আলো ভূপষ্ঠে কিংবা শাস্যে পাত হার তা নির্ভর করে আলোর প্রথরতা এবং দিবা-দৈর্ঘেরে উপর। বছরের বিভিন্ন সময়ে শ্বান্ডার এবং ভা প্রথরতার তারতম্য হয়। যেমন উত্তর গোলাধে এপ্রিল থেকে জুন পর্যস্ত অণলার প্রথন হা বনান এবং এ সময় শস্যের পর্যাপ্ত পাতা না থাকলে এই আলোং শোষণ সম্পূর্ণ হয় না।

শস্য কর্তৃক আলো শোষণের কার্যকারিতা অনেকগুলো প্রভাবকের উপর নিতরশীল তেওঁও শস্যের পাতার বৃদ্ধি ও বিকাশ দ্রুত হয়, সে সব শস্য আলো শোষণে অধিক হর কাগকর। প্রাত একক ভূমিতে শস্য উদ্ভিদের ঘনত্বও গুরুত্বপূর্ণ ; শস্যের জীবনচক্রের প্রাথামক অবস্থায়, কাডকা। সারির শস্যের তুলনায় দূরে দুরে অবস্থিত সারির শস্য আলো শোষণে অপেক্ষাকৃত কম কণ্ডকর এছাড়া, পাতার বিন্যাসও গুরুত্বপূর্ণ ; যেমন সুগার্রবিটের শায়িত পাত্যের বিন্যাস কম কাণকর। অথ্যটোকে দানাশস্যের পাতার ক্যানোপি অধিকতার কামকর। পাতার কোণ্ড (angle) আলে শোষণে গুরুত্বপূর্ণ ভূমিকা পালন করে। অবশ্য শস্য উৎপাদনকারীর এ বিষয়গুলোর চলার নেংলের নিয়ন্ত্রণ নেই, উদ্ভিদ প্রজননবিদদের এ বিষয়ে ভাল ভূমিকা আছে, খাড়া হাবে (ercer) বিন্যস্থ পাতা আলো শোষণে অধিকতর কার্যকর, কারণ শায়িত পাতার তুলনায় এদের পাটাশ্যারক ভায় প্রহাল কম।

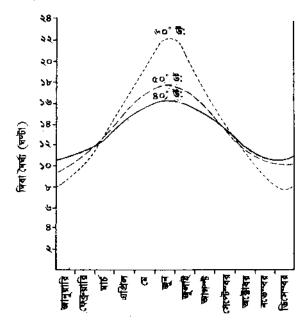
চিত্র ৩.১ : ২০° এবং ৩০° সেন্সিয়াস তাপমাত্রার সালোকসংশ্রেষণের হারের উপর আলো এব/ কার্বন ডাই-অক্সাইডের প্রভাব।

পাতার বৃদ্ধিও আলো দ্বারা প্রভাবিত হয়। দানাশসেরে পাতার প্রসারণের হার এবং পাতার সর্বোচ্চ প্রস্থ এবং পুরুত্ব আলোর প্রথরতা বাড়ার সাথে সাথে বৃদ্ধি পায়। অপর দিকে, প্রখর আলোয় পাতার সর্বোচ্চ ক্ষেত্রফল এবং পাতার দেখ্য হ্রসে পায়।

শস্য উদ্ভিদের বৃদ্ধিতে আলোর প্রখরতার প্রভাবের অপর একটি উদাহরণ হলো দানাশসের কুশি (filler) তৈরি। প্রধান কাণ্ডের পাতার অফ থেকে উৎপন্ন সেকেন্ডারি (secondary) বিটপ হলো কুশি ; এটি অবশ্য নাইট্রোজেন দ্বারাও প্রভাবিত ২য়। আলোর প্রথরতা বৃদ্ধির সাথে সাথে কুশির সংখ্যা বৃদ্ধি পায়।

দানাশসেরে পরিপদ্ধতার পূর্বে লজিং (lodging) হলে এটি ভালভাবে দেখা যায়। লজিং-এর জন্য শসেরে গ্রেড়াতে আলো পৌঁছায় যা নত্ন নত্ন কুশি তৈরিকে উদ্দীপিত করে : এই কুশি অবশ্য অধিকাংশই নিক্ষলা এবং শস্য সংগ্রহের সময় বেশ অসুবিধার সৃষ্টি করে।

খুব কম আলোতে কিংধা সম্পূর্ণ অন্ধকারে বিটপ পাঞ্জুর এবং লিকলিকে হয়। তাপমাত্রা এবং আলোর প্রখরতা নিয়ন্ত্রণ করে বপনের পূর্বে গোলা আলুব আন্ধুরিত হওয়া বন্ধ করা যায়। নিম ডাপমাত্রা এবং অপেদ্ধাকৃত প্রখর আলোতে সবল চারাগাছ হয়, তাই রোপণের সময় এদের কম ফতি হয়।


(খ) আলোককালের গুরুত্ব

আলোককালের সময়সীমা (একে দিবা-দৈর্ঘ্য ব্যাফটোপিরিয়ড বলে) শক্তের বিদ্যালয় ভারনারহা এক প্রভাৱিত করে। যে সকল শারীরবৃত্তীয় প্রক্রিয়ায় যেমন- সালোকসংশ্রেণ, ভারতের লোশ পরিমাণে শক্তি স্থানান্তরিত হয়, তাদের ফেব্রে আলোককালের সময়সিদ্র এবং আলেকগণ্য হ ফ্রাল্পের (flux) প্রভাব পৃথক করা যায় না। শস্য উদ্ভিদের বৃদ্ধির কৌনো কোনো জেনে লগ্য সময় ফ্রাল্পের (flux) প্রভাব পৃথক করা যায় না। শস্য উদ্ভিদের বৃদ্ধির কৌনো কোনো জেনে প্রাণ্য কেন্দ্র দ্রাল্প ফ্রাল্পের (flux) প্রভাব পৃথক করা যায় না। শস্য উদ্ভিদের বৃদ্ধির কৌনো কোনো জেনে প্রণালকেশান্ত ফ্রাল্পের (flux) প্রভাব পৃথক করা যায় না। শস্য উদ্ভিদের বৃদ্ধির কৌনো কোনো জেনে প্রাণ্য কেন্দ্র শ্রুয়ি উচ্চ আলোকবিশ্বির ফ্রাল্পের প্রভাব এবং দীর্ঘ্য সময় স্থায়ী নিমু আলোকরাশ্বির ফ্রাল্পের প্রভাব প্রায় একই রকম। অপরদিকে, উদ্ভিদের দিবা–দৈর্ঘ্যের প্রতি সংবেদনশীলেতা আলোকবাশ্বির ফ্রাল্ ধনত্বের উপর নির্ভরশীল নয়। প্রকৃতপক্ষে, ২৪ ঘন্টরে দিন–রাত্রি চক্রের আলোক প্রাণ্ড প্রাণ্ডের গ্রন্থ ঘনত্বের আলোকশক্তি যথেষ্ট। আক্ষাংশভেদে পৃথিবীর উপর সূর্যকিরণ কে থায়ও লাগ চানে বন্দ কোথায় হেলে পড়ে। নিরফরেরা অঞ্চলে সূর্যক্রিণ লম্বতাবে পতিত হয় এবং এগান লগকে উল্লে মেরুর দিকে স্বতে থাকলে অফ্যাংশ বাড়ে, ফলে সূর্যকিরণ লম্বতাবে পতিত হয় এবং এগান লগকে জিন্দ অঞ্চলে সারা বহুয়েই দিবা–দৈর্ঘ্য প্রায় ১২ ঘন্টা থাকে।

আক্ষাংশ বাড়ার সাথে সাথে সারা বছরে দিবা দৈয্যের তারতমা বড়ের খাকে। খনন কর্ অক্ষাংশ ২১ ডিসেম্বর দিবদ-দৈর্ঘ্য হয় ১০ ঘন্টা ২০ মিনিট এবং তা বেড়ে ১০ শে জুন ১০ শন্টা ১০ মিনিটে দাঁড়ায়। ৬০° অক্ষাংশে (যেমন অসলো, নরওয়ে) জুন মাসে ১৯ খনন এবং ডিসেম্বর দান হয় ৬ খন্টা অর্থাৎ ১৩ ঘন্টার পার্থক্য। সুমেরু বৃত্তের উপরে (৬৬.৫° আফলণা), গীম্মকললা কিছু সময়ের জন্য সবসময়ই দিন থাকে, অপরপক্ষে, শীতকগলে দিগস্তের (horrzon) দলাবে সুট মা এবং ২৪ ঘন্টাই অন্ধকার থাকে। মার্চের ২১ তারিখে (মহাবিযুব, venal requires লগ্য আক্ষাংশেই দিবাদৈর্দ্য সেয় ১২ ঘন্টা। দক্ষিণ গোলার্ধের ঋতু উগুর গোলাধের গেলা হৈ আম্বান্ড দেশ গোলার্ধে যখন গ্রীক্ষকাল তখন উত্তর গোলার্ধে শীতকাল। আক্ষাংশ পরিবতনের সাথে চিনাইদেশ্বর পরিবর্তন দই গোলার্ধে একই রকম।

এ পূর্যীন্ত দিবাদৈর্ঘ্য সম্পর্কে যা উল্লেখ করা হয়েছে তার ব্যাণিয়ক লাস যোগন হয়ক এগা হ পর্যন্ত। উদ্ভিদ অবশ্য দিধাকাল ছাড়াও উষাকালে এবং গোঙ্গলী লণ্ড্রের (uwhight) আলা 🗇 সাজ দেয়। গ্রীষ্মকালে ৪০° উত্তর অক্ষাংশে সূর্যা**ন্তের সম**য় বিকিরণ ফ্রাঝ বন্ত<mark>ত হ</mark>লে। ১০০০ ফুট ক্যান্ডেল। সূর্যোগয়ের পূর্বে এবং সূর্যান্তের পরে যখন সূর্য দিগপ্তের ৬ নিচে পচক সিকিল টুইলাইটের আরম্ভ ও শেষ হওয়ার সময়কালে সূর্যের অবস্থান, এসময় বিকিরণ দ্বা মনায় হলন ০,৪ ফুটা-কয়**ন্ডেল**া বিকিরণ ফ্লান্ড খনত ১ থেকে ২ ফুটা ক্যান্ডেলেরা বান্দি হিন্যা নেশ্য হাবন (Chrysanthemum) অঙ্গজ অবস্থায় থাকে। এক ফুট কালিডল ইনকান্ড ভাস্টা বিকিবালৰ জন Xanthium pennsylvanicum এর পুষ্পায়ন বন্ধ হয়ে যায়। আল্পেসবের (Callestephic chinesis) কাণ্ডের দীষীকরণ, পুষ্পায়ণের পূর্বে এটি হওয়া প্রয়োজন, এ প্রাক্রয়া ঘটে 💈 থকে ০,৩ ফুট–ক্যান্ডেল বিকিরণ ফ্রান্স ঘনত্বে। উজ্জ্বল চন্দ্রালোকের সবেচ্চ মাত্রা ০,০০ ফুট করন্ডেল যা ফটোপিরিয়ডে সংবেদনশীল উদ্ভিদ দিবালোকের মতো গ্রহণ করতে প্রারে নয়। যপন কালে নির্দিষ্ট অক্ষাংশে ফট্টোপিরিয়ডিজম সম্পর্কিত দিবা–দৈঘাঁ উল্লেখ করা হয়. (সঞ্চে*ে* দিব) দেওেও সাথে সুর্যোদয়ের পূর্বে ও সুর্যান্তের পরে যখন বিকিরণ ফ্রাক্স ঘনাত্ব একটি চিচ্চিষ্ঠ ফটোপাবভাচক <mark>প্রতিক্রিয়া ঘটানোর জন্য সর্বনিমু মাত্রার বেশি হয় তার</mark> উল্লেখ থাকা উচ্চিখন প্রক চপক্ষে, স্থানের থেকে সুৰ্যান্ত পৰ্যন্ত সময়ের সাথে সিভিল গোধুলী লগ্নের সময় যোগ করে দিবা বিদ্যালিগয় করা হয়। ৪১° অক্ষাংশে সিভিন গোধুলী লগ্নের পরিসর হলো মহাবিষ্ঠ ও জলাবযুৰ সময়ে ৫১ মিনিচ থেকে উত্তর-অয়নান্ত (summer soltice) এবং দক্ষিণ- ওয়নান্তে (winter soltice) ৬৮ মিনট পৰ্যন্ত :

Gamer এবং Allard ১৯২০ সালে ফটোপিরিয়ডিজম আবিক্ষার করেন। মেরিল্যান্ডের ংল্টসভিলিতে অবস্থিত মংকিন যুক্তরাষ্ট্রের Department of Agriculture এর Plant Industry Station-এ কাজ করার সময় Garner এবং Allard এক সমস্যায় পড়েন। তা হলে কেন মেরিল্যান্ড ম্যামথ ভ্যারাইটির তামাক গ্রীন্মকালে মাঠে ৩ মিটার পর্যন্ত লম্বা হওয়া সন্ত্রেও ফুল ফোটে না, কিন্ধু শীতকালে গ্রীনহাউজে ১.৫ মিটারের কম লম্বা হওয়া সন্ত্রেও ফুল ফোটে। তাঁদির সামনে আরেকটি প্রশু দেখা দেয় তা হলো বাইলক্সি (Biloxi) ভ্যারাইটির সয়ার্কিন মে মাস থেকে জুলাই মাস পর্যন্ত দু'সন্থাহ পর পর বপন করলে, স্বগুলোরই সেপ্টেম্বর মাসে একই সময় পুষ্ণায়ন হয়। অথবা গ্রীনহাউজে শীতকালে ক্ষুদ্রাকার সয়াবিন উদ্ধিদের পুষ্ণায়ন হয়। এটি সুস্পষ্ঠ যে, গীনহাউজে শীতকালীন একটি পরিবেশীয় প্রভাবকের সাথে পুষ্ণায়ন সম্পর্কযুক্তা বিকিরণ ফ্রাঞ্গ খনত্ব, তাপমাত্রা, মৃত্তিকার পানি এবং উর্বরতার প্রভাব সম্পর্কৈ Garner এবং Allard অনেক পরীক্ষা-নিরীক্ষা করে একটি প্রকম্প উপস্থাপন করেন যে, এ সকল প্রজ্ঞাতির পুষ্পায়ন নিয়ন্ত্রশের পরিবেশীয় প্রভাবক হলো দিবা-দৈর্ঘ্য িবৈদ্যুতিক আলোর সাহায্যে দিবা–দৈর্ঘ্য বৃদ্ধি করে অথবা–উদ্ভিদ অঙ্গকার প্রকোষ্ঠে রেখে দিব।–দৈঘ্য হ্রাস করে তাঁর৷ পরীক্ষার মাধ্যমে প্রমাণ করতে সক্ষম হন যে, ম্যারিল্যান্ড ম্যামঞ্চ ত্রামাক এবং বাইলজি সন্মারিনের পুষ্পান্ননের জন্য হ্রস্ব-দিবালৈঘোর প্রয়োজন । অন্যান্য উদ্ভিদ প্রজাতি নিয়ে পরীক্ষার মাধ্যমে জ্ঞানী যায় যে, কতকগুজ্ঞ ইস্টিদের পূষ্পায়নের জন্য দীর্ঘ~দিবাদৈর্ঘ্যের প্রয়োজন এবং আবার কতকগুলো উদ্ভিদের পূষ্পায়িয দিবা–দৈর্ঘেরি কোনেং প্রভাব নেই।

চিত্র ২,২ েউন্ডর গোলার্ধের দিবা–দৈর্ঘ্যের অতুগত পরিবার্তনের উপরা অক্ষাংশ্যের প্রভাব।

অধিকাংশ নাতিশীতোষ্ণ অঞ্চলের শস্য দীয়া দিবাল্যেক প্রাপ্ত উদ্ভিদ। দীয় দিবালোকে শীতকালীন গমের পূষ্ণায়ন হয়। অন্যান্য দানাশস্য ও ঘাসের ক্ষেত্রেও একই রকম প্রতিক্রিয়া দেখ যায়। দীঘ দিবাল্যেক গমের পাত্য ডিরি পর্যায়ের সময়কাল, প্রতিটি কাণ্ডে পাতার সংখ্যা এবং

বায়বীয় পরিবেশ

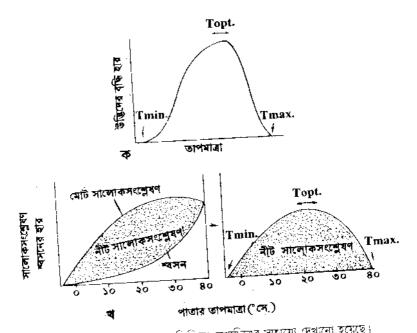
ম্পাইকলেটের সংখ্যা কমিয়ে দেয়। আবার কতকগুলে। শস্য যেখন নিজনোজন ভালেজ অর্থাৎ একটি নির্দিষ্ট পরিসরের দিবালোকে এদের পূষ্ণায়ন হয়।

পুম্পায়ন ছাড়াও, শস্যের বৃদ্ধি ও বিপরিগতির আরে কাওনক নাশম নিক্ষা কোটা কাটা প্রভাবিত হয়। হস্ব দিবা–দৈর্ঘ্যে গোল আলুর কন্দ তৈরি সম্পন্ন হয়ন আনটা কোটা (runner) তৈরি দীর্ঘ দিবা–দৈর্ঘ্যে হয়। যদিও শস্যের উপর দিবা দেশে এ প্রাভান আগত কৃষ্ণকেরা মাঠে এটি নিয়ন্ত্রণ করতে পারেন না। তবে এই তথেরে চিচাঙাতে আনচা যে প্রজানশ অবস্থিত তার জন্য উপযুক্ত শস্য কৃষকেরা নির্বাচন করতে পারেন।

(গ) আলোর গুণগত মানের গুরুত্ব

এটি সুবিদিত যে, উদ্ভিদের বৃদ্ধির জন্য আলোক বর্ণালীর সকল দলশন মানানন এই সালোকসংশ্রেষণের জন্য কেবল ৪০০ থেকে ৭০০ নগনোমিটার চরগালে জালালা না রাজন (একে Photosynthetically Active Radiation বা PAR নালালা বিভিন্ন এক ন সালোকসংশ্রেষী রঞ্জক পদার্থ কর্তৃক এই পরিসরের তরঙ্গদৈর্ঘের ঘটেলার সংগ্রন্থ নামান জালা ভিন্নতর। উপরস্থ, আলোক বর্ণালীর বিভিন্ন অংশের উপর আনদান শার্টান রাজন নির্ভারশীল। যেমন লাল এবং অবলোহিত (infrared) অংশ ফটোপি রিজজিমে জালাক চর পেনের অবশ্য মাঠ পর্যায়ে আলোর গুণগত মান পরিবর্তন সম্ভব নয়।

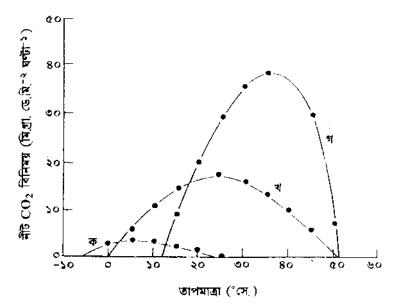
তাপমাত্রা (Temperature)


শস্য উদ্ভিদের অনেক শারীরবৃঞ্জীয় প্রক্রিয়া তাপমাত্রা নিয়ন্থণ করে নাম জীৱন নামলৈ নিজন বি ও ফলনের জন্য সুনিদিষ্ট তাপমাত্রার প্রয়োজন। তাপমাত্রা ২৫লা কালনার প্রায়াল কেন্দ্রা হা অর্থাৎ গড় গতীয় শক্তি। সৌরবিকিরণ জীবমগুলের (biosphere – ১০টা শালনার বিজ পৃথিবী পৃষ্ঠ এবং বয়েমণ্ডল থেকে এটি বিকিরণ, পরিচলন এবং পরিবালনার মালনার ভাল বাঙ্গীভবন (evaporation) এবং ঘণীভবন্দের (condensation) মাধ্যমান খানারাবার মালা নাম শক্তির প্রথরতার বিষয়টি অর্থাৎ তাপমাত্রা জীবের জন্য নিয়ালাখিত কালনা খ্রাহালা হা

(ক) উ**দ্ভিদদেহের বিভিন্ন প্রকার ভৌত–রাসায়নিক প্রতিক্রা**, তাপমান জারা নির্ধান্ত্রত

- (খ) বিভিন্ন প্রকার দ্রব্যের দ্রবণীয়তা তাপমাত্রা দারা নিয়ন্ত্রিত।
- (গ) গ্যাসীয় এবং তরল প্রদার্থের ব্যাপনের হার তপ্রমাত্রার জন 👘 🚈 🚈
- (৭) রাসায়নিক বিক্রিয়ার হার তাপমাত্রার সাথে পরিয়তনশীল :
- (৩) বিভিন্ন সিস্টেম এবং যৌগ পদার্থের সাম্যাবস্থা তাপনাত্রা দ্ব বা বালা দ
- (5) এনজাইমের স্থায়ীত্ব তাপমাত্রার উপর নিভরশীল।

উষ্ণ রক্তের (homeothermic) প্রাণীর মতো উচ্চ শ্রেণীর চারন নামক করা হাল নামক তাপমাত্রা বজায় রাখতে প্যরে না। তাই এদের বৃদ্ধি ও বিপাক পার নামক চালনার করা হা প্রভাবিত হয়। তবে উদ্ভিদের শারীরবৃত্তীয় এবং পরিবেশীয় তাপমাত্রার সময় একটি গ্রনিঙ্গ সালন নিগয় করা খুব কঠিন। কারণ মৃত্তিকা এবং বায়ুমণ্ডলের তাপমত্রা খুবং পরিব চাললা উদাহরণস্বরূপ একটি পাতার তাপমাত্রা নির্ভর করে: (১) দিনের যিছিল সময় নিন্দামত রন্ধরণ উদাহরণস্বরূপ একটি পাতার তাপমাত্রা নির্ভর করে: (১) দিনের যিছিল সময় নিন্দামত রন্ধরণ পরিবর্তন), (২) বছরের বিভিন্ন মাস (নিয়মিত স্বাভুগত পরিব চনা গোলা হাল মন্দ্রেলা হার বায়ুপ্রবাহের গতি (অনিয়মিত স্বম্পকালীন পরিবর্তন), (৪) করনোগরা লোলা হাল মন্দ্রেন জন মূর্যালোকিত অথবা ছায়ায়ুক্ত), (৫) ভূলপৃষ্ঠের উপরে হিস্তান এবা হাল বালার সময় নিন্দামত মুন্টকা পৃষ্ঠিকার তাপমাত্রা (১) এবং (২) এর উপর নিভরশীলা লেন্দ্রের চার্ডার নার্চার মন্দ্রি হাল মৃত্তিকা পৃষ্ঠে শক্তির সমতা এবং মৃত্তিকার অভ্যন্তরে তাপ জন্যন্তা দিয়ার্ডার স্থেন্দ্রি বাদ্য মন্দ্র বিভিন্ন ম্বায় ধ্যবিলীর (যেমনন মৃত্তিকায় পানির পরিমাণ, আয়তনী খনান্ন (brik density), বন ধবা লাডপাল অথবা জঞ্জালের আচ্ছাদন) উপরও নির্ভরশীলান তাহ, পাতার ক্যানোপি এবং মৃত্তিকা প্রোফাইল দ্রুত পরিবর্তনশীল তাপমাত্রার মধ্যে অবস্থান করে এজন্য, মাঠ পর্যায়ে বিভিন্ন শারীরবৃত্তীয় প্রক্রিয়ার (যেমন– সালোকসংশ্রেযণ) উপর ওপেমত্রার প্রভাব নির্ণয় করা বেশ কঠিন। দীর্ঘকালীন পরীক্ষার ক্ষেত্রে আরো জটিলতার সৃষ্টি হয়, ওপেমত্রোর প্রভাব নির্ণয় করা বেশ কঠিন। দীর্ঘকালীন পরীক্ষার ক্ষেত্রে আরো জটিলতার সৃষ্টি হয়, বিশেষ করে যেসর ফেত্রে উদ্ভিদের বৃদ্ধির হার এক বা একাধিক তাপীয় প্যারামিটারের উপর নির্ভর বিশেষ করে যেসর ফেত্রে উদ্ভিদের বৃদ্ধির হার এক বা একাধিক তাপীয় প্যারামিটারের উপর নির্ভর বিশেষ করে যেসর ফেব্রে উদ্ভিদের বৃদ্ধির হার এক বা একাধিক তাপীয় প্যারামিটারের উপর নির্ভর বিশেষ করে যেসর ফেব্রে উদ্ভিদের বৃদ্ধির হার এক বা একাধিক তাপীয় প্যারামিটারের উপর নির্ভর বিশেষ করে মেসর ফেব্রে উদ্ভিদের বৃদ্ধির হার একে বা একাধিক তাপীয় প্যারামিটারের উপর নির্ভর বরে এগুলো হলো গড়, সর্বনিমু এবং সর্বোচ্চ তাপমাত্রা এবং সঞ্চয়শীল (accumulated) তাপমাত্রা নির্ডায় দক্রা, ডিগ্রি দিন)।


াজন হল, তর্ত্ত লেনস উপরেন্ডে সমস্য ছাড়াও, উন্ডিদের বৃদ্ধির বিভিন্ন পর্যায়ে এবং বিভিন্ন শারীরবৃত্তীয় প্রক্রিয়ার উপরেন্ডে সমস্য ছাড়াও, উন্ডিদের বৃদ্ধির বিভিন্ন পর্যায়ে এবং বিভিন্ন শারীরবৃত্তীয় প্রক্রিয়ার সংবান্তন তাপমাত্রার বিভিন্নতা পরিলক্ষিত হয়। উপরস্থু, কতকগুলো প্রক্রাতির জনন বৃদ্ধি দিনের তাপমন্রের পরিবর্তে রাতের তাপমাত্রা দারা নিয়ন্ত্রিত এবং কতকগুলো প্রক্রিয়া, বিশেষ করে তাপমন্রের পরিবর্তে রাতের তাপমাত্রা দারা নিয়ন্ত্রিত এবং কতকগুলো প্রক্রিয়া, বিশেষ করে রস্থুরোগগম হারান্বিত করা যায় আকস্মিক হাস বৃদ্ধি (fluctuating) তাপমাত্রা দ্বারা (Thomson মন্ধুরোগগম হারান্বিত করা যায় আকস্মিক হাস বৃদ্ধি (fluctuating) তাপমাত্রা দ্বারা (Thomson মন্ধুরোগগম হারান্বিত করা যায় আকস্মিক হাস বৃদ্ধি (fluctuating) আপমাত্রা দ্বারা বিজির্ব গাঁরবৃত্তীয় and Grime, 1983)। আরো আধিকতর গুরুত্বপূর্ণ বিষয় হলো উদ্ভিদের বিভিন্ন শারীরবৃত্তীয় প্রক্রিয়ায় মৃত্তিকা এবং নায়ুমণ্ডলের তাপমাত্রার আপেক্রিক গুরুত্ব নির্ণয় আরো বেশি জটিল। যাস এবং সেকের (sedges) অঙ্গজ বৃদ্ধির সময় এটি আরো ভালভাবে প্রযোজ্য ; এক্ষেত্রে ভূপষ্ঠের খুব এবং সেকের (sedges) অঙ্গজ বৃদ্ধির সময় এটি আরো ভালভাবে প্রযোজ্য ; এক্ষেব্রে ভূপষ্ঠের খুব এবংরেগেকে, পুর্ণাজ্য সালোকসংল্লেযণকারী পাতা বায়ুমণ্ডলের তাপমাত্রা দ্বারা নিয়ন্ত্রিত।, এপরেগেকে, পুর্ণাজ্য সালোকসংল্লেযণকারী পাতা বায়ুমণ্ডলের তাপমাত্রা দ্বারা নিয়ন্ত্রিত।

ib.৫ ৩.৫ : উদ্ভিদের উপর ভাপমাত্রার অতিক্রিয়া রেখাচিত্রের সাহায্যে দেখানে। হয়েছে। (ক) উদ্ভিদের বৃদ্ধির হারের উপর তাপমাত্রার সাধারণ প্রভাব এবং তিনটি কার্ডিনাল তাপমাত্রা অথাৎ সর্বনিয়ু (T min), সর্বেচ্চে (T max) ও সর্বোত্তম তাপমাত্রা (T opt) দেখানো হয়েছে। (খ) একটি আদর্শ উদ্ভিদের সালোকসংশ্লেষণ এবং শ্বসনের উপর এপমানোর প্রভাব।

 $\dot{u}_{\rm c}$

াবিস্তীর্ণ পরিসরে অপরিবর্তনীয় তাপমাত্রার উদ্ভিদের বৃদ্ধির হারের উপর প্রতিক্রিয়া সাধারণত একটি অপ্রতিসাম্য (asymmetric) ঘন্টা-আকৃতির কার্ডের দ্বারা প্রকংশ করা যায় (চিত্র ০.০০) এই কার্ড থেকে তিনটি কার্ডিনাল তাপমাত্রা সহজেই বোঝা যায়। এগুলো ২লো সর্বনিদ্ধ এবং সবোচ তাপমাত্রা, এর চেয়ে কম বা বেশি হলে বৃদ্ধি সম্পূর্ণরূপে বন্ধ হয়ে যায় এবং সবোন্ডমাত্রণ পরিসর, এক্ষেত্রে বৃদ্ধির হার সবচেয়ে বেশি, যদি তাপমাত্রাই বৃদ্ধির প্রধান নিয়ামক হয়। উচ্চশেলীর উদ্ভিদের শ্যরীরবৃত্ত্বীয় কার্যাক্ষলীর কার্ডিনাল তাপমাত্রার পরিসর বিস্তীর্ণ এবং এই পরিসর থেকে ৬০° সেলসিয়াস পর্যন্ত বিস্তৃত (চিত্র ৩,৪)।

চিত্র ৩.৪ : ভিন্নতর পরিবেশের তিনটি Graminae গোত্রের উদ্ভিদের নিট সালোকসংস্ক্রেয়ণন কার্ডিনাল তাপমাত্রা। **(ক)** Chionochioa প্রজ্ঞাতি (অ্যালপিন C3 উদ্ভিদ), (খ) গম (নার্তিশীতোঞ্চ C3 উদ্ভিদ) এবং **(গ)** ভুট্টা (অব–নিরক্ষীয় C4 উদ্ভিদ)।

উদ্ভিদের বৃদ্ধির উপর তাপমাঞ্রের প্রতিক্রিয়া এজন্য ঘটে যে, তাপমাঞ্র বৃদ্ধি দুর্টি পরম্পর বিরোধী প্রাণরাসায়নিক প্রক্রিয়াকে প্রভাবিত করে। প্রথমত, উদ্ভিদ কোমের তাপমাত্রা বেড়ে গেলে বিঞ্জিয়ায় অংশগ্রহণকারী অণুগুলোর চলনের গতি (ভাইব্রেশনাল, রোটেশনাল এবং ট্রান্দালেশনাল) ওড়ে যায় এবং এর ফলে আন্তঃআগবিক সংঘর্ষের মাত্রা বেড়ে যায়, তাই বিঞ্জিয়ার হারও বেড়ে যায়। অধিকাংশ রাসায়নিক বিক্রিয়ায় এরকম ঘটে। তবে, প্রকৃতপক্ষে কোমে সংঘটিত সকল রাসায়নিক বিক্রিয়া এনজাইমের জন্য ক্রান্বিত হয়, যরে কার্যাকারিতা নিউর করে এর সাঠিক গাসায়নিক বিক্রিয়া এনজাইমের জন্য ক্রান্বিত হয়, যার কার্যাকারিতা নিউর করে এর সাঠিক টারশিয়ারি গঠন রক্ষরে উপর। তাপমাত্রা বৃদ্ধির সাথে সাথে অতিরিক্ত আগবিক সংঘয় এই টারশিয়ারি গঠনের ক্ষতি করে, ফলে এনজাইমের ব্যার্ফারিতা হাস পাহা এবং বিক্রিয়ার গঠি হয় মন্থর। সর্ব্যেন্ডম ত্যপমাত্রার বেশি তাপমাত্রা এনজাইমের কার্যাকারিতা হাস পাহা এবং বিক্রিয়ার গঠি হয় মন্থর। সর্ব্যেন্ডম ত্যপমাত্রার বেশি তাপমাত্রা এনজাইমের কার্যকারিতা হাস পাহা এবং বিক্রিয়ার গঠি হয় মন্থর। সর্ব্যেন্ডম ত্যপমাত্রার বেশি তাপমাত্রা এনজাইমের কোর্যকারিতা হাস পাহা এবং বিক্রিয়ার গঠি হয় মন্থর। উদ্ধিনের ফ্রন্রির বিভিন্ন প্রক্রিয়ার এনজাইমের ভার্যকারি বিশ্বিয় প্রিছারে তাপের আবরা যে বিজ্লীতে এটি লেগে থাকে তা নষ্ট করে। উদ্ভিদের বৃদ্ধির বিভিন্ন প্রক্রিয়ার উপর তাপমাত্রার প্রভাব একই রকম নয় ব্যেন্থ নাতিশীতোক্ষ অঞ্চলের অনেক উদ্ভিদ প্রজাতির মেটি (gross) সালোকসংশ্লেষণ ০াঁ সেলসিয়াস - (সর্বনিমু) এবং ৪০[°]সেলসিয়াস থেকে (সর্বোচ্চ) বন্ধ হয়ে যায় ; সর্বোন্তম তাপমাত্রার পরিসর হলো ২০° থেকে ৩৫° সেলসিয়াস। অপরদিকে, ২০° সেলসিয়াসের নিচে শ্বসনের হার হ্রাস পায়; উচ্চ তাপমাত্রায় বিপাকের তাপীয় বিচ্ছিন্নকরণের জন্য শ্বসনের হার ক্ষতিপূরণ (compensation) তাপমাত্রা পর্যন্ত দ্রুত বড়েতে থাকে, এক্ষেত্রে শ্বসনের হার এবং মোট সালোকসংশ্রেযণের হার সমান অর্থাৎ নিট সালোকসংশ্লেষণ শৃন্য।

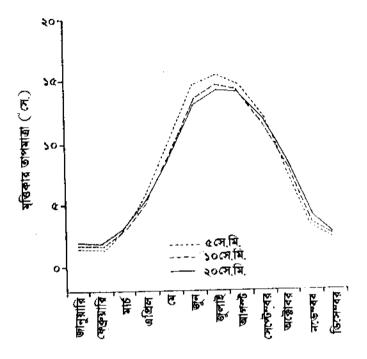
Vant Hoff-এর সূত্র বা তাপমাত্রা গুণাঙ্ক (${
m Q}_{10}$)

যেহেতু বিভিন্ন প্রজাতির এবং বিভিন্ন শারীরবৃত্তীয় প্রক্রিয়ার উপর তাপমাত্রার সংবেদনশীলতা ভিন্নতর হয়. সেহেতু এই সংবেদনশীলতার একটি পরিমাণগত প্রকাশ প্রয়োজন, বিশেষ করে অব সর্বোত্তম (sub-optimal) পরিসর তাপমাত্রায়। এক্ষেত্রে Vant Hoff-এর সূত্র, যা সাধারণভাবে Q₁₀ নামে পরিচিত, ব্যবহার করা হয়।

কোনো নির্দিষ্ট তাপমাত্রায় হার (T) + ১০° সেলসিয়াস (۵,۶) কোনো নির্দিষ্ট তাপমাত্রায় হার (T) $O_{10} \equiv 0$

পরীক্ষাগারে এটি দেখা গেছে যে, রাসায়নিক বিক্রিয়ার Q₁₀ এর মান সাধারণত ২ এর কাছকোঁছি, তাই ধারণা করা হয় যে, পরিমিত (measured) Q₁₀ এর মান ২ এর বেশি হলে নির্দেশ করে যে, উদ্ভিদের শারীরবৃত্তীয় প্রক্রিয়া বিপাকীয় নিয়ন্ত্রণে, অপরদিকে ২ এর কম হলে বুঝতে হবে ে, এই প্রক্রিয়ার হার সম্পূর্ণভাবে ভৌত প্রক্রিয়া, যেমন ব্যাপন অথবা আলোকরাসায়নিক বিক্রিয়া দ্বারা নিয়ন্ত্রিত (Sutcliffe, 1977); Berry and Raison, 1981)। তবে যদিও এই ধারণাগুলো (assumptions) সাধারণত প্রযোজনীয়, শারীরতাত্ত্বিক প্রক্রিয়ায় সাবধানতার সাথে Q₁₀ ব্যবহার করা উচিৎ। কারণ এগুলো নিজেরাই তাপমাত্রার উপর নিতরশীল। উদ্ভিদের কতিপয় প্রক্রিয়ার Q10 এর মান ২.৩ সারণিতে দেখানো হয়েছে। পূর্বেই উল্লেখ্য করা হয়েছে যে, শস্যের স্বাভাবিক বৃদ্ধির জন্য মৃত্তিকার তাপমাত্রাও গুরুকপূর্ণ, কারণ মূলের বৃদ্ধি ও কার্যাবলী এর উপর নির্ভরশীল। ৩.৫ নং চিত্রে মৃত্তিকার তিনাট ভিন্ন গভীরতায় গড় মাসিক তাপমাত্রা দেখানো হয়েছে। সকল গভীরতায় তাপমাত্রার পরিবর্তনের প্যাটার্ন মূলত বায়ুমগুলের তাপমাত্রার মতোই। তবে ২০ সেন্টিমিটারের তুলনায় ৫ সেন্টিমিটার গভীরতায় তাপমাত্রার পরিসর বেশি ; ২০ সেন্টিমিটার গভীরতায় শীতকালে তাপমাত্রা খুব নিচে নামে না এবং গ্রীষ্মকালে খুব বেশি উপরে ওঠে না।

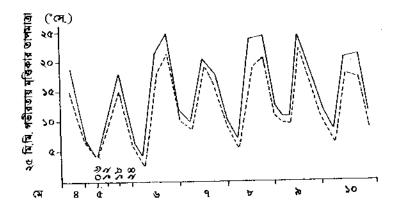
সারণি ২.৬: ০-৬০ সেলসিয়াস–তাপমাত্রায় নির্বাচিত কয়েকটি উদ্ভিদ প্রক্রিয়ায় তাপমাত্র্য


প্রাক্তর্যা <u>এনের সংখ্যা</u> <u>২০০০ চনের হিন্দের প্রায়িক প্রবাহ</u> ১৩ থেকে ১.৫ অনুদ প্রধানত সংখ্যান <u>২০০০ চনের হিন্দের প্রায়িক প্রবাহ</u> ১৩ থেকে ১.৬	-
· · · · · · · · · · · · · · · · · · ·	
। ক্ষুদ্র প্রদানত বনসন । Arachis hypogea এর বীজভকের ভিওর দিয়ে পানির প্রবাহ ১.৩ থেকে ১.৬ । Arachis hypogea এর বীজভকের ভিতর দিয়ে পানির প্রবাহ ১.৫ থেকে ১.৬	ì
া হিন্দিয় প্রস্তুটের আওইরিও বাংলি চলচেন্দ	ł
। ত্রনঞ্জাই ম প্রভাবিত আর্র্রাবেশ্রেয়ন বিফ্রিয়া ১০ থেকে ২.৬ ১০ থেকে ২.৬	
405al	
1 東京海道大学(観光)(三人)(中国)(中国)(中国)(中国)(中国)(中国)(中国)(中国)(中国)(中国	ļ
ା କ୍ରାନ୍ କ୍ରା	
- 「「「」 New Area Area Area Area Area Area Area Area	ļ
সুনেরনেওর মনের দেও ও জনন (বেলামণ হরের সরা কড়ক পটানিয়াম পরিশোষণ	

নলাক্ষের (Q₁₀)মান

৬৬ বহিঃস্থ গদমাত্রায় (৫০ মিলিমোলার) পরিশোষণ প্রধানত ঘটে নিষ্ঠিয় ব্যাপনের মাধ্যমে,

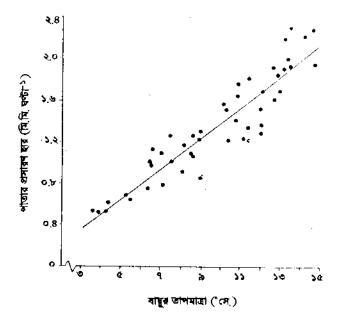
খ, গিন্নু এছিঃও খুনমাত্রেং (৫.১ মিটিনমেলার) সাঁজেয় পরিশেষণ ঘটে।


 ≤ 5

চিত্র ৩.৫ : স্কটল্যান্ডের (১৯৬৫–৭৫) মৃষ্টিকার ৫,১০ এবং ২০ সেন্টিমিটার গভীগ্রতায় গড় মাসিক তাপমত্রা।

শরংকালে এবং বসস্তকালে শস্যের চারার প্রতিষ্ঠার (establishment) সময় মৃত্তিকার তাপমাত্রা বিশেষভাবে গুরুত্বপূর্ণ। অঙ্বকুরিত বীজের সংখ্যা এবং প্রতিষ্ঠিত চারা গাছের সংখ্য অংশত তাপমাত্রার উপর নির্ভরশীল। অঙ্বকুরোদগম এবং চারা নিগমণের (seedling energence) হারও তাপমাত্রার উপর নির্ভরশীল এবং বীজতলায় চারাগাছ জীবিত থ্যক্ষ তাপমাত্রা নিয়ন্ত্রণ করে, বিশেষ করে যেসব বীজতলা থেকে দ্রুত পানি ব্লাস পায়। অধিকাংশ বীজ ১০ থেকে ৫০ মিলিমিটাব গভীরে বপন করা হয় এবং এখানকার মৃত্তিকার তাপমাত্রা শস্যের প্রতিষ্ঠিত হরে গালে করে, বিশেষ করে গেসব বীজতলা থেকে দ্রুত পানি ব্লাস পায়। অধিকাংশ বীজ ১০ থেকে ৫০ মিলিমিটাব গভীরে বপন করা হয় এবং এখানকার মৃত্তিকার তাপমাত্রা শস্যের প্রতিষ্ঠিত ২ওয়ের সাফলাকে প্রভাবিত করতে পারে। বসস্তকালে নাতিশীতোফ্য অঞ্চলে এই গভীরতায় মৃত্তিকার তাপমাত্রার দিন–রাতের পরিবর্তন খুব বেশি (চিত্র ০.৬)। মে মাসের প্রথমের দিকে ব্রিটেনের উত্তরাঞ্চলে বন্দ-গান্ডীরতায়ে মৃত্তিকার তাপমাত্রার দৈনন্দিন পরিসর ত'থেকে ২৫ সেলসিয়াস। বপনের পর কালো বিটুমিন আর্দ্রতা রক্ষাকারী (mutch) ব্যবহার করে এই সংকটকালে মান্ডকার ১৫ মিলামিটার গন্তীরতায় তাপমাত্রা ৪ থেকে ৫া সেলসিয়াস বৃদ্ধি করা যন্ত্র।

শস্য শারীরবিজ্ঞান


চিত্র ৩,৬ : মে মাসের প্রথমের দিকে দক্ষিণ-পূর্ব স্প্ল্টল্যান্ডের উদ্মুক্ত মৃত্তিকা (বিচ্ছিন্ন লাইন) এবং বিটুমিন আর্দ্রতা রক্ষাকারী দেয়া মৃত্তিকার (অধিচ্ছিন্ন লাইন) তাপমাত্রার প্রাতাহিক পরিবর্তন।

অধিকাংশ শস্যের বীজের ৬° থেকে ১০° সেলসিয়াস তাপমাত্রায় দ্রুত অষ্ণুরোদ্গম ২য়, যেমন– গম, যব, সরিয়া, কিন্তু অপর কতকগুলো শস্য, যেমন– ভূট্টার জন্য কমপক্ষে ১০° সেলসিয়সে মৃত্তিকার তাপমাত্রার প্রয়োজন। এ কারণে শস্যের উপযুক্ত বপন সময় নির্ধারণের জন্য মৃত্তিকরে তাপমাত্রা জানা দরকার। ৪° সেলসিয়াস এবং ৩৭° সেলসিয়াস তাপমাত্রার মধ্যে গমের অঞ্চুরোদগম হয়, তবে সর্বোচ্চ অঞ্চুরোদগম হারের জন্য প্রয়োজন ২০°থেকে ২৫° সেলসিয়াস ; কিন্তু নাত্তিশীতোঞ্চ আবহাওয়ায় অক্টোবর এবং নভেম্বর মাসে যখন গম বপন করা হয়, তখন বীজতলায় বপন গভীরতায় তাপমাত্রা থাকে ৫° থেকে ১০° সেলসিয়াস (চিত্র ৩.৫)।

মাটি এবং বায়ুমগুলের তাপমত্রার প্রভাব শস্যের বৃদ্ধি ও বিপরিণতির অন্যান্য পর্যায়েও আছে। অনেক শস্যের পাতার বৃদ্ধি বায়ুমগুলের তাপমাত্রার সাথে সম্পর্কযুক্ত। ইংল্যান্ডে পরিচালিত বসগুকালীন যবের পাতার প্রসারণ হারের সাথে তাপমত্রার সম্পর্ক ৩.৭ নং চিত্র উদাহরণ হিসেবে দেখানো হয়েছে: ৩.৫'থেকে ১৫' সেলসিয়াস তাপমাত্রার পরিসরে পাতার প্রসারণ হার দিন ও রাতের তাপমাত্রার সাথে সরাসরি সম্পর্কযুক্ত। এই পরিসরে প্রসারণ ছয় গুণ বৃদ্ধি পেয়েছে এবং ফলাফলের একটি গুরুত্বপূর্ণ দিক হলো যে, অধিক সৌরবিকিরণ গ্রহণের জন্য প্রাথমিক পর্যায়ে দ্রুত পাতার বৃদ্ধির প্রয়োজন, কারণ এর উপর শাস্যের ফলন অনেকাংশে নির্ভবশীল।

সয়ানিনের পাতার আবির্ভাবের (appearance) হারও তাপমাত্রার উপর নির্ভরশীল এবং ১৮ থেকে ৩০° সেলসিয়াস তাপমাত্রার পরিসরে এই হার ধৃদ্ধি পায়। এটি নির্দেশ করে যে, সয়ানিনের জন্য উচ্চ তাপমাত্রার প্রয়োজন। ভুট্টার সালোকসংশ্লেষণ এবং পাতার বৃদ্ধি ১০° সেলসিয়াসে মন্থর এবং ৩০° থেকে ৩০° সেলসিয়াসে দ্রুতিওর হয়। সুগারবিটের পাতার আবির্ভাবের হার ৫° থেকে ১৫° সেলসিয়াস পরিসরে তাপমাত্রা বৃদ্ধির সাথে সথে বৃদ্ধি পায় ও এরপর প্লেটু (plateau) অবহায় থাকে এবং ৩০° সেলসিয়াসের বেশি হলে আবার কমতে শুরু করে। সুগারবিটের মূল এবং চিনির ফলন বৃদ্ধির জন্য বসস্তকালের শেযে এবং গ্রীষ্কালের প্রারম্ভি নিম্নু তাপমাত্রায় পাতার প্রসারণ হার দ্রুত হওয় প্রয়োজন।

¢8

চিত্র ৩,৭ : যবের পাতার প্রসারণ হারের উপর ধায়ুমণ্ডলের তাপমাত্রার (দিন ও রাও) প্রভাব

মূলের বৃদ্ধির উপর তাপমাত্রার প্রভাব সম্পর্কে গবেষণা খুব কম হয়েছে, তবে মূলের উপর তাপমাত্রার গুরুত্বপূর্ণ ভূমিকা আছে। যেমন ভুট্টার সেমিনাল (seminal) মূলের দীর্ঘীকরণের ২ার ১০° থেকে ৩০° সেলসিয়াস তাপমাত্রায় বৃদ্ধি পায়, এর পর বৃদ্ধি কমে যায়। এই প্রভাবতুলো মূলতন্ত্রের বৃদ্ধির হারকে প্রভাবিত করে এবং সেই সাথে মৃত্তিকা থেকে পান্দি ও খনিও মোল পরিশোষণের ক্ষমতা বাড়ায় যা বিটপের বৃদ্ধির জন্য প্রয়োজন।

নিমু তাপমাত্রা অনেক শস্যের পুষ্ণায়নকে উদ্ধীপিত করে ; একে বলা হয় ভারনালাইজেশন (vernalization)। অধিকাংশ শরৎকালে বপন করা শস্যের, যা দ্বি–বর্ষজীবীর মতো আচরণ করে, অঙ্গজ থেকে জনন অবস্থায় রূপান্তরে কিছু সময়ের জন্য নিমু তাপমাত্রার প্রয়োজন হয়।

শরৎকালে বপন করা দানাশস্যের ভারনালাইজেশন দরকার। শীতকালীন গমে ৩° থেকে দ সেলসিয়াস হল্যে ভারনালাইজেশনের জন্য সবচেয়ে কার্যকরী তাপমাত্রা। প্রায়-শূন্য (sub-zero) তাপমাত্রার প্রয়োজন নেই, যদিও – ৩° সেলসিয়াস থেকে ১৩° সেলসিয়াস তাপমাত্রায়ও ভারনালাইজেশন হয়। শীতল নাতিশীতোফ্য অঞ্চলের শীতকালে সাধারণত শস্য বপনের ৪ থেকে ৬ সপ্তাহের মধ্যে এই তাপমাত্রা হয়। মাতৃ–উস্টিদেই সিন্ত বীজের ভারনালাইজেশন করা যায়, ৩বে কার্যত নবীন চারাগাছেই এটি করা হয়। ভারনালাইজেশনের পর উচ্চ তাপমাত্রা প্রদান করলে এই প্রভাব নষ্ট হয়ে যায়, তবে মাঠ পর্যায়ে এটি কোনো সমস্যার সৃষ্টি করে না। গমের ডারনলোইজেশনের প্রয়োজনীতয়ে বাস্তব গুরুষ আছে। এই প্রয়োজনীয়তার জন্য শীতকালীন গম জন্মানোর এলাকরে সীমাবদ্ধতা আছে এবং উষ্ণ নাতিশীত্যেষ্ণ এবং নিরক্ষীয় এঞ্চলে গমের শীতকালীন ভ্যারাইটি উপযুক্ত নয়। শস্য বপনের তারিখ নির্ধারণও সংকটপূর্ণ হতে পরে। স্বাডার্বিক অবস্থায় গম শরৎকালে বপন করা হয়, কিন্তু মৃত্তিকা এবং আবহাওয়াজনিত অসুবিধার কারণে এটি সম্ভব নাও হতে পারে। এক্ষেত্রে বসন্তের প্রারম্ভে গম বপন করা সম্ভব এবং এ সময়েও ভারনালাইজেশন গ্রহণ করতে পারে। নিম্নু তাপমাত্রার প্রয়োজনীয়তা বিভিন্ন ভ্যারাইটিতে বিভিন্ন হতে পারে এক্ষেত্রে বসন্তের প্রারম্ভে গম বপন করা সম্ভব এবং এ সময়েও ভারনালাইজেশন গ্রহণ করতে পারে। নিম্নু তাপমাত্রার প্রয়োজনীয়তা বিভিন্ন ভ্যারাইটিতে বিভিন্ন হতে পারে এবং কতকগুলো শীতকালীন ভ্যারাইটিকে বসন্তকালে বপনের জন্য অনুমোদন দেয়া হয়েছে। যব, জন্থ (oats) এবং রাই (rye)–এর শীতকালীন ভ্যারাইটি ভারনাইলেজশনের প্রয়োজনীতার ক্ষেত্রে গমের মতো আচরণ করে। তেল–বীজ রেপ (rape) এবং ফিন্ড বিন্দের শীতকালীন ও বসন্তকালীন ভ্যারাইটি আছে এবং এদেরও ভারনালাইজেশনের প্রয়োজন আছে। এসব শস্যের ভাল ফলনের জন্য ভারনালাইজেশনে খুবুই গুরুত্বপূর্ণ।

যে সমস্ত দ্বি-বর্ধঞীবী শস্য অন্ধর অন্ধের জন্য চাথ করা হয়, তাদের ক্ষেত্রে ভারনালাইজেশন বাঞ্চনীয় নয়। পতোর বৃদ্ধি দ্রুত হওয়ার জন্য সুগারবিট থুব আগাম (early) বপন করলে, নবীন চারাগাছ বসন্তকালে নিমু তাপমাত্রা পায়। এটি অনেকটা ভারনালাইজেশনের মতো কাজ করে এবং প্রথম বযেই পুন্পীয় কাণ্ড বা ব্যেন্টার (bolter) তৈরি হয়। সুগারবিট বোলটিং হলে মূল ওস্তুময় (fibrous) হয়, এতে সুক্রোজের পরিমাণ কম থাকে এবং যান্ত্রিক উপায়ে মূল সংগ্রহ করা কঠিন হয়ে পড়ে। বোল্টারের অনুপাত বেশি হলে ফলন কমে যায়। বোলটিং প্রতিরোধী সুগারবিটের ভয়বাইটি আছে যা অন্যান্য ভ্যারাইটির তুলনায় আগাম বপনের জন্য অধিক উপযোগী।

সুইডস (swedes) এবং টারনিপের (turnips)ক্ষেত্রে ঝেলটিং সমস্যার সৃষ্টি করে। মূলের ভাল ফলনের জন্য এদেরকে আগমে বপন করলে চারাগাছ ভারনালাইজেশনের প্রভাব পেতে পারে। অবশ্য বোলটিং-এর জন্য এই শস্যের আর্থিক ফ্রতি অপেক্ষাকৃত কম, কিন্তু এদের ফুলে অর্থিক পরিমাণে আানিমিয়া সৃষ্টিকারী উপাদান (এস–মিথাইল সিস্টিন সালফোক্সাইড) থাকায় গবাদিপশুর স্বাস্থ্যগও ফ্রতি হয়।

কোনে শস্য কোন ভৌগোলিক এলাকার জন্য উপযুক্ত তা নির্ভর করে শস্যের তাপমাত্রার আবশ্যকতা এবং সেই এলাকার আবহাওয়ার উপর। উপযুক্ত এলাকা নির্বাচনের জন্য গোটা মৌসুমবাপী সঞ্চরশীল (accumulated) তাপমাত্রার ব্যবহার অত্যন্ত গুরুত্বপূর্ণ। ১০°সেলসিয়াসের উপরে বায়ুমণ্ডলের প্রাত্যহিক গড় সঞ্চয়শীল তাপমাত্রা উপযুক্ত এলাকা নির্বাচনে সহায়তা করে। ভূট্টার ক্ষেত্রে অবশ্য দানা ও সাইলেজের জন্য) অন্টারিও ইউনিট সিস্টেম (Ontario unit বা সংক্ষেপ্র OC) অধিকতর কার্যকরী এবং এটিই ব্যাপকভাবে ব্যবহার করা হয়েছে: নিমুলিখিতভাবে OU নির্ণয়-করা যায় (Hough, 1978) :

দিনের ক্ষেত্রে, % Y=৩,৩৩ (Tmax-১০)-০,০৮৪ (Tmax-১০)^২ যদি Tmax ≥ ১০°C হয় (যদি Y < ১০°C হয়, ৩বে Y=() এক্ষেত্রে, Tmax হলো দিনের সর্বোচ্চ তাপমাত্রা (°C) ! রাওের ক্ষেত্রে, X=১.৮ (Tmin-8.8) যদি Tmin ≥ 8,8°C হয় |

অন্যক্ষেত্রে X =() !

OU = (Y+X)/2.

উদাহরণ

কোনো দিনে যদি Tmax = ১৬,৭°সেলসিয়াস এবং Tmin = ৭,৮° সেলসিয়াস ২৪, তাংলে

Y	= ৩.৩৩ (১৬.৭–১০)
	= 0,00 (&,9) - 0,068 (88,b)
	$= 25 \circ - 2 \circ = 26 \circ =$
Х	$=$ 2^{p} . (6^{p} - 8^{s} 8)
	$=$ 2.Pr ($\mathfrak{O}(8) \doteq \mathfrak{O}(2)$
OU	= (2b.(4+ %))/\$ = \$8.8+\$= 28.0
	প্রত্যেক দিনের মান যোগ করে সঞ্চয়শীল মনে পাওয়া যয়।

কোনো দেশের বিভিন্ন এলাকায়, যেখানে আবহাওয়ার উপাত্ত পাওয়া যাবে, সম্পৃণ মৌসুশের সঞ্চয়শীল OU নির্ণয় করা যায়। পরীক্ষার ফলাফল থেকে জানা গেছে যে, ভূট্টার একই পরিপক্ষতা (maturity) গ্রুপের ভ্যারাইটিগুলোর সনাক্তযোগ্য বিপরিণতি পর্যায় সুনির্দিষ্ট সংখ্যক OU এর সাথে সামঞ্জস্যপূর্ণ। যেমন LGH ভ্যারাইটির ক্ষেত্রে ফলাফল নিমুরপ:

পর্যায়	OU _S	
বপন থেকে সিন্ধিং পর্যন্ত	2800	1
বপন থেকে শস্যের মেটি শুষ্ক পদার্থের শতকরা ২০ ভাগ পর্যন্ত	2000	i
বপন থেকে শস্যের মোট শুক্ষ পদার্থের শতকরা ৩০ ভাগ পর্যস্ত	2000	
বপন থেকে দানয়ে শতকরা ৪০ ভাগ পানি পর্যন্ত	\$100	

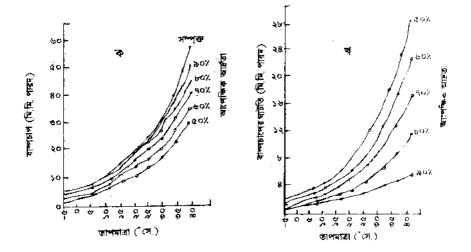
(প্রত্যেক পর্যায়ের জ্বন্য সর্বনিমু মান)

অপর পদ্ধতি হলো বর্ধমান ডিগ্নি দিন (Growing degree day বা সংক্ষেপে GDD) এবং এটি তাপ একক (heat unit), কার্যকর তাপ একক (effective heat unit) এবং বৃদ্ধি একক (growth unit) নামেও পরিচিত। নিমুলিখিতভবে GDD নির্ণয় করা যায় :

 $GDD = \sum_{i=1}^{n} \left(\frac{Tmax + Tmin}{2} - T_b \right)$

এক্ষেত্রে, $rac{\mathrm{Tmax}+\mathrm{Tmin}}{2}$ হলো প্রাত্যহিক গড় তাপমাত্রা এবং T_b হলো কোনে। শস্তের জন্য সর্বনিমু থ্রেশহোল্ড তাপমাত্রা যার পরিসর ৪.৫° থেকে ১২.৫° সেলসিয়াস। খুব সহজেই (ADD) নির্ণয় করা যায় বলে এটি বেশ জনপ্রিয় পদ্ধতি।

্ কতিপয় শস্য তুয়ারপাতে সংবেদনশীল, তাই কোনো নির্দিষ্ট এলাকান্ত তুয়ারপাতের প্রকটত। এবং সেটি কত বার ঘটে তা জনো ধার্কলে এ সমস্ত শস্য তুয়ারপাতের ফ্রতি থেকে রক্ষা প্রেতে পারে। তিনটি অবস্থায় তুয়ারপাতের ক্ষতির সন্তাবনা বেলি থাকে। প্রথমত, সংবেদনশীল শস্য আগাম বপন করলে যখন মৃত্তিকা ভেদ করে এরা বের হয় (emergence) তখন তুয়ারপাতে হলে ফ্রতি হতে পারে। গোল আলুর ক্ষেত্রে এটি ঘটে। Phaseolus বিনের ক্ষেত্রেও এরকম দেখা গেছে। দ্বিতীয়ত. যে সমস্ত শস্যের জীবনকাল দীর্ঘ, তাদের সম্পূর্ণ পরিপক্বতার আগেই শরৎকালের প্রদরম্ভ তুযারপাতে নষ্ট হয়ে। যেতে পারে। এই শ্রেণীর উৎকৃষ্ট উদাহরণ হলো ভুট্টা এবং নাতিশীতোক্ষ অবহাওয়ায় ভুট্টার শস্য সংগ্রহ (harvest) প্রায়ই নভেম্বর পর্যন্ত চলে। যদিও প্রচণ্ড শারদীয় তুষারপাতে ভূট্টা গাছ মরে যায় এবং এর ফলে কোষ ক্ষতিগ্রস্থ হয় ও পাতা থেকে পানি ধেরিয়ে যায় যা এর শুক্ষপদার্থের পরিমাণ বাড়ায় এবং এনসাইলেজের জন্য অধিকতর উপযুক্ত । হয়।


ৃত্তীয়ত, শরৎকালে বোনা শস্য সারা শীতকালে শৈত্য তাপমাত্রা দ্বারা ব্যাপকভাবে ফতিগ্রস্থ ২০৩ পারে। এ কারণে শস্যের মৃত্যু হলে সাধারণভাবে বলে উইন্টার ফিল। শীতকালীন দানশস্যে এটি বেশি দেখা যায় এবং যই–এর ফলন সম্পর্ণ নষ্ট হয়ে যেতে পারে।

হিমান্ধ উপেমাত্রায় উদ্ভিদ কোযের অভ্যস্তরে বরফের স্ফটিক তৈরি হয়। কোষের ঝিল্লী নষ্ট হয় এবং বরফ গলনের (thawing) সময় কলা (tissue) নষ্ট হয়ে যায়। কেবল প্রজ্যতি এবং ভ্যারাইটির উপর এই ক্ষতি নির্ভর করে না, কলার ধয়স এবং বরফ জমার পূর্বে নিমু তাপমাত্রায় কলা কতটা খাপখাইয়ে নিতে পেরেছে তার উপরও নির্ভর করে। তুযারপাতের সময় শস্যের উপর পানি ছিটিয়ে দিয়ে ক্ষতি থেকে রক্ষা পাওয়া যায়। এই পানি যখন বরফে পরিণত হয়, তখন যে পানি গলনের সুপ্ত তাপ (latent heat of fusion) তৈরি হয় তা কলায় বরফ জমাট বাঁধতে বাধা প্রদানের জন্য যথেষ্ট।

বায়ুর আর্দ্রতা (Humidity)

বায়ুর আর্দ্রতা অর্থাৎ বায়ুতে জলীয় বান্সের পরিমাণ বিভিন্নভাবে শস্যের বৃদ্ধি ও ফলনকৈ প্রভাবিত করে। এটি সুনিশ্চিতভাবে জানা গেছে যে, বায়ুর আর্দ্রতা প্রস্কেদনক প্রভাবিত করে। কিন্তু বৃদ্ধির অন্যান্য প্রক্রিয়ার উপর এর প্রভাব সম্পর্কে খুব বেশি জ্ঞান আহরিত হয়নি। এর একটি কারণ হলো শস্য পর্যায়ে বায়ুর আর্দ্রতা সঠিকভাবে নির্ণয় ও নিয়ন্ত্রণ করা খুব কঠিন। প্রস্কেদন এবং বায়ুর আর্দ্রতায় সম্পর্ক বিষয়ে অর্ধ্রিকংশ তথ্য পাওয়া গেছে স্বচ্ছ পাতার প্রকেণ্ঠ বাবহার করে, যাতে পরিবেশীয় সবগুলো উপাদান সঠিকভাবে নিয়ন্ত্রণ এবং মনিটির করা যায়। তথ্য যাটটির অপর একটি কারণ হলো অতীতে শস্যের বৃদ্ধির উপর আর্দ্রতার প্রভাবকে খুব কম গুরুত্ব দেয়া হয়েছে।

ধায়ুর আর্রতা বিভিন্নভাবে পরিমাপ করা যায়। আপেন্দিক আর্দ্রউট (relative humidity ব) RH) এতি সহজেই স্বল্প মূল্যের যন্ত্রপ্রতির সাহায্যে পরিমাপ করা যায়। এ রকম একটি যন্ত্র হলো সিব্ত এবং শুক বান্ধ্ব (wet and dry bub) থামোমিটার। তবে উদ্ভিদ অথবা অন্য কোনে। বস্থু থেকে বান্দীভবনে কেখল আপেন্দিক আর্দ্রতার গুরুত্ব খুব কম। আপেন্দিক আর্দ্রতা হলো এক উপ্র্যোগ্রায় সম্পন্ধ বয়েুৱ তুলনায় বায়ুতে কি পরিমাণ জলীয় বান্দ্য আছে তার পরিমাপ। সম্পন্ধ বস্থু এবং বিশুরু পানির জলীয় বান্দের চাপ (vapour pressure বা VP) একই থাকায় এদের মধ্যে পানির বিনিময় হয় না। বিভিন্ন আপেন্দ্রিক আর্দ্রতায় এবং তাপমাগ্রায় বায়ুতে পানির পরিমাণ। সম্পন্ধ বান্দের বিনিময় হয় না। বিভিন্ন আপেন্দ্রিক আর্দ্রতায় এবং তাপমাগ্রা বায়ুতে পানির পরিমাণ আর্থন যান্দের হিন্দ ৬ নং চিত্রে দেখানো হয়েছে। উল্লেখ্য এবং তাপমাত্রা অথবা আপেন্দিক আর্দ্রতা হাস পেন্দে বান্দ চাপ বাগকভাবে কমে যায়। তবে বান্দীভবনের হার নির্ভর করে বন্দ্প চাপের ঘটিতির (vapour pressure difficit বা VPD) উপর, বান্দ চাপের উপর নয়। তাই পাতার কোযে, কোন্ধাবকাশে (intercellular space) এবং বায়ুমণ্ডলে পার্দির বান্দ চাপের পার্দ্বি আর্ধর বান্দের হার তাতে কেন্দি হবে। তাপমাত্রা বুন্ধি পেলে অথবা একটি নির্দিষ্ট তাপমাত্রায় আপেন্দিক আর্দ্রতা হাস পেন্দে বান্দ চাপ গাটতি ক্লন্ত বেড়ে যায় (চিন্র ৩) দের্ঘ্বর বেরে বান্দ চাপের বার্দ্ধিক আর্দ্র হার বান্দের বান্দ হার দির্দ্বার্দ্র প্রের্দ্ধ প্রের্দ্ধ বান্দের কার্দ্ব হার নির্ভ্রের হার প্রান্দ্র কার্দ্ধের হার বর্দ্ধের হার বার্দ্ধের হার বর্দ্ধের হার ব্যার্দ্ধ বিদ্যুন্দের হার বর্দ্ধের হার বর্দ্ধের হার বর্দ্ধের হার বেন্দের হার্দ্ধ প্রেন্দ্র বর্দ্ধ বন্দ্র হার নির্ধারণ করে। এই পার্থক্য যতো বেন্দি হবে পানি স্থানান্তরের হারও তাতে কেন্দ্রি হার্ট হিন্দ্র পেরে যায় (চিন্দ্র ৩)।

চিত্র ৩,৮ : বিভিন্ন তাপমাত্রায় এবং বিষ্ণিয় আপেফিক আর্দ্রতায় বাগ্ণ চাপে (ক) ভাণা বাগণ চাপের ঘাটতির (খ) মানায়

পানির মতো তাপমাত্রার সাথে ধাষ্প চাপের একই রকম সম্পক আডে কার্ডণ সংপঞ্জ বহুও (শতকরা ১০০ ভাগ আপেন্দিক আর্দ্রতা) বাষ্প চাপ এবং পানির বঙ্গে চাপ এক। এজনা তাপমাত্রা জানা থাকলে, আপেন্দিক আর্দ্রতা থেকে বয়য়ুর বাষ্প চাপের ঘটিতি নির্ণয় করা যয়ে :

VP = RH × SVP, তাহলে VPD = SVP-VP, এক্ষেত্রে SVP ইলো নির্দিষ্ঠ অধ্যমজয সম্পৃক্ত বায়ুর বান্স চাপ যা একই তাপমাত্রার পানির বান্স চাপের সমনে (সার্গাণ ২ ৪০০

পার	फ)।		
তাপমাত্রা (*সেলসিয়াস)	বান্ধ চাগ	তা পমা ত্রা ("সেলসিয়াস)	41 % [51%]
-a	0,2	୦୦	05_b
ο	8.3	00	663
Q.	હ.૯	80	19 5
20 .	6.2	80	12,10
58	25 B	€ ¢	100ja 100ja
<u>২</u> ٥	\ 9.@	60	18.4.8
<u>ج</u> و	২৩,৮	50	25 20

সারণি ৩.৪ : বিভিন্ন তাপমাত্রায় বিশুদ্ধ পানি এবং সম্পৃক্ত বায়ুর বান্স চাপ (মিলামচার

বায়ুর আর্চ্রতা এবং প্রস্বেদন

প্রকৃতপক্ষে, উদ্ভিদ কোষের পানির পরিমাণ নিয়ন্ত্রণের মাধ্যমে জলীয় বাঙ্গ উদ্ভিদের বৃদ্ধিক প্রভাবিত করে। এটি মূলত ঘটে প্রস্বেদনের উপর জলীয় বাঙ্গের সরাসরি প্রভাবের জন্য যা নিচে দেখানো হয়েছে :

এক্ষেত্রে, e পাতা --পাতার কোষাধকাশে প্রকৃত বাব্দ চাপ, e বায়ু-পাতার বাইরে বায়ুর প্রকৃত বাব্দ চাপ, ^দ পাতা--পাতার ব্যাপন রোধক (resistance) এবং ^দ বায়ু --পাতার সন্নিকটে বায়ুর বাউডারি স্তর রোধক। পাতার আস্তঃকোষীয় বায়ু কুঠুরীকে সাধারণও সম্পৃক্ত বলে মনে করা হয় এবং এখানকার বাব্দ চাপ পাতার তাপমাত্রায় সম্পৃক্ত বাব্দ চাপের সমান ধরা হয়। বায়ুর বাব্দ চাপ (e) একই তাপমাত্রায় সম্পৃক্ত বাব্দ চাপের (e_s) সাথে নিমুলিখিতভাবে সম্পর্কযুক্ত :

বয়েুের তাপমাত্রার পরিবর্তনের সাথে সাথে আপেচ্ছিক আর্দ্রতার পরিবর্তন হয়, যদিও বায়ুর প্রকৃত জলীয় ধাব্দের পরিমাণ একই থাকে। তাই প্রস্বেদনের ক্ষেত্রে আপেক্ষিক আর্দ্রতার ধারণা মূল্যহীন। যদি পাত্য এবং বায়ুর তাপমাত্রা একই থাকে, তাহলে বায়ু্র বাব্দা চাপ ঘটিতির মান (ৎ পাতা – ৎ বায়ু)–এর সমান ; প্রস্বেদনের হারের ক্ষেত্রে প্রকৃতপক্ষে এই তথ্যেরই প্রয়োজন।

প্রকৃতির অবস্থায়, সারা দিনে বান্দ চাপের পরিবর্তন খুব একটা বেশি নাও হতে পারে, কিন্তু বায়ুর তাপমাত্রার পরিবর্তন হয়। এন্ধন্য তাপমাত্রার পরিবর্তনের সাথে আপেক্ষিক আর্দ্রতা এবং বান্দ চাপের ঘাটতির পরিবর্তন হয়, যদিও জলীয় বান্দের পরিমাণ একই থাকে। যদি পতোর তাপমাত্রা বেড়ে যায়, তাহলে পাতার অভ্যস্তরে বান্দা চাপের পরিবর্তন হয় (ধারণা করা হয় যে, আধিকাংশ সময় আন্তঃকোযীয় বায়ু কুঠুরী সম্পৃক্ত অবস্থায় থাকে) এবং এর জন্য পাতা থেকে বায়ুতে বান্দ চাপের গ্রেডিয়েন্ট বেড়ে যায়। অপর কথায়, সকাল থেকে বিকেলে প্রম্বেদনের হার বৃদ্ধির কারণ হলো পাতার তাপমাত্রার বৃদ্ধি, আপেক্ষিক অর্দ্রতা হ্রাস কিংবা বায়ুর বান্দ চাপ ঘাটতি বৃদ্ধির কারণ হলো পাতার তাপমাত্রার বৃদ্ধি, আপেক্ষিক অর্দ্রতা হ্রাস কিংবা বায়ুর বান্দ চাপ ঘাটতি বৃদ্ধি নয়।

প্রস্বেদন এবং পাতার বৃদ্ধি

কোষের দীর্ঘীকরণের মাধ্যমে পাতার বৃদ্ধি হয়। আবার কোষের রসস্ফী¹ত চাপের (turgor pressure) জন্য কোযের দীর্ঘীকরণ হয়। কেংযের দীর্ঘীকরণের জন্য একটি সর্বনিমু রসস্ফীতি চাপ থাকে, এবং পাতার বৃদ্ধি কোষের প্রকৃত রসস্ফীতি চাপের উপর নির্ভরশীল। তাই কোযের দীর্ঘীকরণের জন্য একটি সংকটকালীন মাত্রার বেশি রসস্ফীতি চাপ থাকা বাঞ্ছণীয়।

বিভিন্ন উদ্ভিদে এই সংকটকালীন রসম্ফীতি চাপ ভিন্নতর এবং যে অবস্থায় উইল্টিং দেখা যায় তার চেয়ে এই মান জনেক বেশি: কোনো উদ্ভিদ সঞ্জীব দেখালেও এবং আপাতভাবে পানি ঘাটতি না থাকলেও, উদ্ভিদের বৃদ্ধি নাও হতে পারে:

প্রধেদনের জন্য রসম্ফ্রীতি চাপের মান কমে যায়। এমন কি মৃত্তিকার পানির পর্টেনশিয়াল বেশি থাকলেও, পানি পরিশোষণ এবং পাত্তায় পরিবহণের তুলনায় প্রস্কেদনের হার খুব বেশি হলে পাতার রসম্ফ্রীতি চাপ বেশি হয় না বলে পাতার বৃদ্ধি আনুপাতিক হারে কমে যায় (Miller এবং Gardner, 1972)। এজন্য পাতার বৃদ্ধির সাথে বায়ুর বান্স চাপ এবং পাতার পর্টেনশিয়ানের ভাল সম্পর্ক আছে। যেমন একটি পরীক্ষার ফলংফল থেকে জানা গেছে যে,–১০ বার মৃত্তিকার পানির

80

পটেনশিয়ালে, গমের পাতার পানির পটেনশিয়াল ছিলো–১৮ বার শতকরা ৮০ তাল আলোকক আর্দ্রতায় এবং –২৪ বার শতকরা ৫০ ভাগ আপেফিক আর্দ্রতায় (Young এবং De Jong, 1972)। অপর একটি পরীক্ষায় দেখা গেছে যে, মৃত্তিকায় পানির টচ্চ পর্টেনশিয়ালে কেন্ড্র বার, শতকরা ৪৫ ভাগ আপেফিক অর্দ্রতার তুলনায় শতকরা ৫০ তাগ আলোকক আগজয় সুগারবিটের ফলন শতকরা ৫০ ভাগ বেড়ে যায়।

۰.

ী তাই মাঠ পর্যায়ে শস্যের বৃদ্ধি ও ফলনের উপর ব্যয়ুর আদ্রতা একটি গুরু ধপুণ পারবেশীয় প্রভাবক। যখন শস্যের উপর সৌরবিকিরণ বেশি পড়ে এবং বায়ুর তাপামাত্রা বেশি খাবেন ৫০ অবস্থায় বায়ুর জলীয় ব্যন্সের পরিমাণ শস্যের বৃদ্ধিতে ব্যাপক ব্যধার সৃষ্টি করে।

অনেক এলাকার সেচনির্ভর কৃষিতে এরকম উচ্চ সৌরবিকিরণ, ৮০০ তাপমাত্র এব বায়ুর নিমু আর্দ্রতা পরিলক্ষিত হয়। এ অবস্থায় শস্য উৎপাদনের জনা প্রচুর পানির দরকার চাই উৎপাদন খরচও বেশি পড়ে। এ অবস্থায় শস্যক্ষেত্র এবং উন্দুন্ড ভূমি যদি পানাপানি ফরকার চাই তাহলে সমস্যা আরও ব্যাপক হয়। উন্দুক্ত ভূমির উপর দিয়ে বয়ে যাওয়া ডফ ভাবা শৃংক বায়ু অ্যাডভেকশনের (advection)মাধ্যমে শস্যের পাতার তাপমাত্রা বৃদ্ধি করে। এই আঁচারজ হাশ কমানোর জন্য প্রস্কেদনের হারও বেড়ে যায়। যেহেতু এসব এলাকার বায়ুর নিমু জলীয় বান্ধা দানা উৎপাদনের প্রতিবন্ধকতা সৃষ্টি করে, সেহেতু এই এলাকায় আর্দ্রতা ব্যন্ধির জনা প্রযুক্ত উণ্ডবন অত্যন্ত জরুরি।

আর্দ্রতা এবং পত্রর**ন্ত্র**

বায়ুর আর্দ্রতা বাড়লে প্রস্বেদনের হার কমে যায়, কিন্তু পত্রবন্ধের রক্ষ (aperture) নাড় ২১ - শাচলক ৯০ ভাগ আপেক্ষিক আর্দ্রতার তুলনায় শতকরা ২৫ ভাগ আপেক্ষিক আন্ততায়, চুলার গ্রন্থেগনের হার মাত্র দ্বিগুণ হয়। যদিও নিমু আপেক্ষিক আর্দ্রতায় পাতা থেকে বায়ুমণ্ডলে বাঙ্গ চাপের গ্রেডিয়েন্ট প্রায় ছয় গুণ (Hoffman *et al.*, 1971)। এর কারণ হলে। নিমু আপোক্ষিক আরতায় পত্ররন্ধ্বের রন্ধ্ব। ছোট হয়ে যায়। পাতার ব্যাপন রোধক (diffusion resistance) ছিল শতকরা ন ভাগ আপেক্ষিক আর্দ্রতায় ৮ সেকেন্ড প্রতি সেন্টিমিটায়ে এবং শতকরা ৯০ ভাগ আপেক্ষিক আর্দ্রতায় ৫ সেকেন্ড প্রতি সেন্টিমিটারে। আরো অনেক গবেষণার ফলফেল একই রক্য পাওয়ে গেছে।

পত্রবন্ধের রক্ষীকোষের প্রুত প্রস্নেদনের জন্য রস্কের দুও পরিব উন ঘটে, ফলে এপেদনের ২০ কমে যথেয়েয় অন্যান্য কোষে পানি ঘটেতি কম হয়। বায়ুর বাঙ্গীভবনের চাহিনা বৌশ হলে এব পাতায় পানি সরবরাহ কম হলে, পত্রবন্ধের রন্ধ কমিয়ে (এর ফলে পাতার বরণন বোধক বেজে যায়) উদ্ভিদ পানি হাস নিয়ন্ধণ করে। যতোক্ষণ পর্যন্ত পাতায় পাযান্ত পানি সরবরাহ করা যাবে, ততোক্ষণ পাতা থেকে ব্যয়ুমগুলের বাষ্প চাপের গ্রেডিয়েন্ট প্রস্কেদন অনুসরণ করবে।

তবে পাতার পানির পটেনশিয়াল উচ্চ রাখ্যর জন্য পত্ররিশ্বের রন্ধ কামংগ্রাগে সালেকেসংশ্রেষণের জন্য প্রয়োজ্জনীয় কার্বন ডাই–অক্সাইড প্রাতায় প্রবেংশ বিধু ঘটবে ফংগ্র সালোকসংশ্রেষণের হার কমে যাবে। তাই নিমু আপেক্ষিক আদতায় শংসের ফলন হুসের মন্ট্রম কারণ প্রাতার পানি ঘাটতি নয়, কম কার্বন ডাই–অক্সাইড গ্রহণ।

আৰ্দ্ৰতা এবং লবণাক্ততা

সেচের পানিতে অতিরিক্ত লবণ থাকনে উদ্ভিদে দ্রুও পানি ঘাটাত কেয়া কেয়া নুলের চারণাংশ লবণাক্ততা বাড়ার সাথে সাথে উদ্ভিদ ক্রেয় অসমোটিক পটেনশিয়লে সমধ্যসাধন adjustments করে: অসমেটিক পটনানিয়াল বাড়ার একটি প্রভাব হলো হাইড্রোলক পরিবাহক তা (hydraulic conductivity) কমে যাওয়া অর্থাৎ মূলে পানি প্রবেশ্যতা কমে যাওয়া এর অর্থ হলো অসমেটিকাটল সম্বয়সাধনকারী উদ্ভিদে পানি ঘাটতি ঘটে, কারণ যে হারে পাতায় পানি সরবরাহ হয়, তার চেয়ে বেশি প্রস্নেদন হয়। কম আর্দ্রতার তুলনায় যেসব এলাকায় বায়ুর আর্দ্রতা বেশি, স্বেখনকার উদ্ভিদ অধিক লবগুক্ত প্রমির সেচ সহ্য করতে পারে।

উচ্চ আর্দ্রতার প্রভাব

বায়ুর আনতা খুব বেগন খলে উদ্ভিদের কতকগুলো শারীরবৃত্তীয় প্রক্রিয়ার উপর ফতিকারক প্রভাব পড়েন এরকর্ম একটি হলো তাপজনিত ক্ষতি। আদ্রতা বড়োর সাথে সাথে প্রস্বেদন কমতে থাকে, এক্ষেয়ে উদ্বিদ হেকে তাপেশক্তি স্বানাস্তরের পদ্ধতি হলো পরিবহণ (conduction) এবং পরিচলন (convection)

পা হার উপর দিয়ে বায়ু চলাচলের উপর পরিবহণজনিত, তাপ স্থানান্তরের কার্যকারিত। নিউরশীল : যদি শস্যের ডপর দিয়ে প্রবাহিত বায়ুর আদ্রতা বেশি 'কস্তু গতিবেগ খুবই মছর হয়, হাহনে পাহার তাপজনিত ক্ষতির সন্তাবনা বেশি হয়।

উচ্চ মন্দ্রতার আরেকটি ক্রতিকারক প্রভাব বায়ুদূযণের সাথে সম্পর্কযুক্ত। যেহেতু উচ্চ আন্দ্রতায় পত্রবন্ধের রশ্ধ খুব বেশি বড় থাকে, সেহেতু উদ্ভিদে বায়ুদূষণজ্জনিত ক্ষতি বেশি হয়। যেসব এলকায় বায়ুতে ক্রতিকারক মাদ্রায় বায়ুদূষণকারী পদার্থ আর্ফ, সেসব এলাকায় সামান্য পর্ণনায়ণ্টার প্রভাব মন্দলভনক।

^{উচে} আর্শ্রতায় প্রাধেনন কম হওয়ায় উদ্ভিদে পানির মাস প্রবাহ ও কম হয় এবং এর জন্য পাতায় মৌল উপাদানের সরবরাহ হ্রাস পায়। একটি পরীক্ষার ফলাফল থেকে জানা গেছে যে, বিশেষ করে কালেসিয়ামের সরবরাহ হ্রাস পায় এবং কতকগুলো ফলজাতীয় উদ্ভিদের, যেমন টামটে এবং আপেলে কালসিয়াম ঘাটাঁতর জন্য ফলে শারীরবৃত্তীয় গোলযোগ দেখা যায়।

ক গকগুলো উদ্ভিদে ইরমেন, যেমন জিবারেলিন এবং সাইটোকার্হানন মূলে সংশ্লেষিত হয় এবং মাস প্রবাহের মাধ্যমে এগুলো পাতায় পৌছায়। তাই উচ্চ আর্দ্রতায় মাস প্রবাহ কম হওয়ায় পাতায় এসকল হরমেনের সর্বারহে কমে যায়। উচ্চ আর্দ্রতায় জন্মানো উদ্ভিদের কাণ্ডে অস্থানিক মূল ২০৪৭ এবং অধ্যতাবিক পূল্টায় বৃদ্ধি নির্দেশ করে যে, এ সকল উদ্ভিদে হরমেনের অসমতা হয়, যা ২০৪ মন থেকে পাতায় মলল পরিমণে হরমোন স্থানাস্থরের জন্য।

নায়ুপ্রবাহ (Wind)

উন্তিদের ওপর ব্যযুগ্রবাহের প্রভাব বিভিন্ন রকমের। এটি উন্তিদ ও ব্যযুমণ্ডলের মধ্যে বিনিময় প্রতিয়াকে প্রত্যাবিত করে, এবং তাপশস্তি, কাবন ডাই-অক্সাইড এবং প্রামির ভারসামকে প্রতাবিত করে। সম্পণ ডাঙল কিংবা ডাঙিদের কিছু অংশ ভেঙে যায় এবং ভূমিক্ষয়কে ত্বরান্বিত করে। প্রবল বাতাস দীর্ঘকাল স্থায়ী হলে উদ্ভিদের বাহিকে গঠন এবং অন্তর্গঠনের পরিবর্তন হয়, মরুজ বৈদিষ্টা দেখা যায়, পাতার পুরুত্ব বেড়ে যায়, পরিবহণ কলাগুচ্ছের পরিমাণ বেড়ে যায়, প্ররান্ধের সংখ্যা ও আকারে পরিবর্তন হয় এবং মূলাঃ বিটির অনুপাত বেড়ে যায়।

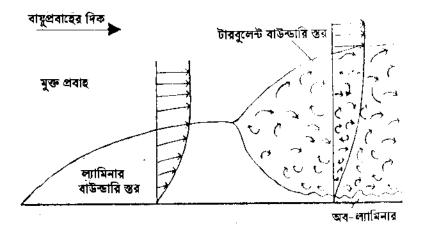
মুক্ত বয়ুমণ্ডলে বয়ুপ্রবাহ এবং ভূপুষ্ঠ থেকে ১০ মিটার পর্যন্ত উপরে পৃষ্ঠ বায়ুপ্রবাহের পার্থকা করা প্রয়োজনা প্রথমটি প্রধানত প্রভাৱিত হয় বয়ের চাপের বিস্তার দ্বারা, অপরপক্ষে, পৃষ্ঠ বায়ুপ্রবাহ প্রভাৱিত হয় করেকে কিলোমিটার বিস্তাত নায়ডল্বেল দ্বারা শঙ্গনকেতের অভ্যস্তরে গাঁহটোর বোগ্রায় আদের জনা বায়ুপ্রবাহ ব্যধ্যগ্রস্থ হয় এবং ভূপুপ্তের সন্দ্রিকটে বায়ুপ্রব্যাহের গতি শ্যনার কাজে চলে আদে

দি 50%ট স্কেন্স (Beaufort scale)থেকে ভূপুষ্ঠে শায়ুগ্রব্যহের মধ্যের একটি ধারণা পাওয়া। যায় সেবনি ২

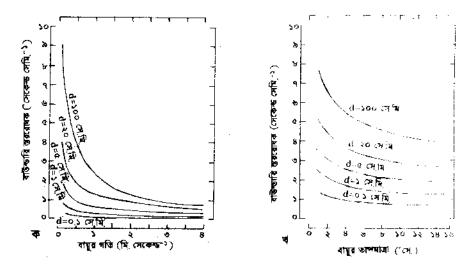
সারণি ৩.৫ : বিউফোর্ট স্কেল

ৰিউ-	বর্ণনা	থেলা সমত	ল মাঠের ১০ মি	টার উপরে বায়ুর ৭	আঁত	্দ্ধায়নে বিদশ্য হলে ভারেছে:
रकार्टे राज्या		1				। বস্তৃন প ^{ৰ্য} সাম মাজৰ জন
সংখ্যা		নটস (knots)	মিটার/ সেকেড	কিলেমিটিরে/খন্ট	মাইক) হাই	· · · · · ·
(5)	⊥ (₹)	(৩)	(8)	(e)	<u></u> (%)	· · · · · · · · · · · · · · · · · · ·
0	<u>শান্থ (calm)</u>	(<u>s)</u>	. <u>(0)</u> 0-0,2	(e) 		
2	⊪৩(cann) হাকা বায়্ (Light air)	2-0	0_0,√ 0_∿-\$,⊄	2-0	<2 <2	পোয়াম্য ডাম্বরে ওপরে ৫৫৮ রোয়ের গঠিত বায়ুত্রবেংছেল জিক নিশ্বয়ালরে, বায়ুমান যন্ত্র সপরালিত হয় মান
2	ঈষং মৃদুমন্দ বায়ু (Light breeze)	8-5	2,9~9,6	<i>₽-</i> 77	8-1	મુજય લોગ ને છુલ્લાફ પ્રમુહક શ્રેષ્ટ, ભારત પ્રમાણ માત્ર કરા, સાયાજન, રાયુપ્રધા, શાહન, મહ્લ્લ્લા કરા, (
*	(Gentle breeze)	9~ 5 0	o,8-≪,8	?>->9	P-70	পাত্য এবং , এটা , ডেট ভালপালার ছতিয়ে সঞ্চলন ২য় হার , পত্রজা উভতে হাকে।
8	মধ্যম মৃদুমন্দ ৰায়ু (Moderate breeze)	??-?A	C.C-9.S	<i>></i> 0− <i>></i> ₽	2 ≪2b	ধুলোধালি ও ছেন্ন কলজপত উদ্ধতি আকে। এবং হোন হেটি চালপালাৰ সক্ষালন হয়
C	(Fresh breeze)	21-52	5, <i>0</i> −30,२	29-9P.	22-28	যোগ ৬৯.৫ স্বাহপার আলোলত হয় ৭৮ জনাবার মূল তরকে সৃষ্ট হয়।
৬	(Strong breeze)	३ २ ३५	70'A 70'A-	⊍ ৯ -3à	20-13	বার বার চালপালগর সম্বালন ২৫. টেলিপ্রাফের তারে শন শন শবদ হয়, চার্টো লিপ্রার ২৪.চেখ্র চাস্রিধ্য চয়।
9	মাঝামাঝি রকমের ঝড়ের কাছকাছি (Near gale)	২৮ ৩৩	१ २,२ १ ९,७-	₫0-\$}	80-86	≫ম্পূর্ণ গাঁছি হ্যালেয়লার হয়. ব'এটোর বিকদে ১টি চাবুব কল্প হয়:
4	ম্যঝামাঝি ৫কমের গড় (Gale)	එ8~ 80	2012-2018	99-J8	93) 95-	1997年194日 - 1943年 - 1973年 NBL - 2月31日 1997年4月18日
2	রকমের ঝড় (Strong gale)	85-84	२० _. ५– २८.८	ዛሬ -	\$%+@÷	খর-বাড়ির 'কঁডু বিযু জাত হয়-
20	ৰড় (Storm)	87-66	ઽઽ.૯– ઽ⊮_8	b ‰−\$6 >	<i>११</i> ७८	স্থলাখার্গে কদ্যাচয় ঘটে। গাঙলালা উপ্পত্ত মন্ত্র।
77	(Violent storm)	৫৬-৬৩	२४.৫- ७२.७	200-221	98-42	হল চালে কদার্চিৎ সচেঁ, থরবাছির ঘটত হয়।
25	হারিকেন (Hurricane)	>58	>્યર્ચ્ય) ૧ ૭	খুব কলাচিত ঘটে, জনমান্দ্র খববাড়ি এবং গাছপালার বলপক শ্বহিস্থন্য হয়।

মনানন ফুইডের মতো বায়ুর প্রবাহ দু'রকমের হতে পারে (১) লাগমিনার (laminer) ২ংল প্রবাহের নাইনগুলো সমান্তরাল এবং সুবিন্যস্ত থাকে। অপরদিকে, (১) টারবুলেন্ট (turbulent) হল প্রবাহের লাইনগুলো বিশ্বুখন এবং প্রতিটি লাইনের প্রধাহের দিক গড় প্রবাহ থেকে পৃথক হয় মসুণ এবং সমতল পৃষ্ঠদেশ বরাবর লাগমিনার এবং টারবুলেন্ট প্রবাহের অবস্থান্তর প্রাণ্ঠ (transition) পরিলক্ষিত হয়। ঘর্ষণজনিত কারণে পৃষ্ঠদেশ বরাবর বায়ুপ্রবাহের গতি হাস পারা। পৃষ্ঠদেশ বরাবর লায়মিনার এবং প্রার্বের বায়ুপ্রবাহের গতি হাস পারা। পৃষ্ঠদেশ বরাবর বায়ুপ্রবাহের গতিবেণের প্রোফাইল থাকে এবং পৃষ্ঠদেশে গতিবেগ শূন্য। হাসকও গতিবেগ অঞ্চলকে বলা হয় বাউন্ডারি স্তর। পাত্র এবং পারিপান্থিক বায়ুর মধ্যে গাস এবং তাপশক্তির বাপেনে এই স্তরের প্রকৃত্ব বেশি হয়, এবং বাপেনের জন্য কার্যন গ্রহু মধ্যে গাস এবং তাপশক্তির বাপেনে এই স্তরের প্রকৃত্ব বেশি হয়, এবং বাপেনের জন্য কার্যন গ্রহু মধ্যে গাস এবং গরিপান্থির বাপেনে এই স্তরের প্রকৃত্ব বেশি হয়, এবং বাপেনের জন্য কার্যন গ্রহ, মধ্যে গাস এবং গ্রহু হাস পদ্ধ আটক্রম করতে হয়। অপরপক্ষে, বায়ুপ্রধ্যের বেগ বেশি হবে বাইডোরি স্তরে প্রকৃত্ব হাস পায়, ব্যাপনের পৃষ্ঠ কয়ে যায়, ফলে ব্যাপনের হার বেগে দেয়। পৃষ্ঠদেশের নিন্দ্রে বায়ুপ্রবাহ টারবুলেন্ট হলে ব্যাপনের হার আরও বেড়ে যায়। ব্যাপনের উপর স্বাসরি প্রভাব ছাড়াও, বায়ুপ্রবাহ টারবুলেন্ট হলে ব্যাপনের হার আরও বেড় যায়। ব্যাপনের লারীরবৃত্তকে প্রভাধি গ্রহ করে এবং এদের বিসবণ নিয়ন্তণ করে।


পাতার বাউন্ডারি স্তর

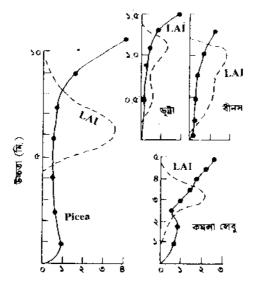
বাউন্ডারি প্ররের ভিতর দিয়ে ধ্যাপনের মাধ্যমে উদ্ভিদের পাতা এবং ধায়ুমগুলের মধ্যে ওপে এবং ভরের (mass) বিনিময় হয়। যখন বহুমান বায়ুতে এটি ঘটে তখন তাকে কৃত্রিম পরিচলন (forced convection) এবং প্রায় শাস্ত গায়ুতে ঘটলে প্রাকৃত্রিক পরিচলন (natural convection) বলে -শেষোক্ত ক্ষেত্রে পত্রপৃষ্ঠ উফ্ব অথবা শীতল ইওয়ার ফলে বায়ু চলাচল করে এবং পারিস্ণণ্রক ব্যয়ুর ধনছের পরিবর্তন ঘটে। এই পরিবর্তনেব জন্য উফ্ব ধায়ু উপরে ওঠে এবং শীওল বায়ু নিচে নেমে আসে।


কৃত্রিম পরিচলনে, একটি মসৃণ সমগুল প্রেটের চারদিকে প্রায়েই লামিনরে ধ্যস্তারা স্তর ৫১৫ করে এবং এক্ষেত্রে প্রবাহের লাইনগুলো পরম্পরের সাথে সমান্তেরাল। এই লাইন বরাবর গ্যাস এবং তাপশক্তি স্থানাস্তরের কৌশল হলে। আগবিক ব্যাপন। এই মসৃণ প্রধাহ স্তেছে বিশৃষ্যল চলন হওয়রে প্রবণতাকে Reynolds সংখ্যা (Re) স্নারা প্রকাশ করা যায়:

এখানে u হলো বায়ুপ্রবাহের বেগ, । হলো পৃষ্ঠনেশ বরাবর ফ্রুইও যে দেয়া অতিক্রম করেডে এবং v হলো ফ্রুইডের কাইনেমেটিক ভিসকোসিটি (kinematic viscosity) – আধিকাংশ ক্ষেও পাতার উপর (Reynolds সংখ্যা ০-১০^৪, অপরপক্ষে মসৃণ ব্যযুপ্রবাহকে বিশৃংখন প্রবাহ কবতে সাধারণাড এই মান ১০^৫

তবে প্রকৃতিতে অধিকাংশ সময়ই পাতার উপর দিয়ে টারবুলেন্ট বয়ুপ্রবাহ হয় এবং কদ্যাচং পাতা মসল এবং সমতল পাতার গঠন, যেমন সুস্পষ্ট শিবা এবং যাজ কন্টা কিয়ারা বায়ুপ্রবাহের বাঁধার সৃষ্টি করে এবং খুব কম Reynolds সংখ্যায় টারবুলেন্স হয়। এমন কি টারবুলেন্ট ব'টন্ডারি সত্ত্বেও, পৃষ্ঠদেশের উপরেই একটি অঞ্চল (এক মিলিমিটারের কম পুরু। দেখা যায় এবং এখানে পৃষ্ঠদেশের সাথে বায়ুর লেগে থাকরে প্রবণতা টারবুলেন্সকে বাঁগোগস্ত করে। এই অঞ্চলকে ভিসকাস সাবলেয়ার (viscous sublayer) বা লামিন্যর সাবলেয়ার বলে

চিত্র ৩.৯ : একটি মসৃণ সমতল প্লেটের উপর দিয়ে বায়ুপ্রবাহ এবং লাটামনার থেকে চারনুলেন্ট প্রবাহের স্থানান্তর।


চিত্র ৩,১০: বিভিন্ন আকৃতির (আ =০,১-১০৫ সেন্টিমিটার) পংভার জলীয় বান্দ ঞ্জায়ের জন বাউন্ডারি স্তর রোধক্। (ক) বায়ুর গ্রুতিবেগ্যের সাথে কৃত্রেম পরিচলন রোধক হব (খ) পাত্রা ও বায়ুমণ্ডলের তাপমাত্রার পার্থক্যের সাথে প্রচকৃতিক প্রানচলনের রোধক।

2----6

ধাউন্ডারি গুরের গড় পুরুত্ব পাডার আকারের সাথে সম্পর্কযুক্ত। ছোট পাতার বাউন্ডারি গুর হ^{ক্টো} (thin) যার ধাউন্ডারি স্তরের রোধকও কম এবং এদের তাপমাত্রা কখনোই পারিপার্দ্র তাপমাত্রা থেকে খুব বেশি হয় না। বড় পাতার বাউন্ডারি স্তর পুরু এবং সেই সাথে বাউন্ডারি স্তরের রোধক বেশি এবং পারিপার্দ্ধের তুলনায় এই পাতার তাপমাত্রার পার্থক্য বেশি। বায়ুর বেগ বেশি হলে বাউন্ডারি স্তর হান্ধা এবং কম হলে বাউন্ডারি স্তর পুরু হয় এবং রোধকের মাত্রা কম কিংবা বেশি হয়। সুতরাং ধাউন্ডারি স্তর রোধকের প্রধান নিয়ামক পাতার আকার এবং বায়ুর বেগ এবং টারবুলেন্দকে প্রভাবিত করার মাধ্যমে পাতার আকৃতির গৌণ প্রভাব আছে। ৩,২০ নং চিত্রে বিভিন্ন আকৃতির গৌণ প্রভাব আছে। ৩,২০ নং চিত্রে বিভিন্ন আকৃতির পাতার জলীয় বান্দ ফ্লাঞ্বের জন্য বাউন্ডারি স্তর রোধকে লেখনো হয়েছে।

ক্যানোপির অভ্যন্তরে বায়ুপ্রবাহ

শস্যের বৃদ্ধির হারের মডেল তৈরির জন্য উদ্ভিদ ক্যানোপির বিভিন্ন প্রোফাইলের বায়ুর বেগ জানা দরকার এবং বিভিন্ন প্রোফাইলের সালোকসংশ্লেষণের হার নির্ণয়ের জন্য এই তথ্য ব্যবহার করা হয়। একক পাতা ও বায়ুমণ্ডলের মধ্যে বিনিময় প্রক্রিয়ার ফলাফল সমগ্র শস্যের ফেব্রে ব্যবহারে করা হয়। একক পাতা ও বায়ুমণ্ডলের মধ্যে বিনিময় প্রক্রিয়ার ফলাফল সমগ্র শস্যের ফেব্রে ব্যবহারে জন্য এই তথ্যের প্রয়োজন। যদিও উদ্ভিদ ক্যানোপির অভ্যন্তরে বায়ুর গড় বেগ নির্ণয় এবং সাধারণ আশ্রয় ফালির প্রভাব দেখানো অপেক্ষাকৃত সহন্ড, তথাপিও এই ফলাফলের ব্যাথ্যা সুস্পষ্ট নয়। এর সহজ কারণ হলো মাঠ পর্যায়ে দ্রুও পরিবর্তনশীল অবস্থায় বায়ুর বেগ, যা কেবল সময়ের সাথে পরিবর্তনশীল নয়, শস্যের কাণ্ড ও পাতার অসমান বিন্যাসের জন্য স্থানিক (place)পরিবর্তন হয়, পরিমাপ করা খুব কঠিন। এ অসুবিধা সত্ত্বেও অনেক শস্যের ক্যানোপির প্রোফাইলে গড় বায়ুর বেগ হ্রাস নির্ণয় করা হিয়েছে। সব শস্যের পত্র ফেব্রফল সূচক (LAI) বাড়ার সাথে সাথে বায়ুর বেগ হ্রাস পায় এবং ক্যানোপির নিমাংশে প্রায় শৃন্য হয় (চিত্র ৩,১১)।

LAI এবং ৰায়ুর গতি (মি.সেকেন্ড[>])

চিত্র ৩,১১ : পত্র ফেব্রফল সূচকের _{(LAD}(......) সাপে শসেরে অভাস্তরে বায়ুর বেগের (৫) প্রোফাইল।

বায়ুপ্রবাহের প্রভাব

প্রচণ্ড বায়ুপ্রবাহ দ্বারা বাহিত বালিকণা, তুযারকণা প্রভৃতি পাতা, কাণ্ড ও সুকুলে সম্পর্ভাগন্ধ ফতিসাধন করে। প্রবল বেগে প্রবাহিত ঝড়ে উদ্ভিদের ডালপালা ভেঙে গান্ত এবং শায়া প্রশাস্থ প্র গস্তু হলে সম্পূর্ণ উদ্ভিদটি মুলোৎপাটিত হতে পারে। প্রবল বায়ুতে বাদশেসা উদ্ভিদ হেন্দ্র পায় এবং মৃষ্টিকায় শায়িত হয়, একে লজিং (lodging)বলে। বায়ুর সাথে বৃষ্টিপাত বোন হলে গান্দ্র হুরান্বিত হয়। কৃষিজ এবং বনজ উভয় শস্যের ফেগ্রেই লজিং ফাউকারক, চবে আলে বান্দ্র শস্য, যেমন ঘাস পুনরায় আংশিক ভাবে দাঁড়ায় এবং বৃদ্ধি চালিয়ে যেতে পারে। কিন্তু বনাজ শন্দে কেব্রে এটি হয় না এবং পতিত বৃক্ষকে অপরিণত অবস্থায় কণ্ট করে সারিয়ে ফেল্লার্ড হয়। বিউফোর্ট স্কেল অনুযায়ী যখন ১০ মিটার উচ্চতায় ধায়ুর গড় বেগ প্রাত সেলেন্ড হলে শান্দেরে হে বিউফোর্ট স্কেল অনুযায়ী যখন ১০ মিটার উচ্চতায় ধায়ুর গড় বেগ প্রাত সেলেন্ড হল নাম্যালে ত্বিকো পালন করে এবং উদ্ভিদ প্রজননের মাধ্যমে ভারোইটি বাডাইয়ের সময় এটি বাবহু রাজ হয়। শস্যের উপর ccc(2-chioroethyl trimethyl annionium chlorde) ছিটিয়ে দিলে নাজ নিয়ন্ত্রণ করা যায়। এটি কাণ্ডের পর্বমধ্যের (internode) বৃদ্ধি কানিয়ে দেয় এবং নায় কে প্রভি রন্দা ও কোয় প্রটিরের পুরুত্ব বৃদ্ধি করে। শস্যের মূলান্ত্র স্বলান্থ স্বজ স্বলি হলেও বালি প্রায় কেয় প্রায়ীয়ে প্রক্ল বৃদ্ধি করে। শস্যের মূলান্ত স্বলান্ত প্রেলি প্রায় বায়ে দেয় এবং কাণ্ডের নান্দ বির্দ্ধ প্রায় বিধান বেরে মুল্যম্ব গায় হয়ে কেলের সিংজ বেরে স্কেয় বেরার্য হোলে দেয় দেয় যার্ঘ্য হয়ের সময় রাচি বার্য হা দিরে বন্দ হয়ের প্রায় বের্দ্র বৃদ্ধি করে। শস্যের মূলমন্ত স্বলা হালেও লজিং কম হয়।

দীর্ঘটিন প্রবল বাতাস প্রবাহিত হলে শস্যের কাণ্ডের দৈদ্য হাস পায় এবং পরোঞ্চভাবে পাটের ক্যানোপির গঠনের পরিবর্তনের মাধ্যমে সালোকসংশ্লেষণ কম কার্যকর হয়। উপরস্ক, ব্যয়প্রবহু কাণ্ডের বন্ধ্র হওয়ার সামর্থ্য বৃদ্ধি করে যা পরবর্তীতে ঝড়ের হাত থেকে উদ্ভিদণে রখন করে।

প্রচণ্ড বায়ুতে উদ্ভিদের পাতা ও ডালপালা ভেঙে নষ্ট ২য়। তবে নিমু বায়ুগ্রবাধের লক্ষর না সামান্য হলেও, দীর্ঘসময় এটি স্থায়ী হলে উদ্ভিদের বৃদ্ধির জন্য ক্ষাতকর। শস্যের চলার লব প্রবাহিত বায়ু প্রম্বেদনের মাধ্যমে শস্য থেকে জলীয় বান্দ নিগত হওয়ার হারকে জ্বরাদ্য ০ করে ফ শুক্ষ এলাকায় পানি ঘাটতিকে ত্বরান্বিত করে। এরপর পত্ররন্ধ্র বন্ধ হয়ে যায় এবং সম্যাদ লদাসের বিনিময় হ্রাস পাওয়ায় শস্যের সালোকসংশ্লেষণ এবং বৃদ্ধির হার কমে যায়। পংতার নীর্গ্রাকেরেরে বায়ুপ্রবাহের ভূমিকা আছে এবং এর জন্য সালোকসংশ্লেষণের হার আরও কমে যায়।

শাস্যের ফলমের উপর বায়ুপ্রবাহের প্রভাব নিশ্ব করা খুব কটিন, কিন্তু উদেনেও এব বায়ুপ্রবাহ রোধক (wind break) শস্যের মধ্যে তুলনা করে ফলন হাসের মাত্রার বারণা এলেও যায়। দানাশস্যের ক্ষেত্রে আশ্রয় ফালি (shelter belt) ব্যবহার করে শতকরা ১০ চাল সেওঁ ভগে ফলন বেশি পাওয়া যায়। সুগারবিট, গোল আলু এবং সম্রাবনের ক্ষেত্রে এই মন্দ প্রদানন শতকরা ১ থেকে ২৩, ১১ থেকে ৫০ এবং ৪ থেকে ২২ ভাগ (Grace, 1977)। কয়ুল্ব হেন বিল ল পরিবর্তন এবং আশ্রয় ফালি থেকে দূরত্বের প্রভাবের জন্য কোনো স্বান্দিষ্ট মান প্রাণ্ড ন তবে এটি সুনিন্দিতভাবে জানা গেছে যে, আশ্রয় ফালি ব্যবহার করে জিমুক এলাকায় শসের ফলন বৃদ্ধি করা যায়।

দীর্গস্থায়ী বায়ুপ্রবাহের প্রভাবে উদ্ভিদের বহি:অঙ্গসংস্থানিক এবং অস্ত অঙ্গসংস্থ নিশ দানিশ্বেস হয় : পাতার সংখ্যা কমে যায়, পাতা কুঁচকিয়ে যায় এবং পাতার সম্প্রসানেও সন্দেন ২৪ নি বায়ুপ্রবাহ বৃদ্ধির সাথে সাথে প্রতি একক ক্ষেত্রফল পাতায় পত্রবঞ্জের সংখ্যা বৃদ্ধি পেয়। পারবংশ কল্যাগুদ্ধ ক্ষুদ্ধাকার ২য় এবং সংখ্যা হ্রাস পায়। পাতা এবং কিউটিকলের পুরাত লেজে শত্র কর্ব বিটপ ঃ মূল অনুপাত বেড়ে যায়।

শুক্ষ মৌসুমে প্রবল বায়ুতে মৃত্তিকার উপরিভাগ ক্ষয়প্রাও ২য়ন চলকার জনাকান হারা বৃগটের মৃত্তিকার এবং অধিক পরিমাণে জৈব পদার্থযুক্ত মৃত্তিকার ক্ষয় এবং বীজাও চারালাজের কাত ব্যাশ ২য়। এসব এলাকায় মৃত্তিকা ও শস্যকে ক্ষতির হাত থেকে রক্ষা করার জন্য উপযুক্ত ব্যবস্থা নেয়ার দূরকার হয়। বীজ বপনের পর চারাগাছের প্রতিষ্ঠার লক্ষ্যে মৃত্তিকার পৃষ্ঠ সুস্থির করার জন্য নান। প্রকার রাসায়নিক পদার্থ ব্যবহার করা হয়। প্রাথমিক পর্যায়ে চারাগাছ রক্ষার জন্য দুটি সারির মধ্যবতী স্থানে দ্রুত বর্ধনশীল শস্য জন্মানো যায়। প্রধান শস্যের প্রতিষ্ঠার পর এই শস্য সরিয়ে ফেলা হয়। দুই সারির মধ্যবতীস্থানে খড়-বিচালী ছিটিয়ে দিলেও একই উদ্দেশ্য সাধন হয়।

আশ্রম ফালি (Shelter belt)

উমুক্ত এলাকায় প্রবল বায়্প্রবাহ থেকে শস্যকে রক্ষা করার জন্য প্রধান বায়ুপ্রবাহের সমকোণে রোগিত (সাধরেণত ১৫ থেকে ৬০ মিটার প্রশস্ত ও প্রয়োজন অনুযায়ী দীর্ঘ) এক ফালি শাখা-প্রশাখাযুক্ত বৃক্ষকে বায়ুপ্রবাহ রোধক (wind break) বলে। আর যে এক ফালি ভূযণ্ডের উপর বায়ুপ্রবাহ রোধকল্পে বৃক্ষ রোপণ করা হয়, সেই ভূযণ্ডকে আশ্রয় ফালি বলে। শস্য এবং গবালিপশুকে প্রবল ব্যতাস থেকে রক্ষা করার জন্য আশ্রয় ফালির ব্যবহার প্রায়িত্তহাসিক কাল থেকেই চলে আসছে। ব্রক্ষের প্রাকৃতিক ফালি অথবা কাঠের পাটাতনের কৃত্তিম পর্দা কিংখা প্রাণ্টিউকের জাল প্রবল বাতাসে থেকে রক্ষা করারে জন্য আশ্রয় ফালির ব্যবহার প্রায়িতিহাসিক কাল থেকেই চলে আসছে। ব্রক্ষের প্রাকৃতিক ফালি অথবা কাঠের পাটাতনের কৃত্তিম পর্দা কিংখা প্রাণ্টিকের জাল প্রবল বাতাসকে প্রশমিত করতে পারে এবং এর জন্য শস্যের বৃদ্ধি ও ফলনের যথেষ্ট উন্নতি হয়, বিশেষ করে যেসব এলাকায় পানি ঘাটতি দেখা যায়। শস্যের উপর সরাসরি প্রভাব ছাড়াও, শীতকালে আশ্রয় ফালি বরফ সংগ্রহ করে মৃত্তিকায় পানির বিস্তারকে উন্নত করে, বরফ–গলা পানি অধিকতর সমরূপে ধন্টন হয়।

আশ্রয় ফালি বা বায়ুরোধকের ভিতর দিয়ে যদি বাতাস আংশিক প্রবেশ করতে পারে, তাংলে অধিকতর কার্যকর হয়। তাই কঠিন আশ্রয় ফালির (যেমন– দেয়াল) তুলনায় বৃক্ষের আশয় ফালি অধিকওর কার্যকর।

বায়ুরোধকের জন্য ম্যাক্রোক্লাইমেটের কিছু পরিবর্তন হয়। উত্তর–দক্ষিণমুখী আশ্রয় ফালিতে সৌরবিকিরণ সামান্য প্রভাবিত হয়, কারণ সকালে অথবা বিকেনে যে ছায়া হয়, আশয় ফালি থেকে অধিকতর প্রতিফলনের জন্য তা আংশিক পূরণ হয়। ওবে পূর্ব-পশ্চিমমুখী আশায় ফালি উত্তর দিকে (উত্তর গোলার্ধে) প্রাত্তহিক নিট সৌরবিকিরণ শোষণ হাস করে, এই প্রভাব নিউর করে আশ্রয় ফালির উগ্ততা এবং সৌর উচ্চতার উপর (এটি আবার নির্ভর করে অক্ষাংশে এবং বছরের সময়ের উপর)।

আশ্রহ ফালির পেডনে টারবুলেন্ট স্থানান্তরের হার অনেকাংশে কমে যায়। আপতিত সৌরশক্তি অতি সহজে দুরীভূত হয় না বলে দিনের বেলায় বায়ুর তাপমাত্রা বৃদ্ধি পায়। উপযুক্ত শক্তি সমতা সমীকরণের জটিলতার কারণে বায়ুর আর্দ্রতা এবং ক্যানোপির বান্সীভবনের উপর আশ্রয় ফালির প্রভাব সাধারণভাবে জানা কঠিন। তবে এটি সাধারণত দেখা যায় যে, অংশহ ফালির পেডনে ক্যান্যোপি রাউজারি প্তর রোধক বৃদ্ধি পাওয়ায় জলীয় বান্সোর দুরীকরণের হার কমে যায়, এজন্য জলীয় বান্সের পরিমাণ বেড়ে যায় এবং শস্যের প্রস্কেদন কমে যায়। এই হাসকৃত গ্রন্থেদনের জন্য সাধারণত পাতার পানির পটেন্সনিয়াল বেড়ে যায়। রাতে অবশ্য তাপমাত্রার উপর আশ্রয় ফালির প্রভাব বিপরীত।

ছায়াপ্রদান ছাড়াও আলয় ফালির উদ্ভিদ প্রচুর পরিমাণে পানি ও ফৌল উপাদন পরিশোষণ করে বলে ফাঁতকারক এ কারণে নাইট্রোজেন সংবদ্ধনকরী প্রজ্যাতিকে আশয় ফালিতে ব্যবহার করা টচিঁহা আরেকটি সমস্য হলেং আশ্রয় ফলি, পাখি ও ফাতিকারক পোকামাকড় এবং রেগের আশ্রয়ন্তল ২০০ পারে: ডা সত্তেও আশয় ফালির জন্য অবশ্য শসেরে ফলন বৃদ্ধি পায়। Grade (1977) জনক এলাকায় এবং বিভিন্ন উদ্ভিদ প্রজ্যাতি নিয়ে ৯০টিরও বেশি পরীক্ষণ প্রালাচন

*sbr

বায়বীয় পরিবেশ

করেছেন। এসকল পরীক্ষণে আশ্রয় ফালির জন্য ফলনের গড় বৃদ্ধি ।ছল শতকরা ২০ ভাগ এব এক-চতুর্থাংশের কম ক্ষেত্রে শতকরা ১০ ভাগের কম ফলন পাওয়া গেছে। সাধারণত আধু তাপমত্রা অথবা কম বান্সীভবনের জন্য পাতার পানির পরিমাণ বৃদ্ধির্জান ১ কারণে ফলনের উগ্রাত হয়। পত্রবন্ধীয় পরিবাহকতা বেশি হয় এবং সালোকসংশ্লেখণের হার বৃদ্ধি পায়। আশ্রা আরেড আরেকটি উপকারী প্রভাব হলো বায়ুজনিত ক্ষয় থেকে মৃত্তিকার্কে রক্ষা করা.

বৃষ্টিপাত (Rainfall)

পরিমিত পানি সরবরাহের উপর শস্যের স্বাভাবিক বৃদ্ধি ও ফলন ও চাফ তাবে নিতরশীলা এই পরিমিত পানির প্রাপ্যতা বিভিন্ন এলাকায় এবং বিভিন্ন খাতৃতে মস্য বগুনে তাপমাগ্রায় মতেই অধিক প্রভাব বিস্তার করে থাকে। শস্যের বর্ধনশীল প্যায়ে এনের সাজীব ওচনের শতকরা জ থেকে ৯৫ ভাগ পানি থ্যকে। পূর্ণতাপ্রাপ্তির সময় দলশেস্য সায়ন্ত্রণত অধিকাংশ পানি হারান এক তা কমে শতকরা ৫ থেকে ৩০ ভাগে দাঁড়ায়। উপরস্তু, প্রস্কেদনের মান্ডামে উদ্বিদ থেকে অন্ধর পানি বের হয়ে যায় যা মূলতন্ত্র মৃত্তিকা থেকে পরিশোষণ করে প্রগণ করে। পুণ সুয়ালোবে এক হেক্টায় উদ্ভিদ্যাজি (vegetation) গ্রীধ্যকালে দিনে প্রায় ২৫ চন পানি ৩০৬ করে। এর জনা দশ দিন পার পর ২৫ মিলিমিটার পানি সেচের প্রয়োজন দ

বেঁচে থাকার জন্যই উদ্ভিদে অব্যাহত পানি চলাচল প্রশ্রাজন আর্থেদন চান মুডিকা থেকে পরিশোষিত খনিজ মৌল পরিবহণ করে বিটপের প্রয়োজন্টীয় স্তানে গৌডাতে সংস্থতা করে প্রান প্রব্যাহের মাধ্যমে পাতায় উৎপাদিত খাদ্য উদ্ভিদের বর্ধনশীল এবং সঞ্চচী অঙ্গে পরিবর্ণের কর

অ–কাষ্ঠল (non-woody) উদ্ভিদে পানি যান্ত্রিক সামধ্য হোগায়। পানি শোষণের ২০০০কারের রসম্ফীতির (turgidity) বেড়ে যায় এবং এটি উদ্ভিদে দৃঢ়াতা প্রকান করে। এবে কেনে গেরে অতিরিক্ত পানি বেরিয়ে গেলে কোষ রসম্ফীতির হারয়ে এবং ছাঁছদটি মিটয়ে পড়ে। সঁঘ সময় ববে পানি ঘাটতি হলে, স্বায়ীভাবে মিইয়ে পড়ার জন্য উদ্ভিদের মৃত্যু ৪০০

পানির অভাবে শস্য উদ্ভিদের নানা প্রকার শারীরণ জীয় প্রতিন্যা সভা দেয়। কে শের বৃধি, কোয় প্রাচীর ও প্রোটিন সংশ্লেষণ পানি স্বল্পতায় খুব সংবেদনশলৈ এবং অগুলো ব্যাপক চালে প্রভাবিত হয়। পানি ঘাটতির জন্য পত্রবন্ধ বন্ধ হয় এবং কারেন ভাহ অক্সাইডের বিনিমধেন হার হাস করে, তাই সালোকসংশ্লেষণও হাস পায়। পানি স্বল্পতায় জাবসিংসিক এসিড ইরনোনের মান বেড়ে যায় এবং এর জন্য পত্রবন্ধ বন্ধ হয় এবং পাতা থেকে আরো পোনি ইংগকে কারকার সর্ব নিয়ন্ত্রণ করে। পানি স্বল্পতার জন্য শ্বসনের হার বেড়ে যায় এবং উদ্ভিদে এজিক পরিনাদে মেন্দ্র জন্য হয়।

উপরোজ্ঞ শারীরবৃত্তীয় প্রক্রিয় প্রভাৱিত হওয়ত্ব প্রদান ধরণ চার জন্য শসের ফলন করি যায়। তাই, স্বাভাবিক শস্য উৎপাদনে প্রয়েজনের সময় প্রয়ন্ত্র পানি সরবরাহ একার নর্বার্কার শস্যের বৃদ্ধির সধ পর্যায়ে পানির দরকরে হয় না। কয়েকটি সংকচকালনি পর্যায় অহে হলন প্রদা ঘটেতি হলে ফ্রতি বেশি হয়। শস্যের প্রতিষ্ঠা (establishment) হলে এফা একটি প্রথম এক রসপ্তের শেষে অথবা গ্রীষ্ফকালে সন্তোয়ন্তনক অঙ্কুরোস্চারের হল বীক্ষতলাই পরেন সেন্দে প্রয়োজন। অক্ষন্ত বৃদ্ধি পর্যায়ে পাতা ও করেরের বৃদ্ধির জন্য প্রায় দর্যকের গেলে আল্ বির্বার রসন্তের শেষে অথবা গ্রীষ্ফকালে সন্তোয়ন্তনক অঙ্কুরোস্চার্মের হল বীক্ষতলাই পরেন সেন্দে প্রয়োজন। অক্ষন্ত বৃদ্ধি পর্যায়ে পাতা ও করেরের বৃদ্ধির জন্য প্রায় দরকেরে। জাল আল্ শি সাবজন রেচে থাকা ও বৃদ্ধির জন্য প্রায়ি দরকার। একই হারে মহারে দান্পার্থ নেতের) শ্রাস্তা হাল বাদ্ধন জন্য প্রদির প্রয়োজন আছে।

নানাশস্য ও অন্যান্য বীজন উৎপাদনকারী শস্যে পর্যনর জন্য অর্জণ এরও একটি সাক্ষরণার্থন পর্যান্য আছে ৩৬ হলো পুষ্ণায়নের সময়। পথাপ্র পরিমাণে সর্বাধ বৃষ্ণাপুরুহরি রাজনিকার্জন প্রান প্রয়োজন, এবং এ সময় পানির স্বল্পত্ত হলে বীজের সংখ্যা কম হয়। নিযেকের পরে যাতে ক্র্টাকার এবং কুঁচকানো বীজের উদ্ভব না হয়, সেজনা বীজের বর্ধনের সময় পর্যাংগু পানি দরকার। সে সমগু শগ্যা রস্যলো ফল এবং অপক্ব বীজের জন্য জন্মানো হয় (যেমন–লতানো মটর), তাদের প্রাভর্বিক বৃদ্ধির জন্য পুন্পায়নের পর পান্দি সরবরাই দরকার।

কেনেং এলাকায় বাংসরিক বৃষ্টিপাতের উপত্তে থেকে পানি সেচ সম্পর্কে ধারণা পাওয়া যায়। প্রকৃতপক্ষে, কোনো এলাকায় নেউ বৃষ্টিপাতের তুলনায় সারা বছরে এর বিস্তার বেশ্বি গুরুত্বপূর্ণ। কোনো শসের সংকটকালে যদি বৃষ্টিপাতে না হয়, তবে সেচের বাবস্থা করতে হয়। শস্য ও মৃত্তিকা থেকে পানি ত্যাগের পরিমান নির্ভর করে সৌরবিকিরণ, তাপমাত্রা এবং বায়ুপ্রবাহের উপর এবং দ্রুত বর্ধনশীল শসেরে গ্রীক্ষরলে পানি ঘটেতির পরিমাণ স্কুব বেশি। কোনো স্থানের উপরে এবং দ্রুত বর্ধনশীল শসেরে গ্রীক্ষরলে পানি ঘটেতির পরিমাণ স্কুব বেশি। কোনো স্থানের পটেনশিয়াল বন্দ্রীয় প্রস্তেদন (potential evapotranspiration) এবং বৃষ্টিপাতের পরিমাণ জানা থাকলে, সেচের পরিমাণ নির্ণয় করা যায়। আবহাওয়া সম্বন্ধীয় উপাত্ত থেকে মৃত্তিকার পানি ঘাটতির পরিমাণ জানা যায় এবং সেন্দেরে সেচের পানির পরিমাণ আরও সঠিকভাবে নির্ণয় করা যায়। পানি সারবরাহ পর্যাপ্ত হলে, উষ্ণ্ড কিন্তু মেঘ্যাড্রা অবস্থায় বর্ধনশীল শস্য প্রতিদিন ২ থেকে ৩ মিলিমিটার পানি ত্যাণ করে। গ্রীক্ষের রৌদ্রাজ্বল দিনে পানি ত্যাগের পরিমাণ ৩ থেকে ৬ মিলিমিটার হতে পারে। এ স্যন্ধ মৃত্তিকায় লন্ড্য পানিকে ধরে রাখ্যার ক্ষমতাও গুরুত্বপূর্ণ। বিভিন্ন বুনটের মৃত্তিকার পানি ধারণ্ডমন্ডা বিভিন্ন।

বৃষ্টিপতের উপত্তে, বংল্পীয় প্রস্নেদনের মংধ্যমে পানি তাগে এবং শস্যের আচ্ছাদনের পরিমাণ মৃঞ্জিকায় পানি ঘাটতি নির্ণয়ে সহায়তা করে। শস্যের পানি সেচের পরিমাণ নির্ধারণে এই পানি ঘাটতির মান ব্যবহৃত হয়।

ুবেশি দিন ধরে মাঠে পানি জমে থাকলে শস্যের ঋতি হয়। বৃষ্টিপাত বেশি হলে জলাবদ্ধতার সৃষ্টি হয়। এটা বিশেষ করে ঘটে ভেজা এলাকায় ভারী বুনটের কর্দম ইত্তিকায় এবং যেখানে মৃত্তিকার পান্দির টেবিল অনেকথানি উপরে। এখানে পানি নিষ্কাশন করে শস্যের বৃদ্ধি উয়তি করা যায়।

শস্যের উপর পানির অন্যান্য প্রভাবও আছে। বৃষ্টিপাত বেশি হলে বায়ুর আর্দ্রতার পরিবর্তন হয় এবং উচ্চ আর্দ্রতায় কতকগুলো উদ্ভিদ রোগের মাত্রা বেড়ে যায়। একটি সুন্দর উদাহরণ হলো গেলে আলুর নার্বি ধ্বসা রোগ। উচ্চ আর্দ্রতা ও উচ্চ তাপমত্রায় এ রোগের প্রাদুর্ভাব বৃদ্ধি পায়। সরিযার ডাউনি মিলিডিউ রোগ আর্দ্রতা বেশি হলে বেশি হয়। উভয়ক্ষেত্রেই অর্দ্রতা রেণুর অঙ্গুরেগ্দগমের উপযুক্ত পরিবেশ সৃষ্টি করে। ব্যাকটেরিয়ান্দ্রনিত রোগও ভেজা আবহাওয়ায় বৃদ্ধি পায়।

শিশির

রতে তাপ বিকিরণ করে তৃপৃষ্ট শীতল থলে এর সংস্পার্শে বায়ু শীতল হয়। থেহেতু শীতল ধায়ু বেশি জলীয় বান্দ পারণ করতে পারে না, সেহেতু অতিরিক্ত বান্দ ফনীভূত থয়ে বৃক্ষের পাতা, যাসপালা প্রায়ুতির উপর শিশিররূপে জমা হয়। শীতকালে ভূপষ্ঠ অধিকতর শীতল হয় বলে এসময় শিশির বেশি পরিমাণে দেখা যায়। শীতকালে মৃত্তিকায় পানির অভার প্রকটভাবে দেখা যায়। শীতকালে মৃত্তিকায় প্রদির অভবে প্রকটভাবে দেখা দেওয়ায়। এই শিশিরপাত মৃত্তিকায় কিছু পরিমাণ পানি সরবরাহ করে থাকে। এছাড়ো যে সমস্ত শাসেরে জন্য অধিক শৈত্য দরকার। সে সময়ত শস্যের জন্য শিশিরপাত খুব প্রয়োজনা কোনো ধোনো শসেরে প্রাগায়নে শিশির সাহায্য করে

তুষারপাত

শীতপ্রধান দেশে প্রবল ঠাণ্ডায় দরুণ শিশির বিন্দু জমাট বেঁধে কঠিন হয়। এই জমাটবাঁধা শিশির বিন্দুকে তুখার বলে। এটা শস্যের জন খুবই ফতিকর। শীতপ্রধান দেশে অংশ (তুযালপাত সহা করতে পারে শস্যের এমন জাত উদ্ভাবিত হয়েছে। তুযারপাত-প্রতিরোধী জাতের একটি বৈশিষ্ঠ্য হল্যে এদের অঞ্চলেযীয় বরফ তৈরি বাধাণ্ডস্থ হয়, যদিও কোযের বাইরের বরফের জন্য ভৌত ফতির পরিমাণও গুরুগ্বপূর্ণ। দ্রবণীয় দ্রব্যের (চিনি, জৈব এসিড, অ্যামাইনো এসিড) জন্য এদের ফেযিগংবরের এবং সাইটোপ্লাজমের পানি হিমান্ধ কিন্দু হ্রাস পায়। তাই, এমন কি হাডেনিং (hardening)-এর পূর্বে অধিকাংশ নাতিশীতোফ্ব অঞ্চলের উদ্ভিদকে শূন্য তিগ্রির নিচে শীতল (-১° থেকে –৫" সেলসিয়াস) করলেও এতে বরফ তৈরি হয় নাণ লবণান্ড উদ্ভিদের হিমান্ধ বিন্দু ব্রাসের মাত্রা–১৪° সেলসিয়াস পর্যন্ত হতে পারে (Burke *et al.*, 1976)। তুযারপাত-সহাকারী জাতের অ্যাপোপ্লাস্টে এচুর পরিমাণে বরফ জম্য থাকলেও এদের কোয় প্রাচীয় এবং কোয়ন্দ্বিরি কোনো ফর্তি হয় না।

কুয়াশা

কর্থনো কখনো জলীয় বান্স ঠাণ্ডায় ঘনীভূত হয়ে ভূপণ্ঠের নিরুটবতী রায়ুস্তরে ভাসমান ধুলিকণাকে আশ্রয় করে ধোঁয়ার আকারে ভাসতে থ্যকে। একে কুজুঝটিকা বলে। এই জলীয় বান্স যথন বেশি মাত্রায় ঘণীভূত হয়ে মুখ্র ফুদ্র পানি কণার আকারে পৃথিবী পৃষ্ঠের উপর ভাসতে থাকে, তথন তাঁকে বলা হয় কুয়াশা। শাস্ত মেঘমুক্ত রাতে কুজুঝটিকা ও কুয়াশা বেশি পরিমাণে দেখা যায়।

বায়ুর গ্যাসীয় পদার্থ

বায়বীয় পরিবেশের গ্যাসীয় উপাদানের খুব বেশি পরিবর্তন হয় নাং শ্বসনের জন্য অস্ত্রিজেন প্রয়োজন, কিন্তু বায়বীয় পরিবেশে সাধ্যরণত এর ঘাটতি হয় না। কিন্তু জলাবদ্ধতা হলে মৃত্তিকায় অক্সিজেনের ঘাটতি হয় এবং মূলের বৃদ্ধি ব্যাপকভাবে ব্যাহত হয়। জলবদ্ধতা দীর্ঘস্থায়ী হলে মূল মরে যায় এবং এক্ষেত্রে পানি নিম্ফাশন একান্ত প্রয়োজন। অব্যত শ্বসনে সৃষ্ট বিষ্যস্ত পলার্থ (অ্যাসিটালডিহাইড, ইথানল এবং ল্যাকটিক আ্যাসিড) এবং প্রচুর পরিমাণে ইথিলিন তৈরি হয়ে মূলের ক্ষতি করে। একটি পরীক্ষার ফলাফলে দেখা গেছে যে, ইথিলিনের মাত্রা ৫.১ থেকে ১০ পি পি এম বাড়ার সাথে সাথে মবের মূলের দীর্ঘকরণ হাস পায়।

মাঠ পর্যায়ে সালোকসংশ্লেষণের জন্য কদাচিৎ কার্বন ডাই-অঞ্চাইড সীমিত ২য় এবং সাধারণত শস্যের ক্যানোপিতে পর্যাপ্ত বায়ুপ্রবাহের জন্য সাময়িক কার্বন ডাই-অক্সাইডের ঘাটতি হলেও তা পূরণ হয়ে যায়। এতদসত্বেও গবেষণার ফলাফল থেকে জানা গেছে যে, গম গাছ ৩৫০ এবং ১,০০০ পি পি এম কার্বন ডাই-অক্সাইডে এবং মৃত্তিকায় পর্যাগ্ত পানি অথবং পানি ঘাটতি ঘবস্থায় জন্মিয়ে দেখা গেছে যে, উচ্চ মাত্রার কার্বন ডাই-অক্সাইউ পানি ঘাটতি সম্পূর্ণরূপে পূরণ করে (Sionit et al., 1980) । অর্থাৎ মৃত্তিকায় পানি ঘাটতি সম্পূর্ণরূপে পূরণ করে (Sionit et al., 1980) । অর্থাৎ মৃত্তিকায় পানির ঘাটতি হলে কার্বন ডাই-অক্সাইডের মাত্রা বৃদ্ধি করে শস্যের ফলনের উন্নতি সন্তব। Ford এবং Thorne (1967) -এর পরীফার ফলাফল থেকে জানা যায় যে, ৩০০ পি পি এম-এর তুলনায় ১,০০০ পি পি এম-এ C₃ এবং C₄ উত্য প্রকার উদ্ভিদেই সালোকসংশ্লেষণের হার বেড়ে যায় এবং উচ্চ এবং নিমু অগলেকে এই বৃদ্ধির শতকরা হার প্রায় একই রকম। উচ্চ মাত্রার কার্থন ডাই-অক্সাইডে উদ্ভিদের অঙ্গজ বৃদ্ধি, পুম্পায়ন, বীজ ও ফলের বৃদ্ধি, এগেসমিনেটের গণ্ডন, অর্বুদ (nodule) তৈরি এবং সিম্বায়োটিক নাইট্রোজের সংবন্ধন প্রভাবিত ২য়- বৃধিত নিট সালোকসংশ্লেষণে জন্য বেশি পরিমাণে কার্বোহাইড্রেট তৈরি ২ওয়ায় এই পরিতন থটে।

উন্ড মাত্রার কার্যন ডাই–অক্সাইডে পত্রবন্ধ আংশিক বন্ধ হয়ে যাওয়ায়, কিন্তু বেশি পরিমাণে কার্থন ডাই–অক্সাইড প্রস্তির জন্য সালোকসংল্লেখণের হার বেশি থাকায় ব্যয়ুনুষণ থেকে উদ্ভিদ রক্ষা পায় বেশি মাত্রায় কার্বন ডাই–অক্সাইডে জন্মানো আলফালফা উদ্ভিদের নাইট্রোজেন ডাই–অক্সাইড এবং সালফার ডাই–অক্সাইডজনিত ফতি কম হয়। বায়ুমণ্ডলে কার্বন ডাই–অক্সাইড বৃদ্ধি পাওয়ায় 'টান্ডিদের কিছু সুবিধা হয়েডে সত্য, কিন্তু পৃথিবীর তাপমাত্রা বৃদ্ধিজনিত কারণে নানা সমস্যারও সৃষ্টি হচ্ছে।

গ্যাসীয় বায়ুদূষক

বাহুমগুলে শব্দেরে জন্য ফতিকরেক দুষণকারী গ্যাডের মধ্যে স্নালফার ডাই-অক্সাইড (SO₂), নাইট্টে'জেনের এক্সাইডস (NO_x), ওজেনে (O₃) এবং ফ্রোরাইড (F) প্রধান। এদের মধ্যে সালফার ডাই- অক্সাইড, ওজেন এবং ফ্রোরাইড শস্যের ক্ষতি করার মতো যথেষ্ট মাত্রায় থাকে। অপরপক্ষে, নাইট্রোজেনের অক্সাইড সাধারণত ফতিকারক মাত্রায় থাকে না, কিস্তু এটি ওজোন তৈরির অগ্রবর্তী পানার্থ হিসেবে কান্ধ করে এবং এর উপস্থিতিতে শস্য সালফার ডাই-অক্সাইড অধিকতর সংবেদনশীল হয়। বিভিন্ন শস্য উদ্ভিদের মধ্যে শুধু যে, বিভিন্ন দূযণকারী গ্যাসে সংবেদনশীলতায় ডিন্নতা দেখা যায় তাই নয়, পরিবেশীয় উপাদান, যেমন- আলোর প্রথরতা, বায়ুপ্রবাহের গতি এবং সংবেদনশীলতার ভিন্নতা দেখা যায়। ডাই উদ্ভিদ প্রজননের কলাকৌশল প্রয়োগ করে অথকরী শস্যের বায়ুদূযণ প্রতিরোধী জাতের উদ্ভাধন হয়তো ভবিষ্যতে সন্তব হবে।

বায়ুমণ্ডলে বায়ুদূষণকারী গ্যাসের উৎস বিভিন্ন। যেমন– সালফারঘটিত জীবাণা জ্বলেনির দহনে সালফার ডাই–অপ্সাইড এবং মেটর ইঞ্জিনে পেট্রোলিয়ামজাত পদার্থের দহনের উপজাত বস্থু হিসেবে নাইট্রোজেন্দের অক্সাইড তৈরি হয়। এই বিক্রিয়ার প্রাথমিক বস্থু নাইট্রোজের মনোক্সাইড (NO) যা বায়ুমণ্ডলে ধীরে ধীরে জারিত হয়ে নাইট্রোজেন মনোক্সাইড ছাড়াও, কার্যন ডাই–অক্সাইড, কার্বন মনোব্লাইড, সালফার ডাই–অক্সাইড এবং ইথিলিন তৈরি হয়। বায়ুমণ্ডলে নাইট্রোজেন জাই– অক্সাইড বিভিন্ন জ্বলোকরাসায়নিক বিক্রিয়ার মাধ্যমে ওজোন এবং পারঅন্সিত্র্যান্সিটাইলে নাইট্রোজেন জাই– অক্সাইড বিভিন্ন জ্বলোকরাসায়নিক বিক্রিয়ার মাধ্যমে ওজোন এবং পারঅন্ত্রিত্র্যাস্টোটিলেন নাইট্রোজেন জাই– আরাইড বিভিন্ন জ্বলোকরাসায়নিক বিক্রিয়ার মাধ্যমে ওজোন এবং পারঅন্ত্রিত্র্যাস্টাটাইল নাইট্রোজেন জাই– এরাইড বিভিন্ন জ্বলোকরাসায়নিক বিক্রিয়ার মাধ্যমে ওজোন এবং পারঅন্ত্রিত্র্যাস্টোটিলে নাইট্রেজিন এ (PAN) পরিণত হয়। উষ্ণ এবং সূর্যালোকিত এলাকায়ে এই বিক্রিয়া দ্রুত ঘটে। তবে বর্তমানে জানা গেণ্ডে যে, যুব্জরাজ্যের মতো অপেক্ষাকৃত ঠাণ্ডা দেশেও গ্রীক্ষকালে মেথ্যমুক্ত আকাশ থাকলে শস্যের জন্য ফ্রে ডিকারক মাণ্রায় ওজোন তৈরি হয়। রাস্যোনিক শিল্প–কারখানা থেকেও বায়ান্ধ্রান্সার গাঁয়ে তৈরি হয়।

বিভিন্ন এলাকার ধায়ুমণ্ডলে দূষণকারী গ্যাসের মাত্রার ভিন্নতা দেখা যায়। আধরে বিভিন্ন শস্য প্রজাতির সংবেদনশীলতারও ভিন্নতা হয়। ত্রাই এলাকা ভিত্তিতে অথবা অর্থনৈতিক ভিত্তিতে শস্যের উপর বায়ুদূযণকারী গ্যাসের প্রভাব নিরুপণ বেশ কঠিন। সাধারণভাবে স্থানীয় মাত্রা নির্ভর করে দূষণকারী গ্যাস নির্গমণের উপর (অর্থাৎ শিল্পায়নের উপর) এবং কত সময় সেই এলাকার বাডসে তা থকেছে তার উপর। ভেজা অথবা শুব্দ পতনের জন্য অথবা অন্যান্য গ্যাসের সাথে বিক্রিয়ার জন্য বায়ুদূষণের মাত্রা কমে যায়। গড়ে ১০ থেকে ৩০ পিপিবি (parts per billion) সালফার ডাই অক্সাইও এবং ৫০ থেকে ১০০পিলিবি নাইট্রোজেনের অক্সাইড বায়ুমণ্ডলে থাকে।

N. Q

শস্যের বৃদ্ধির বিভিন্ন পর্যায়ে এবং বিভিন্ন ঋতুতে দুষণকারী গ্যাসের প্রভাবের ভিন্নতা হয়। যেমন যুক্তরাজ্যে ১৯৭০ সাল থেকে পরিচালিত পরীক্ষায় দেখা যায় যে, খাসের সালফার ডাই– অক্সাইডজনিত ক্ষতির পরিমাণ শীতকালে বেশি হয়। শীতকালে যে সালফার ডাই–অব্যাইডের মাত্রা বেড়ে যায়, তা নয়, প্রতিকূল পরিবেশের জন্য (নিমু তাপমাত্রা এবং ত্যালোর কম প্রখরতা) ঘাসের বৃদ্ধিও ব্যাহত হয়।

পাতা এবং দৃষিত বায়ুর মধ্যে গ্যাস বিনিময়

দূষিত পরিবেশে জন্দানো শস্যের সমস্যা হলো, যেম্বর বৈশিষ্ট্য কার্বন ডাই এক্সাইড আন্তীকরণ বৃদ্ধি করে তা আবার পাতার মেসোফিল কলায় অন্যান্য গ্যাসের প্রবেশেও সহায়তা করে। অনেক শস্য প্রজাতি রাতের তুলনায় দিনে সালফার ডাই–অক্সাইডে ধেশি সংবেদনশীল, কারণ দিনে পত্রবন্ধ্র খোলা থাকে। শান্ত বায়ুতে অথবা বায়ুপ্রবাহের গতি খুব কম হলে ব্যউডারি স্তর রোধক গুরুত্বপূর্ণ ভূমিকা পালন করে। বায়ুপ্রবাহের গতি বৃদ্ধি পেলে এই রোধক হাস পায়, এফেওে দূযণকারী গ্যাস গ্রহণে পত্রবন্ধ প্রধান ভূমিকা পালন করে, কারণ কিউটিকলের ভিতর দিয়ে গ্যাসের বিনিময় বাধাপ্রাপ্ত হয়। সালফার ডাই–অক্সাইডের প্রতাবে পত্রবন্ধ ফুলে যায়, এফে রি প্রারম্ব বাধাপ্রাপ্ত হয়। সালফার ডাই–অক্সাইডের প্রভাবে পত্রবন্ধ ফুলে যায়, এফন কি মৃণ্ডিকায় পানি ঘাটতি হলেও সালফার ডাই–অক্সাইডের প্রভাবে পত্রবন্ধ ফুলে যায়, এফন কি মৃণ্ডিকায় পানি ঘাটতি হলেও সালফার ডাই–অক্সাইডের প্রভাবে পত্রবন্ধ খুলে যায়। ফলে সালফার ডাই– অক্সাইড গ্রহণ এবং জলীয় বান্ধ ত্যগের পরিমাণ বেড়ে যায়। গুজোনের প্রভাবেও পত্রবন্ধ বন্ধ হয়। কিউটিকলের ভিতর দিয়ে হাইড্রোজেন ফ্লোরাইড অপেক্ষাকত দ্রুত প্রবেশ করতে পারে। আনেক বায়ুদূষ্ণকারী গ্যাসের প্রভাবে কিউটিকল নষ্ট হয়ে যায়।

পাতার কোষে গ্যাসীয় দূষণকারী বস্তুর চলাচলে জটিলতার সৃষ্টি হয়, যখন মেসোফল অথব এপিডারমাল অ্যাপোপ্লাস্টে (apopiast) পানিতে দ্রবীভূত হয়ে এসব বস্তুর রাসায়নিক পরিবর্তন ঘটে। যেমন সালফার ডাই-অক্সাইড পানিতে দ্রবীভূত হয়ে হাইড্রেটের সালফার ডাই-অক্সাইড (SO₂, H₂O) হয় যা বিশ্লিষ্ট হয়ে HSO₃ এবং SO₃²--আয়নে পরিণত হয়। কোযের অভ্যন্তরে সালফার ডাইঅক্সাইডের প্রবেশ মন্থর গতিতে হয়; কোয-প্রাচীর ঝণাত্বক আধানবিশিষ্ট হওয়ায় কেবল অ-আধানবিশিষ্ট (uncharged)হাইড্রেটেড সালফার ডাই-অক্সাইড কোযে প্রবেশ করতে পারে। এটি সাইটোপ্লাজমে বিশ্লিষ্ট হয়ে শস্যের জন্য ক্ষতিকারক বস্তু SO₃²- এ পরিণত হয়, যা আবার জারিত হয়ে এম ক্ষতিকারক বস্তু সালফোট পরিণত হয়। একইভাবে, নাইট্রোজন ডাই-অক্সাইড দ্রবীভূত হয়ে একই অনুপাতে নাইট্রেটেড এবং নাইট্রাইট আয়ন হয়। যদিও নাইট্রাইট শস্যের জন্য ক্ষতিকারক, তবে নাইট্রাইট রিডাকটেজ এনজাইমের প্রভাবে এটা আমেশনিয়ান্থ পরিণত হয়ে পাতার নাইট্রোজেন বিপাকে অংশগ্রহণ করে। নাইট্রোজেন মন্যেজ্বার্টড পানিতে অপেক্ষাকৃত কম দ্রবীভূত হয় এবং এর রপান্থেরে বিভিন্ন ধাপ সম্পর্কে জ্ঞান থুব সীমিত।

শস্য উদ্ভিদের উপর বায়ুদৃষণের প্রভাব

বায়ুদূযণকারী বস্তু কোষে প্রবেশের পর এদের প্রাথমিক প্রভাব আণবিক পর্যান্ত্র অথন। আল্ট্রাম্ট্রাকচারাল পর্যায়ে হয়। তবে ওজোন প্রধানত কোয–ঝিল্লীর উপর ফ্রিয়া করে, এঞ্জনা কি প্রমিশণ ওজোন সাইটোপ্লাজমে প্রবেশ করে তা এখনো নিশ্চিত নয়। শস্য উদ্ভিদের উপর বায়ুদূযণকারী গ্যাসীয় পদার্থের প্রধান প্রভাব নিমুরূপ :

(ক) পত্ররন্ধ : পূর্বেই উল্লেখ করা হয়েছে যে, সালফার ডাহ–অক্সাইড, নাইট্রেজেনের অক্সাইডস এবং ওজোনের পত্রবন্ধের খোলার ব্যাপারে দ্রুত এবং স্থায়ী প্রভাব আছে। সন্তবত এটি থটে সার্বাসিডিয়ারি এবং অন্যান্য এপিডারমাল কোষের ক্ষতির কারণে। তাই সালফার ডাই– অন্ধ্রইড উদ্ভিদের বিপাকে সরাসরি বিঘ্ন সৃষ্টি না করেও পরোক্ষভাবে পানি ঘাটতি সৃষ্টি করে পাতার কলাকে ক্ষতিগ্রস্থ করে।

(খ) ক্লোরোপ্লাস্ট : নিমু মাত্রার সালফার ডাই–অক্সাইড, নাইট্রোজেনের অক্সাইড এবং ওজোন পাতায় প্রয়োগ করে দেখা গেছে যে, দৃশ্যত লেজিন তৈরি না হলেও, ক্রোরোপ্লাস্টের থাইলাকয়েড মেমরেন–তন্ত্র ভেঙে যায়। ওজোনের প্রভাবে কোষ ঝিল্লী ভেঙে যায় এবং এটি সরাসরি সম্পক্ত লিপিড অণুর দ্বৈত বন্ধনীর সঙ্গে ক্রিয়া করে।

্গ) কার্বন ডাই-অক্সাইড আত্তীকরণ : সালফার ডাই–অক্সাইডের প্রভাবে কার্বন ডাই– এক্সাইড আত্তীকরণ হার কমে যায়। রাইবুলোজ–ডাইফসফেট কার্বোঅক্সিলেজ এনজাইমের ক্রিয়ার ব্যাঘাত, সালফাহাইড্রাল গ্রুপের নিষ্ক্রিয়তা ঘটানো এবং কোষের pH এর পরিবর্তনের জন্য এটি ঘটে। অপরপক্ষে, নাইট্রাইট ক্লোরোপ্লাস্টের রেডক্স সিস্টেম (redox system) বাঁধা প্রদান করে।

(খ) সালোকসংশ্লেষণ এবং বায়োমাস উৎপাদন : মেহেতু দূযণকারী গ্যাসের প্রভাবে পত্ররন্ধের শারীরতত্ব, ক্লোরোপ্লাস্টের গঠন, কার্বন ডাই-অক্সাইড আস্তীকরণ বিক্রিয়া এবং সালোকসংশ্লেষণীয় ইলেকটন পরিবহণ তন্ত্রের পরিবর্তন ঘটে, সেহেতু এটি সহজবোধ্য যে, অপেঞ্চকেত নিমুমাত্রার দূষণকারী গ্যাসের প্রভাবেও সালোকসংশ্লেষণের হার কমে যেতে পারে। কোনো এলাকার শস্য অনেক দিন ধরে নিমুমাত্রার দূষণকারী গ্যাসের মধ্যে থাকলে দৃশ্যত কোনো লক্ষণ দেখা না গেলেও বায়োমাস এবং সেই সাথে ফলনও কমে যায়।

অধিক মাত্রায় বায়ুদূযণের ফলে পাত্রায় নানা রকম লক্ষণ প্রকাশ পায়। যেমন ক্লোরোসিস এবং পাত্রার অকাল পতন। এছাড়াও পাত্রায় সুস্পষ্ট লেজিন দেখা যায় এবং পাতা শুকিয়ে যায়। বিভিন্ন দূযণকারী গ্যাসের জন্য লক্ষণও বিভিন্ন হয়। যেমনন সালফার ডাই-অক্সাইডের জন্য আন্তঃশিরায় (intervenial) ক্লোরোসিস হয়, নাইট্রোজেনের অক্সাইডের প্রভাবে আন্তঃশিরায় অথবা পাত্রার কিনারায় অনিয়ত ধূসর এবং কালো দাগ হয় ; ওজোনের জন্য পাতার উপরিপৃষ্ঠে সাদা, হলুদ অথবা ধূসর দাগ হয় ; হাইড্রোজেন ফ্লোরাইডের জন্য পাতার শীর্ষ পুড়ে যায় (tip burning) অথবা পাতার ধারে নেজ্রেসিস হয়।

সালকার ডাই অক্সাইড এবং নাইট্রোজেনের অক্সাইডস বায়ুমণ্ডলে পানিতে ধ্রবীভূত হয়ে সালফিউরিক এবং নাইট্রিক এসিডে পরিণত হতে পারে। দূযণমুক্ত পরিবেশে বৃষ্টির পানির pH এর মাত্রা প্রায় ৫.৬। কিন্তু ইউরোপ ও উত্তর আমেরিকার বৃষ্টির পানির pH ৩ থেকে ৪, কিংবা এর চেয়েও কম। তাই গ্যাসীয় দূযণকারী পদার্থ ছাড়াও, দ্রবীভূত দূযণকারী পদার্থেও শস্য স্নাত হয়– একেই বলে অমু বৃষ্টি বা (acid raon) 1

বৃষ্টির পানির খুব সামান্য অংশই শস্য উদ্ভিদে লেগে থাকে, অধিকাংশ অংশ পাতা ও কাণ্ড গড়িয়ে মৃদ্ধিকায় পাতিত হয়। পাতার অভ্যন্তরে দূষণকারী পদার্থের প্রবেশ নির্ভর করে কিউটিকলের প্রতিবন্ধকতা এবং পাতার ফ্রতির পরিমাণের উপর। এক্ষেত্রে আরেকটি সমস্যা হলো যে, দীঘসময় ক্রায়ী বৃষ্টির সময়ে অষ্ট্র দ্রবণে বেশিক্ষণ পাতা ভেজা থাকার জন্য পাতা থেকে খনিজ মৌলের অণু, বিশেষ করে ক্যালসিয়াম বেরিয়ে আসে। পাতার বয়স, পত্রপৃষ্ঠের গুণাবলী এবং কিউটিকলের ফ্রতির পরিমাণের উপর এটি নির্ভর করে। অমুবৃষ্টির জন্য মৃত্তিকা গুণাবলী এবং কিউটিকলের ফ্রতির পরিমাণের উপর এটি নির্ভর করে। অমুবৃষ্টির জন্য মৃত্তিকার গুণাবলী এবং কিউটিকলের ফ্রতির পরিমাণের উপর এটি নির্ভর করে। অমুবৃষ্টির জন্য মৃত্তিকার গুণাবলীর পরিবর্তন ধার্টিয়ে পরেক্ষেভাবে ক্ষতি হয়। মৃত্তিকার অমৃতা বৃদ্ধির ফলে শস্যের জন্য ক্ষতিকারক আলেমিনিয়ামের চলাচন বেড়ে যায়।

বাংলাদেশের আবহাওয়া

বাংলাদেশ ২০.৫° উত্তর অক্ষাংশ থেকে ২৬.৫° উত্তর অক্ষাংশ এবং ৮৮° পূর্ব দ্রাঘিমাংশ থেকে ৯২.৭° পূর্ব দ্রাঘিমাংশের মধ্যে অবস্থিত। বাংলাদেশের মাঝামাঝি এলাকা দিয়ে কর্কটক্রান্তি রেখা চলে গেছে। ফলে এর উত্তরাধ অব–নিরক্ষীয় (sub-tropical) এবং দক্ষিণাধ নিরক্ষীয় অঞ্চলে পড়েছে। কিন্তু তা সন্ধেও সমুদ্রপৃষ্ঠ হতে ভূমির কম উচ্চতা, অধিক বৃষ্টিপাত, বঙ্গেপিসাগরের নৈকট্য, উত্তরে হিমালয় পর্বতের অবস্থান প্রভৃতি কারণে সমগ্র বাংলাদেশের জলবায়ু নিরক্ষীয় মৌশুমী (tropical monsoon) এবং মৃদুত্যপন্ন। বাংলাদেশের আবহাওয়ার উপাদানের বিস্তারিত বর্ণনা দেয়া হলো।

(১) তাপমাত্রা : গ্রীষ্মকালে দক্ষিণ-পশ্চিম দিক থেকে মৌসুমী বায়ু প্রবাহের ফলে বাংল্যদেশে প্রচুর বৃষ্টিপাত হয় এবং আবহাওয়া ঠাণ্ডা রাখে। আবার শীতকালে উত্তর–পূর্ব মৌসুমী বায়ু হিমালয় পর্বতে বাধা পেয়ে উপরে উঠে যায় বলে শীতকালেও তেমন শীতের তীব্রতা থাকে না। বাংলাদেশে শীতকালীন গড় তপেমাত্রা ১৫" সেলসিয়াস এবং গ্রীষ্মকালীন গড় তাপমাত্রা ৩০° সেলসিয়াস জড় রার্যিক তাপমাত্রা প্রায় ২৫° সেলসিয়াস। এপ্রিল অথবা মে মাসে সর্যোচ্চ তাপমাত্রা ৩০° সেলসিয়াস জড় রার্যিক তাপমাত্রা প্রায় ২৫° সেলসিয়াস। এপ্রিল অথবা মে মাসে সর্যোচ্চ তাপমাত্রা থাকে। বর্ষাকালে তাপমাত্রা সামান্য কমে যায় এবং সেল্টেম্বর অথবা আক্টাবর মাসে বৃষ্টিপাত কমে গেলে তাপমাত্রা সামান্য কমে যায় এবং সেল্টেম্বর অথবা আক্টাবর মাসে বৃষ্টিপাত কমে গেলে তাপমাত্রা সামান্য বৃদ্ধি পায়। বর্ষাক্যলে মেঘ্যচ্ছন্ন আকাশ থাকায় সোরবিকিরণ মৃত্তিকায় অপেক্ষাকৃত কম পৌছায় এবং এর জন্য সর্যোচ্চ তাপমাত্রা হ্রাস পায়। আকাশ মেঘমুক্ত থাকলে বেশি সৌরবিকিরণ পায় বলে তাপমাত্রা আব্যর বেড়ে যায়। বাংলাদেশের বিভিন্ন এল্যকায় স্বর্নাম্ন ও সর্বোচ্চ তাপমাত্রা এবং তাপমাত্রা আব্যর বড়ে যায়। বাংলাদেশের বিভিন্ন এল্যকায় স্বর্নাম্ন ও সর্বোচ্চ তাপমাত্রা এবং তাপমাত্রা ক্রিসর ৩,৬ নং সারণ্ড দেয়েছে।

(২) বৃষ্টিপাত: দক্ষিণ-পূর্ব আর্দ্র মৌসুমী বায়ুর প্রধাহে গ্রীষ্ণ ও বর্ষাকালে বাংল্যদেশে প্রচুর বৃষ্টিপাত হয়ে থাকে। কিন্তু শীতকালে অপেক্ষাকৃত শুক্ষ উত্তর-পূর্ব মৌসুমী ৰায়ুর জন্য বৃষ্টিপাত হয় না বললেই চলে। এদেশে বার্ষিক গড় বৃষ্টিপাত প্রায় ২০০০ মিলিমিটার। সিনেট জেলার লালখেল নামক স্থানে সবচেয়ে বেশি বৃষ্টিপাত হয় এবং এখানকার বৃষ্টিপাতের পরিমাণ ৫৭০০ মিলিমিটার। সবনিমু বৃষ্টিপাত এলাকা নাটোর জেলার লালপুর নামক স্থান। এখানকার বৃষ্টিপাতের পরিমাণ ১৪০০ মিলিমিটার। বৃষ্টিবহুল দেশ হওয়া সত্বেও বাংলাদেশে বৃষ্টিপাত অসমভাবে বন্টিত। শীতকালে (নভেম্বর-ফেরুয়ারি) প্রায় শতকরা ৫ ভাগ, গ্রীষ্মকালে (মার্চ-মে) প্রায় শতকরা ২০ ভাগ এবং বর্ষাকালে (জুন-অক্টোবর) প্রায় শতকরা ৭৫ ভাগ বৃষ্টিপাত হয়। বাংলাদেশের কয়েকটি স্থানের গড় মাসিক ও বাৎসরিক বৃষ্টিপাত ৩.৭ নং সারণি এবং গড় ঋতুগত ও বাৎসরিক বৃষ্টিপাতের পরিমাণ ৩.৮ নং সারণিতে দেয়া হয়েছে।

(৩) বায়ুর আপেক্ষিক আর্দ্রতা : বাংলাদেশে গ্রীষ্ম ও বর্যাকালে বন্দোপসাগণ্ড থেকে দক্ষিণ পশ্চিম মৌসুমী বায়ু প্রবাহিত হওয়ার জন্য বায়ুতে প্রচুর পরিমাণে জলীয় বান্ধ থাকে। এর ফলে বায়ুর আপেক্ষিক আর্দ্রতা বেশি হয়। শীতকালে উত্তর–পূর্ব দিক থেকে মৌসুমী ব্যয়ু প্রবাহিত হওয়ার জন্য বায়ুতে জলীয় বান্দের পরিমাণ কম থাকে। তাই তখন বায়ুর আপেক্ষিক আর্দ্রতা হাস পার্য। বাংলাদেশে গ্রীষ্মকালে এবং শীতকালে গড় আপেক্ষিক আর্দ্রতা যথাক্রমে শতকরা ৮৪ ভাগ এবং ৬৪ ভাগ। সিলেটে আর্দ্রতা সবচেয়ে বেশি এবং দিনজেপুরে সবচেয়ে কম। বাংলাদেশের কয়েকটি নির্দিষ্ট স্থানের সকাল ৯টা সবং সন্ধ্যা ৬টায় মাসিক গড় আপেক্ষিক আর্দ্রতা ৩,৯ নং সারণিতে উপস্থাপিত হলো।

-
ন
нII
. 돈
7
- E
N°7
AX AX
E.
5
ৰ শহি
শারা
5
<u> </u>
2
5
E
ज
,E.
<u>e</u>
5
É
<u></u>
F
£
P2
ন্দ
₩.
Ť
en i
Ę.
मुत्
R.
₽.
P 1
\mathbf{D}
u¦≙
निर्धा
LT.
æ
÷.
Z.
Ē.
177
দেশের
Ĕ.
Ħ
1। ९ जा १
•)
मात्रा
E.
Б.

E. (gभाषान -	<u>क न्यासि</u>	प्मुयाह	 स	1 जिन 	: در ا	6	छ नाहे	E Star	<u>সাল</u> ীৰ	<u>च</u> ्ह्रादर	<u>н. 5' 4 с</u>	<u>ر کم جرم</u>
ৰবিশাল	नर्तिफ	भ' २ ४	ን ብረ	840	4 ° ° °	يد د. د.	43	3) 0 0 0	e o		6	1 P. P.	30 10 10
	भर्ती भू	8.02	うやう	R.0X	X.8X	5.04	26.94	२७, ५-	ন ১২	20 22	6 88	へでへ	28 C
	শরিসর	875	22.5	55,0	ה ה	ъ d	, . ภ	8,3	0'0'	5	:/ (د	ም ⁄ን	ىلە 2
াপুড়া	भर्ताफ	20.0	\$15	100	A 80	R 000	0) 20	8,13	n 20	4.00	603	ፍ <i>ባ</i> እ	18 19 17
	भवीनभू	27.6	10.2	29.65	NNN	<u>ج8</u> ک	20.05	5.94	1.24	٩ [°] ୬২	104	29.8 2	2 2 2
	भंडिभंड	8.05	58, 0	5¢, Q	2000	ь R	يد م	0. U	5,5	0 2	ط ح	~ ~ ~ ~	ь 77
5 T S J I I I I I	मार्दाफ	ત ે ૪૮	ନ . ଜ	00.0	070	100	0,00	9°00	000	5,00	900	(PY	0 24
	म्तीन्त्र त	A'05	×1.8	0°0%	9 01	×8.87	20.25	<u>لا 8</u>	487 87	50.04	20.94	که مر ا	20.8
(পরিসর	0.55	9,55	× 05	8 २	ଚ ଟ	ې ۲.	ন ভ	ورو	())	9.0	20.2	R 07
्यद्वा	भार्ताफ)	0 27 7	<i>م</i> ه م	わざい	500	べんの	0'0	50°	5,50	0,0	57.5	NRA	н 97
	भवीन्त्र त	っぺ	ې 84 له	6- RX	N 07	3 [°] 87	507	ର ୨୯	20.2	8.8×	607	8 45	ь 07
	والإيمار	0 8 8	Ч 07	だかい	\$°.8	ې م	0 \$	ନ ତ	<u>ر</u> ه م	۲, y	8 5	-9' OC	0.0%
সকা	भार्याफ ्र	0.07	<u>ि</u> मर	ь хo	8 80	00°0	9.00	500	00'è	0,00	00 J	6.98	20,20
	भरीन्भ ति	\$.	۲.8۲	0 22	ののか	1.0%	ብ De	1.24	20.2	20.6	201	59.2	475
	બોદ્ધામાં	8.04	38 , 4	50.6	2.42	8 8	6'D	0.8	в. 8	Q, G	۲,P	0,66	1.01
দিনাজপুর	भारती । अत्याम्ड	×8,à	0 .	010 9	3¢.8	н 00	それの	のべの	9,60	8,00	27.2	0.45	20%
	<u>भ्वमि</u> न्न	२ २	のべ	ア・ワハ	<i>د :</i> در	5.00	0 77	1 90	24.0	20.05	0 KK	0' 9 (202
ı	শারসর	э. BX	0,94	» X	× 8ر	۲.0۲	10 19	6, 8 9	ກ ອ	8 9	ہ ب	0.04	22.0
চ্বিদল্য	भारतीफ	× 87	8 ° 7	ゆう	9°.8°.	000	ゆべい	4'00	500	522	500	ን ብዮ	20%
	मतीनेत्र त	5	509	8 ['] 4¢	42.9	0 [.] 87	् इत्	5 DX	くらて	R DX	50%	54.0	202
	에로개리	っぺ	ہ . 2	× 8<	450	0 /2	ې رر	50	رد عد	6	с 0		

ङ्घान	હેલાવાન	জানুয়ারি	ফ্ষেয়ি	भार्ट्	<u> এ</u> জিল বিলি	ड	ख् <u>म</u>	र्कुलाই	আগশ্ট	ભાજેવલ	অষ্ট্ৰেব্ব	নতে বর	હિંદમ"વવ્
यर™ाञ्च	সবোচ্চ	२७,७४	२ ^फ .8	9 00	୦୯ ୬୦	, N. ĐÔ	64.9	8°C0.	ی م: م	545	93.8	- ম - ম শ	8 97
	भवनिभू	50,6	0 D2	P. 4¢	N'ON	×8.×	9. U N	ት ወረ	ትር ዓ	\$¢.8	RNA	わりつ	5.6
	পরিসর	54.0	56.5	S.∂.	540	20.0	ָ ה	٩. ٩	<u>ر</u> ک	ச	છ`ન	22.2	\$8°.
यूनना	সবোচ্চ	9.9N	¥.64	8 0 0 0 0	2 80	9 80	0 80	のたい	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0	9,9	(P)	ь. Э ч
	ञ्चतिन्नु	20.6	202	0 (<i>*</i>	×.8×	×.8×	9.97 77	へもと	11 DN	11. NA	۶°.8×	28.2	Р, В ζ
	পরিসর	ንዲዓ	202	8ガハ	\$0 [.] 8	\$°.8	ษ้า	9	¢.9	٤.۶	9,0	0.04	52.0
्यग्रयननिएङ्	শৰ্বোচ্চ	\$C.2	のられ	0%0	4.00	8 7 9	4.00	0,00	0 6	5,6	90.9	ि.म×	8 9 1
	भवनिभू	9.(2	20.4	¥.45	0°97	9.04	×8, ð	5.95	२ २ २	\$¢.8	4.0%	* 45	りらく
	পরিসর	900	4.05	4.9%	٩. ٢	<i>к</i> . Б	9 9	ନ ତ	٩. ٩	ر. و	バリ	50.6	72.4
নায়াবানি	भारती । D	к, ду.	ક કેર	0,00	0%0	670	9.00 GO	R. 64	C.00	30° &	P.00	ይ.፞፞፞፞፞፞፞፞፞፞፞	8 2 1
•	मर्वनिभू ति	\$8.0	20,00	2,25	8 [°] 8≿	20.05	ት ወደ	ዳ' ንጵ	\$C.9	P. Dr	8.8≿	22.62	20.0
	পরিসর	RICK	2.55	R	હેં	8 9	ଅନ୍ତ ଅନ୍ତ	8.S	8,8	в. 8	0 9	2.2	ŝ
পাবনা	भार्ताफ	રહે.૧	0 - 47	800	ତ ଚ ତ	C. 90	x 00	4.CO	ቅሯር	0%0	\$ \$ \$	0. 197	9 9 9 1
	य वीनों। ∂	D.CC	5.00	<i>ب</i> . طر	9 17 17	9 ['] 87	<u>२</u> २	ድ ንድ	へっか	R' D7	0.0%	59,8	<u>کې</u> ل
	<u> 에</u> 렸거 <u>র</u>	78.	کھ رہ	50.2	с. 97	D.04	9) 5'	\$ D	9 5	80. 9	<i>у</i> ь	\$` \$ \$	ь ??
রংশুর	সংৰ্ণাচ্চ ূ	₹8.¢	ર હેર	٩,٢٥	08° d	たべつ	070	R CO	32.0.	540	00°	8 [`] 4⊁	চ [`] 97
	포 파 J	20.2	ы. С	\$¢.8	\$0.N	ት <i>አ</i>	28.9	かって	8.9%	. የ. ወደ	11 'N'	56.8	ریز بر
,	পারসর	58°	50.0	つ の へ	200	5.0C	ଚ ଟ	0 9	२ ७	8 9	ም ት	0.75	9 22
मिल्लो	সৰোচ্চ ূ	×8.8	× 6×	9.00°	9.00	A 00	< 00 ×	8'00	0,00	0,00	50° 1	\$4.0	N 97
	भ्वीस्प्ने)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.8¢	54.9	4.CX	جم ² لم	28.8	5.95	26.0	₽,8¢	2.2.2	59.8	کو ب ر
	পারসর	. 675	20.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8.04	0'A	ч. 9	ት 2	0 9	0 9	ь.o	<u>د.</u> دد	32,8

ধায়ৰীয় পরিবেশ

~
(মিলিমিট্যর
পরিমাণ
দ্বিপাতের
(eमजि र व्
फ़्रिक ख व
নর পড়ম
नेमिंड आए
কয়েকটি বি
વાંલ્નાાનંડગ⊴ ર
ারণি ৩.৭: ন
н

हान	ঙানুয়ারি	ফেবুয়ারি	₽Ĭ ₽Ĵ	এ পিন	र,	হন শ	<u>कन रे</u>	আগম্ট	بانبهبوه	অক্টোবর	नरेख्यु	- উল্লেখ্য	বাংশারক
বরিশাল	ж. Х	58,0	۲ [°] 48	\$08,¢	ন <u> </u>	8,0,8	৪৫১,৯	ତ୍ରଜ୍ ୧	0. DAX	\$\$0.8	0 × 8	R R	<u>የ</u> ሳሪኦ
বগুড়া	2010	べって	\$ ⁻ 98	કવઝ	হ'নহু	0.×8, €	1000	6,500	સ્વેઉ-્રે	\$C.0.8	20.0	ਰ ਅੰ	2005
চট্টগ্রাম	0 82	8,94	د.د8	0,000	? 88%	P. 622	રું-વ⊅ક	805° N	290.2	202,9	e.'.9	25.5	<u> </u>
<u> </u>	8°65	ম্. শং	র দ ও	ት 80ና	265.0	9 9 9 9 8	(S S D	<u>ଟ</u> େଇ ଧ	R 400	<u>০</u> '৭১९	いいの	ৎন্ত	20:52
<u>ক</u> ৃমিল্লা	ð Þ	26.0	8¢,8	୨୩୬.৮	»'88;	ረ ጉንፀ	80.0 X	0,990	0707 107	208.5	0.69	\$8.0	べんちょ
<u>চা</u> বশ	9) 19	ତ ତ	છ ? ? ?	્ર હે.હે.સ	×8° ×	র ৭২০	0,800	ୁ କାର୍ଚ୍ଚତ	209.5	202.0	20.5° P	00 00 0)	ন্দিঙ্গ
দিনাজপুর	20. X	うべん	20.5	6°5	くうのへ	- 4 (80	ରୁ କଟ୍ <i>ତ</i>	8 EXO	00000	1001	8. G	સ. 0	તુકુર
ফরিদপুর	ھ ج	र ह	<u>с</u> , чо.	ረ ብ8ና	\$ 205	⊦ଚଅଚ	000 9	C.400	2.835	<u>র</u> হিটার	0 0 0	0 02	ત્રમુદ
যাশোর		0' DX	୫ ଚ ୪	878 18	হ চন্দ্	ন্ ৯০০	0,650	505	2 204	6.950	22.0	8,9	いいのよ
जूलना	ی 8	्र तंत्र	<u>७</u> ,08	9°.0¢	540,2	ত'শংক	00à.8	00 Ab	250.5	0,402	я. Ъх	ด ภ	AD94
কুটিয়া	» X	59.9	0 50	સહ હ	59b 8	0.0 <i>RY</i>	2445	হ হন্দ	5.888	0.602	\$°.8	ມ ຈັ	>≪ ∉ ∉
भग्नम्बिर्स्ट	5.4	9.9% 9%	ର ଜୁନ	220.0	いってん	8°≈⊅8	3 A A O	କ୍ <u>ର</u> କ୍ର ଭାଷ	0,58,0	0'ጵሁና	500	0. N	2022
নোয়াখালি	ల. స	5.04	ာ ဝိနာ	<i>к</i> 0.04	ちょうちん	୫.୦ <i>୦</i> ୭	ራ80 ৮.	0,590	026.5	8,055	4.8.8	8.6%	સંસ્વેધ
পাবনা	ъ Ч	0'0X	ہ ' 8 ک	8	ন' ৯৮৫	ে 'বনং	્રહવું પ	6.095	228,0	۶۵٫۳	100	0 ['] 8	20.00
બર્દુસાસાનિ	2	28,0	েবে	0,444	び、バリン	6.963	ତ ୧୯୭୨	<u> </u>	806,0	X.61.X	\$0.8	52.9	୮୬୦୦
<u>রাজশাহী</u>	9 2	в. 9 4	<u> ।</u> भूर	82,6	101	<i>ภ</i> ํภุ <i>ค</i> ๙	0.00.0	5,00,5	0 ° िर	\$20°	0.05	000	78 C b
রংপুর	9. 2	म. 82	\$ 45	ନ <mark>8</mark> 4	220.0	822.5	0,((8	1000	9,9,8	2006	0.04	8.4	\$540
मिरनो	ったべ	84.8	ትንት	0,≶č©	888	290%	900 9	P 00P	8 2 (F 8	D 2000	0,00	24.0	のためい
টাগ্রাইল	Ъ,02	৮ নং	08°N	C De	202.2	090 2	5.000	ନ ୫୦୫	<u> </u>	108.8	5.97	0.A	<i>२</i> ९- <u></u> <u></u> <u></u>

শস্য শারীরবিজ্ঞান

স্থান	<u>নভেম্বর</u> -ফেব্রুয়ারি	মার্চ-মে	জুন–অক্টেবের	<u>বাৎসারক</u>
वकिं*ान	ર મ્વ	08à.8	P. 2824	<u> ৩ নং</u> হ
्रिंस	8'58	0 ወብት	2848,0	2 DPC
চট্টগ্রাম	2202	629,0	3B 08,2	84.64
রাঙ্গামাটি অ	७,९८५	888.9	D.0966	ণ্ড যদ
मिझा	50¢.¢	ት <i>ሌ</i> እ8	292.0.8	びびたた
4) -	548,5	ତ 840	১৩৮৯ ,৮	-9× ×5
নাজপুর	የኢዓ	ь. КСК, Р	2006.0	તુમુદ
ফ রিদপুর	ロバカ	327.8	206à.9	8545
यर≖⊺ा≼	\$0°\$	8,553	٢,0954	ちょうちょう
नना	40° F	SOG.8	୨୦୦୬ ୦	みくよく
কুষ্টিয়া বৃষ্টিয়া	Q 2. C	N. (RN	٩	. 26446
<u>ध्र</u> ाननिंश्ट्	80.9	<u>୫</u> ିକ ଅଷ	5962,0	10 0 0 N
त्नायाचानि	4.044	865,0	28 C & H	৵ঌঀ৸
भार ना	88,5	&.G.A.	5584,8	2000
পটুয়াখালি	\$ 00,8	685.k	<u> ৭</u> ২৪, ৬৮	00kg
<u>রাজশাহী</u>	C. D8	202.2	DORCC	5 80b
<u> </u>	D.P.C	4.048	0,6492	だわつち
मिल्हो	0.0XX	8&5.0	でいへんや	のためつ
ត្រង់ខេត	77 8 19	((00)	2609.0	それ-95

বায়বীয় পরিবেশ

99

সারশি ৩.৯ : বাংলাদেশের কয়েকটি নির্দিষ্ট স্থানের সকল ৯টা এবং সন্ধ্যা ৬টায় মাসিক গড় আপোট্যক আর্দ্রতা (৫)

Ŷ	443	জানুয়ার	ফেবুয়ার		<u>ৰিষণ</u>	ટ	5	জুলাই	আগষ্ট	जन्म	অক্ট্রোবর	নভেম্বর	ডিসেম্বর
										শ্ব		-	•
বরিশাল	្តថ្ម	ንድ	98	9 8	87	85	с) Д	ł	म्द	2	Ş	-qp	46
	ويا	Ş	ନ ଅ	ନ ୯	りわ	-8	<i>ለ</i>	о Р	о Р	<i>ሳ</i> ት	99	رد (د	00 -9
বসুড়া	ំថ្ង	4 ђ	42	3	5	৸	ور ط	्र म	ۍم ا	, O.4	5 - F	4	6
	ር ም	к С	д8	5	17 80	5 9	ሳ ት	1	ት	1 A 2 1	د . 5 م	2 4	3 T
ठ्युँग्राप	گن ا	ዓን የ	ሪ ት	Ş	2	9¢	х 4	р. Д	ب 14	r ç	2 /	د 8 6 (1	7 8
	ଜୁ ଜୁଣ୍ଡ	50	9 9	5	Ş	ዝ	8-म	رد <u>ا</u> ط	ر ب ط	2	3 / 1	2 Ş	F 4
রাঙ্গাম্যটি	ß	8-9	ЭР	3	ન ભ	Ş	۲. ۲	о Ь	Ч Х	2	с Д	2 02	3 <i>1</i> 2
	ちゅう	К.Э	¢0	\$3	3	5 9	ፖ ት	ঙ্ম	, ந க	6 4	, о , д	1	5 J
ङ्घिद्वा	ងថា	ЪО	ዓሮ	ၛၟ	ብፈ	ß	8-२	קר פר	ہ م	8 Д	о д	f g	、 ₀
	é G	89	£8	¢¢	ビカ	ЪP	2	84	ም ሥ	ሉ ት	04	УС	
ঢাকা	ц ^к	1 8	びつ	87	90	Ъ	8년 년	ь Ч	رر ط	84 8	- AB	2	e e
		(J)	48	88	48	70	ب	77 - Þ	о Ь	9 1	: <i>4</i>	. 4	
দিনান্ড পুর		ро	90	64	QQ	ş	ж А	ور ط	9 A	8 . A	د بر ا	, g	e g
		R D	8h	ş	ß	9 9	ዛ	Ģ	- о-р	, , , ,) 5 5	بر بر ب	; s
ফারিল্পুর		04	3 8	<u>4</u> 4	8	£	ЪЧ	5	ور ط	0 - 4	2	5 6	
•		50	<i>60</i>	% 8	4 Þ	ባር	8 A	ይዳ	а 8	с Б		: -5 -5) 0 0 0
মশোর	ŝ	Ч х	5-	43	96	ß	ጋዓ ዓ	رو ط	طر طر	р - Д	. œ	ے بر ۲	
	പ്	5	৫ ৯	N	Ե⊅	6	<i>ب</i> ب	ନ 4	ъ Ъ	رم م		ç	r œ
र्दुलना	ð	2	÷	2	Z	Ъ	о Ь	হ ম ম	ЭĄ	9 4	मुह	2 J	s se
	ୁ କନ୍	レッション	90	9	20	00	ر ب	ç -	0		:		ź

শস্য শারীরবিজ্ঞান

বায়বীয় পরিবেশ

								1			N'A TOAT	7.7))	ママーショー
SIRISIARA	花ノビ	1.5			120	202	1.0		and the second	12 Dez			
		Y .	66	90	96	24	P.	54	-4-9	pa	Pret	14	10
(जाशाशालि		~ 00	83	89	A P	98	8-4	54	14	5.4	48	90	6.4
		and and	All Alter	36	66	pq	54	ঙ্ন	6-9	54	44	46	in the
शावना	たべ	00	00	39	25	42	Ad	9.9	42	- 04	43	48	49
	in the second	4.1	2 :	7.9	45	69	A	24	P.C.	. 8A	es.	96	4.6
RIGOR	西方	50	DD.	88	8>	62	54	R	P.8	PG	7.A	9.6	20
T.P. V.	ine 加加	20	90	60	69	AP	P.A	Pd	26	84	24	ho	helt.
Farmer.	ing the	5.9	G 8	83	89	P.C	5.4	53	24	42	99	90	200
i-licito	au The	45	96	99	90	84	be	24	PG	5.6	. Pro	a of	10
		6.2 5.2	69	C2 -	60	62	4.4	0.4	1.8	Pro-	101	3	10
श्वान	の存在	कानयादि	व एक्स्झावि	and	ofer	50		1	1111	-			
वतिभाल	মাইল/ঘন্টা	0	IC PL	10	1	ट	51	डुलाइ	Ser 19	(अहम्येन्द्र	অক্টোবর	मारकायत	હિભાયત
	कि: भि: / घने		1.2	0.0	n	6.9	0.0	6.9	9.8	0.9	2.2	58	23
	মিটার/সেকেন্দ		0.1	3.9	ж.	2.2	र्ष.म	5.6	5.5	0.9	00	9.4	100
	कछे/लाक्स		1.4	b.	20. ·	N.G.	2.6	2.0	D'e	2.6	0.6	9.0	0.6
19.0	মাইল/ঘন্টা		3. 0	2.2	9 I 7 C	м	4.4	4.4	9.0	6,8	5.17	0.0	5.9
	किः भिः/ घन्ते।	00	0.0		0,0	n .	ь. Э	0.0	5'9	5.4	r'r	3.8	2.2
20	মিটার/সেকে		20	2.2	2.0	Ŧ	5.5	2.0	0.9	0.00	5.0	0.0	00
	ফ্রট/সেকেন্দ্র	10 M	80	5.0	5.4	10.0	6		5.8	2.2	5.0	0.6	0.1-
	~		1941	2	5.0	20	2.0	6.5	84	20	10		

6-5

Dihuks

 Fingrat and with the wide wide with the wide with the wide with the wide with	 	\$\$≵可	्यनधारि	्राष्ट्रियः 	i Tri	- الري ال الري	: ;	i . ,	- 04 - 7 - 6 - 1	ן אין אין				
14-74/400, υά χαι της			•	. I : !	 - -	 		! •	* 5a	: ; ;			yı İ	(-) X •)
 (1)(1)(1)(2)(2) (1)(1)(1)(1)(2)(2) (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(ייובה 	মাহল/ ঘণ্ড: ০ ০০	9,0	o x	در آن	.، در	er of	20 23		4) -	4 21	•	27	
ПППА/СТОРЕ 1: В. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	:		رد ت	ۍ د	р. %	4 •) /)		с 22 2	2010	2	0,02	:		
The first of the first	•	<u>মিটার/ ক্রেন্চ</u>	ल 7	دلہ • ر		 •1	 ∎1	 ທີ	a v.	•	هد ر،	- 14 - 14		
1787/1961 N.Y. N.P. U.A.	.	ফুট/ সেকেড	Q.5	ر تر	24			2. 2	a N		1 3	0	 	3
(A: A), a,		<u>মাইল/ ৭</u> ন্টা	1	ቅ ሰ	5,4	e X	े. इन	<u>م</u>	یم. ان	-	ۍ در	1. 11	•• • •	
Hilling/Carrans UN YN	ৰ হি	দি: মি:/ ঘণ্টা ূ	.) .)	કેહ	ي ب	s	0 4	ж "ъ	.) R	2	5			e E n
ψ ^ψ		মিটার / সেকেন্ড	\$`0	4	ser La	n 4	•) /)	2.0	(د م	5) W	(د رو		ر ل ا ا	– د ۲
11 ² 1 ² 1 ⁴	(ফুট/ সেকেন্ড	۲. 0	3.5	1.5	9.0	י) ד	ند نس	، ج	x, J	- 	دد د	رد م	-
「「「「」」、「「」」、「「」」、「」」、「」、「」、「」、「」、「」、「」、「	र्म- स्	মাই ল/ঘণ্টা)	みべ	<i>c</i> ' <i>x</i>	ઝંજ	رد (د	8.6	9 C	•) 6'	ب رد	n x	S c	а У	 .,
МПП (АПСТВО 0.4 ХО ХО <th< th=""><th></th><th>দিব: মি:/ ধৰ্টা ন</th><th>א ה</th><th>ۍ ه</th><th>۹. ک ا</th><th></th><th>R.12</th><th>27.0</th><th>21,4</th><th>50,8</th><th>س ردر</th><th>12</th><th>.उ २</th><th>- </th></th<>		দিব: মি: / ধৰ্টা ন	א ה	ۍ ه	۹. ک ا		R.12	27.0	21,4	50,8	س ردر	12	.उ २	-
μ ¹ /(πταν 2,8 c. 4 v. 6. 10, 10, 10, 10, 20, 2,8 v. 1 μ ² /(πταν 2,8 c. 4 v. 6. 10, 10, 10, 20, 10, 2,8 v. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		শিটার/ সেক্ষেদ্র	0,9	0.2	0'X	1.0	0°0	л 1)	.) .)	.3 A	R	0	. 0	- יג י כ י
нійні ою се се су чы жы ча ча ча ча ча ча ча ча ча ча ча ча ча		দূ ট/ সেকেড	8.4	バ う	נו גר	\$°,5	20	20,02	20.5	8,0	, (c.	رد د :	رد • •	
「「「「」、」「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	जका	भारे ल/ धरी)	0 0	۰ ۲	بم چ	م 'A	10	8 ג	رد ه	8,6	9.6	5.5	0 0	د
НІІА/(Пітань 18 1.16 2.16 2.16 2.18 2.16 2.16 2.18 2.16 2.18 2.16 2.18 2.16 2.18 2.16 2.18 2.16 2.18 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16		কি: মি: / থণ্টা এ	٩. ٢	ر. ن در ان	റ്റ	0.00	SG &	50.6	パラハ	55,6	0.65	<u>م</u> د	. v	
μ ¹ ¹ /(π(π)) 8 ¹ 4 ¹ 8 4 ¹ 0 3		শিটার/ সেংকল্ড	30 /•	يد 1	יג ה	رو	8 [°] 8	2,2	10 10 10	.) 5	8°5	20		20
1 มาริสา/ หนึ่ง 2.2 2.6 2.8 2.6 2.5 2.6 2.5 2.6 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5		ফুট/সেকেন্দ্র	ե Ծ	4 ['] 8	ار د	0.44	28.2	0.00	20.6	<u>भ</u> 8	0	در. ه	ه. دي	
(14:12:17:14 14:13) 23 25 55 55 55 55 55 55 55 55 55 55 55 55	<u>सिनाड</u> म् ३	মাইল/ফণ্টা ০০০	7.7	2.4	8.4	5.6	۹ n	ک م	ာ ဂ	4.4	1			
พบโล/(พีเลีย 0.4 1.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		년: 편:/ 원이 (10.	2) N	re v	ۍ د ۲	11°.»	<i>ي. د</i>	ي. وي	8, G	9 9	8,4	ь. С	2
10.0100000 29 2,8 3,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4		মিটিব্র /পেকেন্দ্র	0,4	P.0	0.1	5.4	5.4	5.6	9.7	¢.'	к. 0	ر. د	8.0	0.6
113-7/1451 2.4 2.0 2.2 6.9 4.8 5.9 6.1 4.5 5.6 7.8 2.8 2.8 2.8 2.6 13:14:14-14 2.4 0.9 6.0 20.8 2.2 2.2 2.8 2.6 2.6 2.0 2.0 0.9 14043/771-4-0 0.4 2.0 2.9 2.8 2.2 2.2 2.2 2.8 2.4 2.6 2.0 2.0 0.9 14043/771-4-0 0.4 2.8 2.4 2.8 2.0 2.8 2.6 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	Ļ	<u> ফ</u> া।/ সেকেল্ড	5.9	ۍ 8 د	د. ن	¢.,	رد وي	٩.٢	3	, ° 8	, , ,	<i>~</i> ~ ~	9.	 ر.
/ 401 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	A NUM	মাহন/ঘণ্ডা ০০০০	ь Л	のか	л 17	5	9.8	5.3	رد. در	رد در	8.8	80	رد ر	יי. אי
त्यत्वन्छ ए. १.० १.९ २.७ ४.९ २.९ १.० ४.७ १.० १.० ज्वन्छ २.४ ७.७ ४.४ ४.७ ४.७ ४.७ १.७ १.७ १.७ १.७		[4]: [1]: / 4년] [/	4	в. 0	อ ୬	8.0%	A	8 ⁰ 8	ې. م	ې ۶	9,0	л Г	27	 م
35 D3 34 4 8 8 4 01 88 10 08 08 36		মিটার /সেবেন্ড 	م. م	2.0	0' /1	18. 10.	。 。	n N	ې نړ	0,0	יס אי	2,0	6°.0	6.0
		200/ (HI 2000	3) A	9.6	ন ও	8.70	1 01	8. 8	<u>م</u> به	رد م/	رد رد	(د رو	8	

(৫) উল্জুল স্থালোকের সময় (Hours of bright sunshine)

স্বেচ্চি ইয় কেন্ডুয়ারিতে, বরিশালের খাড়ি এলাকায় ডিসেম্বরে, যশোর এলাকায় যে মাসে এবং ঢাকায় ফেবুয়ারিতে এবং সিলেটে নভেম্বর এবং উচ্ছল সুর্যালোক বলতে এমন প্রবরতার সুর্যালোক বুঝায় যা ছায়া ফেলেত সক্ষম। ৩,১১ নং সারণিতে প্রত্যেক মাসের উচ্ছল সর্যালোকের ঘণ্টার উজ্জ্বল সূর্যালোকের ঘণ্টা সর্বোচ্চ হয়। এমন কেনেন নির্দিষ্ট শাস নেই, যখন এই মান সর্বোচ্চ হয়। চট্টগ্রাম ও কন্তরজারের উপকলবর্তী এলাকায় এই মান ফেৰুআরিতে। বর্যাকালে উজ্জ্বন সূর্যালোকিত সময় অপেক্ষাকৃত কম; এটি অবশ্য আশা করু যায়, কারণ এসময় আকাশ উদ্ধিকাংশ সময় বেঘাফর সংখ্যা এবং ৩,১১২ নং শারণিতে বিভিন্ন আক্রাংৰে দিব–দৈর্ঘ্য দেখানো হয়েছে। যদিও বাংলাদেশে এপ্রিল এবং মে মাস সবচেয়ে বেশি উঁয়ে, কিন্তু এসময় থাকে। জন মাসে সাধারণত কম সময় উজ্জ্বল সর্যালোকিত থাকে।

भातमि ७.১১ : ताश्नारमरणत्र करप्रकृति निमिष्ठे श्वारनत्र উञ्च्वल मूर्यारलारिकत्र घर्णेत संश्व

<u>स</u> ेन	জনুয়ার	ফেবু হারি	मार्ट् स	ए स्र	e.	<u>د</u> روز	फुल <u>ा</u> है	द्धाः मो	সেল্টেম্বর	অংক্লীবর	न इन्हण्ड द	PPPPP
र्वात्र गान	دي. م	د د	20	0.4	ь, Р	ۍ ن	<u>ل</u> م 9	/ <u>,</u>	ي. 1	۹,>	ي. م. ھ	s R
বগুভা		N'R	ۍ جر	ھ. م	ું	ရ ထိ	Q 2	<u>م</u> م	R 5)	<u>१</u> २ ज	0.K	ب م ن
ច <u>ច</u> ិរ្យាភ	R	5	ۍ م	ې. م	N.5	8, C	به %	0.9 G	6.2	8	0'%	ہ د
<u>ক জুবাজ ব</u> ্ৰ		5 R	9 18	200	<u>بر</u> ط	8,0	/* 20	ා න	18 19	9. N	N B	ي. د.
واطوز		ې د .	رد ط	ھر مد	ь А	6.0	8 8	4°.9	ج ف	ۍ س	1. R	7 18
যুল্' নার		200	ۍ م	л. .5	ь. Л	بە. %	7.0	৮ ৩	્ર્સ્	۲. ^^	9 78	83 73
मिल्लाउ		0.0	१. २	9. G	ود. (د	8°0	20 20	8,3	2° 5	વેલ	्र	جه ال
11.16 M	द्वानशारि	<u>(एल्लाहि</u>	315	<u>।</u> প্রিন	e	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	শ'।। 	মাণ্শট	للالميسط	<u>5.7</u> 44		डिकर्न्स
ા હેં છે.			}		;		<u>.</u>					
9	0.4%	5. e	14	14.4	2.1	10 10 10	2 C	3	7		2 3	2
\$5	0.11	22,4	े? ?	さんて	100	0.07	8°27	だって	5 B.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A	<i>.</i> ,		No.
20	2010	5,3	0.00	1.62		202	92 20	2 O 2	- <i>6</i> /	2	1.17	
60 77	1.2	272	2010	5 D.A.	0.02	50.3	5.05	5°07	^	2.2	22.2	
22	20,54	~	101	4.02	ω , /	2) 4) 23		0 17 7	2.25		2	> >
.0 4	1.04	0.11	77 - 1		8.95	21.4	о •	가 41 21	•) 11/2	5 7		
N N	25 22	5 // //		3- 23 24		73 41 21		2.52	-1-77	() ()		

বারবীয় পরিবেশ

হলেব মাইল/বল্টা ২০ ৬৬ কি: নি: / স্বল্টা ২০ ৬৬ মিটাগ/সেকেন্দ্র ৬৬ ৬৬ মিটাগ/সেকেন্দ্র ৬৬ ৬৬ কি: নি: / স্বল্টা ১৯ ৬৪ নিলের সি: প্রদ্রা ১৯ ৬৪ মিমমন- মাইল/পেকেন্দ্র ৬৬ ৬৬ সিংহ মি: / স্বর্টা ১৯ ৬৬ বিলা মি: বিলেন্দ্র ৬৬ ৬৬ মিটার/সেকেন্দ্র ৬৬ ৬৬ বিলা মি: বিলেন্দ্র ৬৬ ৬৬ মিটার/সেকেন্দ্র ৬৬ ৬৬	e = b c P P J P D R A P P o D A D F F C A C A C A C A C C o D A D F F C A C A C A C A C A C A C A C A C A	ல. 4. – 7. – க. க. க. ச. ச. ஜ. க. ச ச. ச. க. க. ச. ச. ச. ஜ. க. ச. ச. ச. க. க. ச. ச. ச. ச. க. ஜ. ச.	。 ¹¹⁶ ひぶお たっ ち て う ら お ふ う え ぜ あ か あ か ぜ み せ お ふ う え ぜ あ か あ か ぜ み せ	S S S S S S S S S S S S S S S S S S S	* われらあたれれい かごれごかされずす	00 3 5 5 5 3 13 01 8 4 4 5 5 4 1	න න න <i>ත</i> ප ⊂ ∧ x	1 		- -
বিং নি: / বর্জা (মিরি/ সেকেন্দ্র ৩.৬ মুর্ট/ সেকেন্দ্র ৩.৬ বিং নি:/ স্বর্জা হি: নি:/ স্বর্জা মির্টার/ সেকেন্দ্র ৩.৬ মের্টার/ সেকেন্দ্র ৩.৬ মের্টার/ সেকেন্দ্র ৩.৬ মের্টার/ সেকেন্দ্র ৩.৬ মার্টার/ সেকেন্দ্র ৩.৬ মার্টার/ সেকেন্দ্র ৩.৬ মার্টার/ সেকেন্দ্র ৩.৬ মার্টার/ সেকেন্দ্র ৩.৬ মার্টার/ সেকেন্দ্র ৩.৬ মার্টার/ সেকেন্দ্র ৩.৬		4 	* - - - - - - - - - - - - - - - - - - -	10 10 10 10 10 10 10 10 10 10 10 10 10 1	われったたれれれい されざめされざう	0 0 9 9 B 13 8 9 9 9 9 A 1	জ্জন ১৯৫৫ স	ी 28 - जि. ही -	0 75	
মিটান/সেকেন্দ্র ৫.৬ মুট/সেকেন্দ্র ৫.৬ মেটল/সেকেন্দ্র ৬.৬ মিটার/সেকেন্দ্র ৬.৬ মেটল/সেকেন্দ্র ৬.৬ মেটার/সেকেন্দ্র ৬.৬ মিটার/সেকেন্দ্র ৬.৬ মিটার/সেকেন্দ্র ৬.৬ মিটার/সেকেন্দ্র ৪.৯ মাইল/মেটা ৪.৪ মিটার/সেকেন্দ্র ৪.৯ মাইল/মেটা ৫.৬ মিটার/সেকেন্দ্র ৫.৬		5 11 5 5 7 7 7 7 7 7 8 5 9 11 7 6 6 7 7 8 7 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8	යයි. නිසු කරී ලබුර මේ සිස් ගින් කිම් ක්ෂ	ఆ ^ ౨ 00 	ひっかたたたれ たさかされたう	0 9 9 B 13 9 8 6 8 7	. 05 <i>1</i> 1 14 x	، پر ن		
শূর্ট / সেংকল্ড ২ ৯ মাইল/ সংকল ২ ৯ লি: মি:/ পর্কা টি: মি:/ পর্কা ফ্রি/সেংকল্ড ২ ৬ ফ্রি/সেংকল্ড ২ ৬ মিটার/সেংকল্ড ২ ৩ মিটার/সেংকল্ড ২ ৩ মাইল/ ঘর্টা মিটার/সেক্লেড ২ ৩ মিটার/সেক্লেড ২ ৩ মিটার/সেক্লেড ৫ ৬ মাইল/ ঘর্টা মের্কা		" ႕ ႕ ႔ ႔ ၃ ၇ တ န ၈ ႔ တ ် / / / တ တ / တ /	16 D 16 01 19 19 0 0 0 0 0 16 0 10 11 10 0 0 11 10 0 11 10 0 11 10 0 11 10 0 11 10 0 11 10 0 11 10 0 11 10 0 11 10 0 11 10 0 10 0 0 0 0 0 0	1. 9 0 1 2 1 1 5 2 9 2 2 5 7 7 9 9 9 7 9	しんたれ ハウ・ さかされ かうう	しったい だいだん	лі х			ۍ د ا
মাইল/মন্টা হি: মি/ পটা টিনি/সেকেন্দ্র ফুট/সেকেন্দ্র কি: মি/ পটা কি: মি/ পটা মিটার/সেকেন্দ্র মিটার/সেকেন্দ্র মিটার/সেকেন্দ্র মিটার/সেকেন্দ্র মিটার/সেকেন্দ্র মিটার/সেকেন্দ্র মেটার/সেকেন্দ্র মেটার/সেকেন্দ্র		ය උප ප ව ව ප ව ගේ ෆ් ෆ් ෆ් මේ ප් ක් ග් පී	స్సు ఎందా రైవు ఆస్సిప్ర్లో మెట	9 00 1 B 1 C 20 9 20 F 1 9 O 5 1 0 1 0	あたれたれい	うべん	s c	•	- 71 - 71	22
লি: মি: সর্গ্য মিটার/সেকেন্দ্র ৬.০ ক্রি/সেকেন্দ্র ৬.০ কি: মি:/ মর্কা মিটার/সেকেন্দ্র ৬.৬ মিটার/সেকেন্দ্র ৬.৬ মিটার/সেকেন্দ্র ৬.৪ মিটার/সেকেন্দ্র ৬.৪ মিটার/সেকেন্দ্র ৬.৬ মিটার/সেকেন্দ্র ৬.৬		ය හ හ ව ව හ න හ ග් ග් ග් ව ම හෝ හි වි	* -> ^ <	5 1 2 1 2 2 2 2 7 1 2 9 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	8 14 14 14 1 8 14 8 18 1	13 14	5.6	8/2	e R	14
মিটার/সেংকল্ড ু.৮ ফুট/সেংকল্ড ু.৮ ফুট/সেংকল্ড ৯.৬ মিটার/সেংকল্ড ৯.৬ মিটার/সেংকল্ড ৯.৬ মিটার/সেংকল্ড ৯.৬ মিটার/সেংকল্ড ৪.৯ মাটার/সেংকল্ড ৪.৯ মিটার/সেংকল্ড ৪.৯ মিটার/সেংকল্ড ৫.৮		りょうりゅう たらうでのより	9 1 5 5 5 6 1 5 9 5 1 5 6	ふない でなる んぷのせんめ	14 / 14 1 14 17 - 1 1	15 A	رى بى	28 19	n •)	•
যৌল সেংকল্ভ সান মাইল সেন্টা সা কি: মি: দলটা সা মিটার/ সেকেল্ড সা মিটার/ সেকেল্ড সা মিটার/ সেকেল্ড সা মিটার/ সেকেল্ড সা মিটার/ সেকেল্ড সা মিটার/ সেকেল্ড সা মিটার/ সেকেল্ড সা		කම අ හ දු හ රේ ම ල ක් හි කි	ମ୍ଟ୍ରର୍ ଏ ଜେନି ସିମସ୍ଥ	たって み み ぶ う ぜ ん ご	و ایر ایر را که این		€9 ∕•	0 7	. a. 0	 0
মাইল/ দেন্টা ১.৪ বি: মি:/ ঘন্টা ১.৪ ফিট/ সেকেন্দ্র ২.৩ ফিট/ সেকেন্দ্র ২.৩ ফিট/ সেকেন্দ্র ২.৩ ফিট/ সেকেন্দ্র ২.৪ ফিটর/ সেকেন্দ্র ৪.৯ ফিটর/ সেকেন্দ্র ৪.৯ ফিটর/ সেকেন্দ্র ৪.৯		ව උ හ ක උ ව ල ක් හි වි	ଟ ୦ ୬ ୦ ଚିଟ ମାନ		و العار ر آگو	ন ১	6 N	5) (10	0' A
জি: মি:/ মন্টা ২.৩ মিটার/সেকেন্দ্র ৩.৬ মিটার/সেকেন্দ্র ২.৩ মিটার/সেকেন্দ্র ২.৫ মিটার/সেকেন্দ্র ৪.৯ মিটার/সেকেন্দ্র ৪.৯ মিটার/সেকেন্দ্র ৫.৩ মিটার/সেকেন্দ্র ৫.৩		ా ఘ సం గ ఆ గ య గ	୦୬୦ ଅନ୍ତ	२ २ २ २ २ २		R	•) 17	78 71	8	
মিটার/সেকেন্দ্র ০.৬ জুট/সেকেন্দ্র ২.৩ কি: মি:/ মর্কটা ৫.৪ মিটার/সেকেন্দ্র ১.৪ মিটার/সেকেন্দ্র ৪.৯ মিটার/সেকেন্দ্র ৪.৯ মিটার/সেকেন্দ্র ৫.৮ মার্টাস/সেকেন্দ্র ৫.৮		හ යා ප පේ ක් ප්	ກ ແ 	න ව රටේ	ဂ	න හ		5	•) ^	R
ষ্ট্র/সেকেন্ড ২০ নি মাইন/পেন্টা ৬.৪ মিটার/সেকেন্ড ১.৪ ষ্ট্র্য/সেকেন্ড ৪.৯ মাইন/ঘণ্টা ১.৯ মিটার/সেকেন্ড ০.৮ মিটার/সেকেন্ড ০.৮ মার্টাস/সেকেন্ড ০.৮		ہ م م ک	300	နာ တ	S.S	18	5.0	o br	9'F	5. S
নি মাইল/পণ্টা ৩.৪ ফি: মি:/ মন্টা ৫.৪ ফুট/সেকেন্দ্র ৯.৯ মাইল/ঘণ্টা ১.৯ মিটার/সেকেন্দ্র ৫.০ মিটার/সেকেন্দ্র ৫.০ মার্টাস/সেকেন্দ্র ৫.০		5			ກ ຜ່	// ∞	ŝ		S A	
কি: মি:/ ঘণ্টা ৫.৪ মিটার/সেকেল্ড ১.৪ ফুট/সেকেল্ড ৪.৯ মাইল/ঘন্টা ১.৯ বিটার/সেকেল্ড ৫.৮ ফুট/সেকেল্ড ৫.৮ আক্রস্কর্মের্ক		, ,	ر. م	N. N	5.04	9 .6	0°9	5 •)	er h	/3 /V
যিটার/ সেকেন্দ্র ১,৪ ফুট/ সেকেন্দ্র ৪,৯ মাইল/ ঘণ্টা ১,৯ কি: মি:/ যন্টা ৩,৩ যিটার/ সেকেন্দ্র ৩,৮ ফুট্ট/ সেকেন্দ্র ১,৭	بة. 8	20.05	54,8	58,8	57 57 77	20.2	3' R	ې م	ა ∞	در کن
জ্ট/সেকেন্দ্র ৪.৯ মাইল/ঘণ্ট ১.৯ কি: মি:/ ঘণ্টা ৩.৩ মিটার/সেকেন্দ্র ৩.৮ মার্কিন পেরা	84	5	80	8,0	\$ 9 8	<u>ر</u> ج	5	87	1	20
মাইল/ঘণ্টা ১.৯ কি: মি:/ ঘণ্টা ৩.৩ মিটার/সেকেন্ড ৩.৮ ফ্রাট/সেকেন্ড ১.৭ ফ্রাইল/কেন্ট্র	ດ. '	n R	55,8	50.5	∕8 [°] .8∕	5.47	ь. Ч	5.5	/% • • •	20
বি: মি:/ ঘন্টা ৩.০ মিটার/সেকেন্ড ৩.৮ ফুট/সেকেন্ড ৯.৭ আর্কন প্লর্জা		ъ ос	ھ` م	ン 00	8.8	ۍ م	0.0	0,0	00 2*	2) 6)
মিটার/সেকেন্ড ৩.৮ ফুট/সেকেন্ড ২.৭ আইল/ফান্টা	0.2 K.O	* 5	8'A	9°,8	9.0	0 2)	ч.8	r G	0 4	4.9
ফ্ট/সেকেন্ড ২.৭ আইন্দ্র-রেন্টা ১.১	8.4	N. N	8,00	1. N	00	2)	0 /	م م	ې 0	ジバ
		9.0	2) 6	ه د	ອີ	ر. 8	00 26	B N	50	0 ප
, ,	•	0.0	8.0	00	ь. м	5,6	n N	رد د	21	0
- [철: [편: 4 4] · · · · · · · ·	อ อ	4 [`] 8	6.8	ۍ 8 د	9.G	% 8	9 9	۹. Þ	र 2	9
1203/CACAR 0.8 0.8		のパ	×.	0	N.	へぶ	6.0	» ,	0.8	0.8 8.0
कुछ/ तमाकुम्स , भ	7	8. 80	2°.	8 [°] 8	8.2	ச ஏ	11 9	0°.9	8	80
2.0	7 9	ь О	<u>بر</u> و	8.0	ె. ల	~ 7	0 4	5.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
∞ ^	6,0	्र	6 O	¢_8	२ ७	Q.0	с S	8 X	27	R
ামচার/সেকেল্ড ০.৬ ০.৮	8.4	カバ	\$.8	8	2.4	00 - •	0.0	20	9'0	0 6
युष्ठ/ (त्रातम्ख २.२ २.९	8°6	¢.8	(د 00	8. N	۹.>	२) ४	80	n' N	ۍ ۱	ۍ ار

Ъ⊗

শস্য শারীরবিজ্ঞান

মৃত্তিকার অভ্যন্তরে পানি চুইয়ে নবায়ন হয়। ৩.১৩ নং সারণির উপাত্ত এবং অন্যান্য পানি বিজ্ঞান সম্পর্কীয় উপাত্ত এবং মৃত্তিকার বিবরণ থেকে পানি নিৰ্দেশ করে। উদ্ভিদরান্ডির উপর শুক্ষতা সূচকের (PE/RR) সম্পর্ক আছে। কোনো এলাকাকে শুক্ষ বলা হয় যখন এর শুক্ষতা সূচক ০.৫০ : এর অর্থ সমতা সম্পর্কে ধারণা পাওয়া থেতে পারে। ৩,১৩ নং সারণিতে পানি সমতা পরিকল্পনায় একটি প্যারামিটার দেখানো হয়েছে তা হলো শুব্দতার সূচক (aridity index)। বৃষ্টিপতে (RR) এবং সম্ভাব্য সর্বেচ্চে (potential) বাল্পীয় প্রশ্বেদনের (PE)মধ্যে সমতা কোনো এলাকার আর্দ্রতা অথবা শুব্দতা (ঙ) পানি সমতা(Water balanee) : বাংলাদেশে বর্যাকানে বৃষ্টিপাত ভূনিমুহ পানি অথবা আলেইফার (aquifer) অথবা উত্যাকে নঝায়ন করে। দাঁড়ায় যে, পটেনশিয়াল বাঙ্গীয় প্রশ্বেদন বৃষ্টিপাতের দ্বিগুণ যদি শুব্দতা সূচকের মান ১ হয়, তাহলে এলাকাটি ভেজাও নয়, শুব্দও নয়

<u> সারণি</u> ৩.১৩ : বাংলাদেশের কয়েকটি নিদিষ্ট স্থানের পানি সমত্রা

(1) 24, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	भूम भूम	প্যারাখিটার	ভান্যারি		भाइ भ	এ শিল	ল	5	ङनारे	यानचे	সলী ব্য	অন্থ্য	67.0°TG	Fr.H. da
 (4) (5) (6) (7) (7) (8) (9) /ul>	বারশাল	<u>e</u>	ብ [†] እኛ	9 4n	52.8	200	8.00	0.00	ی دو د	4 00	8.55	272	24 40	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ŀ	x:00	0 A O	ନ ₄₈	われっ	đ 🕹 8	89.0	л Э	, ar 88				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ত	いろへ	55.0	たいか	0 27	0 n n 0	0 9					9 . 2 . 2 .	ю 20 20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(8)	× 12	100	2 82					8 .	n. 2011	200	۲. ۲.	。 デ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0)					v S	ກີ່	9. 	27.6	Rive	ہ چ	バット	4.97
0.10 0.10		~~ "	6 9 8	2000	R 101	19. C. C. C.	0,40%	42,8	3 (19) (19)	ь. 82	רי הי	الح الح الح	くしゅ	ی 2000 2000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>م</u>	R.	0.64	× 48	508, đ	ম ১৯৬ দ	8,2,8	७ ८ ४४	6 320	্যন্দ€্	280.8	\$% @	1010
4, 5 0.26 0.24 0.40		િ				-	ۍ له د	0 480	いうてい	00200	5 674	5 80X	.	
0.10 0.10		(م)	<u>৯</u> ০ খ	२ २ ४	ج. من	8 V.	1							-
0.0 0.1 0		(R)	20.0	P2,0	2000	0.4.0	<i>k</i> .a <	ちとし	ያሳት	5/ 3/	6 7. 4.		b c v c v c	9 2 2
 (4) 39,9 59,9 59,9 59,9 59,9 59,9 59,9 59,9	বগডা	<u>C</u>	20.0	29.9	1.25	100							000	2
39.4 39.4 39.4 84.9 84.9 88.4 88.4 38.0 38.4 39.4 30.4 30.4 30.4 30.4 30.4 39.4 39.4 39.4 30.4 30.4 30.4 30.4 30.4 30.4 39.4 39.4 39.4 30.4 30.4 30.4 30.4 30.4 30.4 39.4 39.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 50.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 50.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 50.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4	ł					- - - -	2	う かり	8.00	7	4 (S	R 09	ہم ہو م	10 10 10 10
8.0 28.4 24.4 22.8 28.0 02.4 05.6 0.0.6 54.4 24.5 28.6 24.4 24.4 25.8 24.5 25.9 26.4 26.5 26.6 26.6 27.5 28.5 26.5 26.5 24.4 24.5 24.5 24.5 24.5 24.5 24.5 24.5			F. ()	(F)	9 00	م م	えんび	8,48	0'28 84'0	80 8	89.0	58 1 1	7 RQ	00 50 50
24.4 20.4 20.8		ତ	58.0	58.0	म <i>े</i> ? २७, म	バント	0,6%	ন্দৃত	0000	9 99		24.		
ଅନ୍ୟ 1,41,5 , 200, 2,05,8 54,5 4,5 4,5 4,5 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5		8	54.9	わ バ バ	ୟ ଚତ	50 2	R ON	20.5	. 6 M/	2 22	2.82	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		2. J 2. J
>2.0 >4.9 24.1 28.4 5.86 5.96 9.67 26.4 26.5		ં	21.12	222	100	801.08	5.58.8	4 مرب	, x ; ;;	/ - 4 4 - 4				
b1 b2 <		Ŀ	075	バシン	242	Д	うよれて	0000	1 9000	0 / 0 / 0				F. 00
われき 220.2 ときえの 285.2 そうじょ そうぼう 256.7 256.4 250.2 たみで ありの たん かん たん つくろ たん つくろ たん つくろ		(4)	1			-	ر . د .				ם' זו <i>ר</i> א	ଡ ଜୁନ ମୁନ୍ଦ୍ର ଜୁନ	2	די די
			۲0 ۲				ь)))	r ด้ จั	τ' Э 22 22	アーション	28.6 N	20.0		
0.22 0.20 0.20 0.20 289 5.40 8.42 8.43 0.80 2.40 2.6) 	7.000 1	0 70 10	9 1) X (1)]	5) 12 12	0 .5.M
	ļ	(e)	0.22	0,50	5	0, 28	5 84	09 P	N 5 8	8 45 8	5 X C	121	07.0	

श्रम शाक्षांग शाक्षांग ए (2) (2) (2) (2) (2) (2) (2) (3) (4) (2) (3) (3) (4) (2) (3) (4) (2) (3) (4)	<u>ाक्षां वित्</u> (১) (२)	कानुयाति २৫ फ	(यम्बु स्तरि	भार् ,	ध ींधन	E.	5	କ୍ଷିଲାହି 20 ଜ	ଆ ମନ୍ତି ୧୦୦ ଓ	নেল্টে থ্র ৩১১	य:? विद 00_न	না'ভূম্বর ১৯.৬	1004 48 0
<u>।</u> ज	2.2	4 0¢		.			() is	506	000	ハ ハ の	6.00	n RN	0 27 77
· .	A		າ ກັບ	900	5,40	0 N D	0	/	2				
· · ·	,	7 ()) ()	л У О	6 3 8 8	در 85 د	8b. >	88,2	5° 5	80,2	\$¢`\$8	88.2	80.08	4 30
	(6		。 う う	5 0 7	N 182	20 20	67. S	মাত	R	» 3	5 . RA	5.55	1.97
	`~	19.0	- うう - うう - うう	004	5b. 8	4 4	0.0%	51.0	0%	201	S. S.	?	2) 2) 2)
· .		9 8 8 8	508 &	222.6	200.6	9 C P	4.0°	R : 3 S S	10 N	5.00	\mathcal{F}	2.66	2 O 2
		2	20	64 >	2007	2 8 9 K	たいかい	R 082	6.99.5	0,55,6	0'044	بة. در	8 8
· .					9 2	2.80 b	820.2	0,999,0	0.040	280.0	585 S		I
	:,	6 84	р. С	64 S	; 	, .		I	1			た っ?	90°9
	5		2 2 2 0	68.0	2	わわれ	વ, વહ	8 8 N	8.09	8. Str	000	0.04	320
		0 17 17	7 48	02.6	000	R'20	0, 0	6.00	110	57.6	/./.)	N 107	ية. مرد لم
	5.6	28 28	02	1 28 28	63.9	¢0,0	8℃,9	88 _. 9	80,2	8	86.2	So, G	∻্যc
<i>ر ح</i>) ()	6 95	2.62	6.88	0 ብዮ	0 70	2) 'N CI	4.50	52.6	8,43) RN	5.4	9.9.
- <u>-</u>	6	242	0 44	0 37	503 503	56.9	1.07	R	4.9	4.0%	R. 9.	0'4	0.92
~ ~		2.08	A 947	× 84	0.007	204.2	9.0.9	でいう	97°8	99. K	ନ୍ଧ୍ <u></u>	0 X 0X	20.00
ن ب	<u>,</u> , ,	00 70	- A <0	88	2.00 F	ন চুনুহ	60),8	8,068	7.408 7.408	0 0 0	8.30.4	8°.8	ာ ထိ
) G	:	.	(. 	29.52	204	8 d b. >	820 b	4,200	11 31 11 11 11 11 11 11 11 11 11 11 11 11 11	186.0	ļ	1
	<u>)</u>	5 X K	0 4 10	P 0 07	ļ		1	I			ŀ	69.2	26.0
_ U		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) // //	07 0	56.5	46'X	<i>кк</i> Р.	3 3 F	ፍዮይ	50.0	4 . K . Y	0.80	30.0
1		2 24	9 A7	926	08,8	000	02.6	5.00	60 N	979 9	5.00	રે ખુવ	R. 94
	A	10 10	5 40	P,68	(B .8)	е.съ	د 8 د	82.9	88.9	84.9	\$8.5	6 N 8	S. 20
~ `_	ିତ	0 8 8	20,2	8.65	יאג איג	F 00	000	R. 70	22.50	5) N 9	8'44'	\$0°8	5.50
) (8	59.5	8 0 8	00.00	×۳.8	27.0	N 0.	ي. لا	53,6	202	A X	0.64	1.94
· · ·) 😔	200.9	202.6	\$-055	প্.ৰসং	1.465	98, 0	હહું	6.2.2	۹0, ۹	ल्. मुन्	10 N O/	へわた
	્રિ	202	2	84.9	5.44	280.0	0,620	へうそう	6,880	5 2777	4,984	たった	o n
	િન્	.			1	5.44.4	299.0	292,0	0 APS	560.0	२ २२		
	_ هـ (মূদ্	N 0 0	5,852	80.à				ļ	1	ļ	0.0 A	20.00
) (n	17.0	27 70 .0	<i>в</i> х о	0,98	20%	6,9,8	500	31.0	/0 '9 '9	83.7	0,55	ςς`0

শ্বস্য শারীরবিজ্ঞান

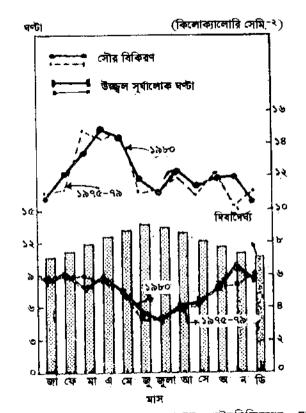
৮৬

বায়বীয় পরিবেশ

нализмуд живачуд () () () () () () () () () () () () () (6.8% 8.9% 8.9% 7.4%	ی. بر	0 29	0 74	400	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5,0	27 F	18 18 18	2.42	2h: h	2 24
	4 (0) 8 9 (9) 8 9 (9)			0. 33	2		;	2		,	2	
	4, KOK K. 4K 8, 9K	0 0 0	81 . 8	Q.F.D	200	ና `48	2 9.8	5 A B	89.5	81,8	ନ୍ଦ୍ର	00 00 00
	4'Y0Y	4.0.5	54.8	30,05	R. P.4	ь <u>с</u> р	100	0 000	52,63	\$°. ¢	10.1	28 [°] S
	ብ (ወረ	24.5	ひうみ	0'u	28.9	26,0	0.07	20,4	38,5	54,2	\$0'\$	39.6
		5 9 Y	ণ মন্	1 40 4	R'495	5 10	4.85	S B	হ হ হ শ	200,9	5,56.5	\$ 80 5
	5.05	0 75	1.0%	303	ちらのへ	985 b	0àr 4	ন <u>চ</u> িক্ত	0000	2002	5.0	o þ
	ļ	1	ł	1	のち	2005	1,040	2000	5.55	8,65		
	610	0. 8 44	5.54.4	¥'875			-		-		አባዊ ከ	4 005
	0,0	٥٢,٥	0,55	240	5,30	ତ୍ୟେ	6. US	8,85	22.2	5,02	40'0	0.0
(?)	₹`8 8	8.1%	23	38 C	e S	રુ હે	4.00	90°9	A 5	500	0'46	5.94
	х. 8	000	<u>१</u> , ५8	48.9	\$`SD	80.0	88.8	\$8°,	8,98	58.2	કોઝ	к G
<u>ଚ</u>	2 82	Р, ¹ , 1	р. 9/	મંજર	s	ກີດກ	200	9.20	505	4'4¢	500	5.55
(8)	20.5	9 6 2	n 47	R 84	×0,	6.00	20.2	20,9	5.0	56.8	N.X.	26.0
(đ	۹ ۲	4 0 55	\$ 095	50.00	202	9 (F)	40°,	50 2	へいの	רי היי ה	ЪТ, »,	ર દ્વ
(م ب	50, a	7 3	6.00	2.475	8,385	2.8° 2	5,000	C.400	1 UN1	500	49.24	-а́р
(ډ)	ł	-	1		0 5 7	20.4.00	トインシン	¢'18خ	0.000	5) 5) 5)	ł	
(A)	46,24	9 94	509.5	5-55	ł	l				ŀ	0,53	१ ९4
(R)	ex.0	5,0	3.0	0,96	かくざ	8.8h	Q. 65	<u>در</u> ۵	0,80	\$8°	(6'0	0'0 8
्षरणात्र (X)	9. ¥	8 4 8	ภาร	л Б	50 V	65,3	3,8	ક. દ	((S)	8.0	2.45	325
٤	3	いち	0 e D	(e)	ଜ୍ନ	0.00	84.0	5.98	4, 1-8	58	3) 135	80 200
٤	4'85	0.0	8 S.	2 2	45	200	4.65	4.65	0.00	0 1817	4°02	5 19 29 21
(8)	4,52	• ?*	9. 9	e, e,	5. De	50.8	50.5	5 8	S. 8.	1, दर	56.6	35.45
(¢)	<.004	\$\$8.2	5.435	5.99 2	585.5	5.00	ଚ ଞ୍	9, 8	९ ९४	コウル	508.5	2 P.C.
٩	<u>د د</u>	۰. ۲	8.08	8.48	500	500 P	0,640	3,00	5,406	5.555	5.85	5
(F)	ŀ			-	88'83	20.00	208.4	5.00.5	256.0	0.70 0	1	
(م (0.64	10 N. 10 N.	199.4	4 84	1	1	! 			ł	1.0.4	30.8
(R)	0.25.	0.20	0.20	5.42	5.45	50	8,84	8,55	2.00	5, 44	10 N	50.0

	भारताधित	<u>छान घा</u> रि	ফেৰ মাৰ্হি	मध् म	<u>ध</u> लिन	14	ية ا 1	<u>जनार</u>	G19775	لكلتموجز	1/21/2		
		244.5	5.45	808	585 185	 ? ??	5	0,0	ۍ دې	5,45	с С	C. 20	(*) 2) 41
<u>-</u>	() ()	2 2 2	80.4	, 0 , 7 , 7	44 O	180	5 28	84.8	F. 78	835	80°.4	\$'08	5.5
	28		5) 57 57	13 17 17	000	5.43	5.80	38 ,0	500	50.5	5° '85	57.0	28.2
))		2.42	5 44	0 24	8 4	NG 0	\$5.8	500	3.0.5	56.8	0.67	5 10
	(e) (e)	C 001	ちょうろ	5 095	5 0 S	\$ 26.8	8 84	68.5	59.6	3,0,	30.0	NO 6 19	506.5
	93	, 9 , 9 , 9	0 11	80 à	9 20 20	540,8	0.74 C	00 a S	4,600	4.055	େ କୁତ୍ୟ	5.00	5) 5)
	(5)		:	•		4 C C	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.965	5 85	505-B	80 J		1
	2	わ つれ の	204 6	238.8	000]	1			19 N.	> > > >
		0.58	C C	940	0 48	5,88	69 0	(A, P	Saw		5,00	0 ⁻ %	90'0
	2	1 5	9 57	070		8,50	~. 5	0 (O	9.5	9,0	. UP	5 2	S 2 2 2
1	20	0.00	5 2 2 2 2	, 25 83 - 8	65.0	ନ ୍ ୟ8	84,8	કહુન	80.9	5,28	\$8'>	56,8	28.3
ý	23	58 0	20 2	20.05	50 8 20	5.84	52.0	4.00	0.20	8,50	590	000	n 57
		9.94	0 54	3) 57	5 B 5	54.2	Rich	10 11	54.5	20.4	26.2		11 50
	6	2 F K	5287	0 00X	26 J 0	0 9 X	9.65	n 45	95,5	ર્સ પૈક	يحرث الأ	ନ୍ରହ	202
	(मृ)	- 7 7	500	ନ ଜନ୍ମ ଜନ	2,0,0	5.2.24	3628	0 Pb 8	ପ୍ରର ନ	0,58,9	545 0	5 a 2	06
	6			1		\$20.8	5040	0,06,6	ፈ አካ 8	へごつか	ું જ અ	-	-
	2	ु म	Ч С 0Х	4 40X	デアの	I	I		ł		1	2.2.6	98. 98
		~~ 0	0, 28	00000	6,48 D	195 Y	197.9	ଜୁ ସହ	¢.90	8.05	50%	0,58	C.03
anan fa		70 57	49.9	0.00	070	55.2	P.05	R' 19 A	5.06	200	5.00	5.44	ก ภัก
		308	295	88 à	81-8 8	84.0	80°N	84,48	А́х8	80,9	88.5	0 1 1 1	S 80
	23	. 5 5 7	2 7 7	ት 8ጵ	10 10	9. 20	9 0 0	0000	۵. د ب	5.75	2 0 0	590	ъ р. с
) (8)	5.97	5 A 3	5.05	24.0	58,4	8 05	n js	0°05	0.44	58.2	5,5,8	28.2
	6	- 10 - 10 - 10	208 2	2202	508.5	1, 44	4 P. G	4.69	0 9 9	12.2	ولعراه	0°.0	10
	(s)		5 87 87	6°2	50F.2	490.6	5.55	S'-ঀৼ⊅	0'459	80P.'408	208.3	∧ 2,0	2
	6	.	•	l	ч 85	\$'.40X	୍ରକ୍ଷ	4 A A D	৫ ৬১,৭	498°	ぜつい		Ì
) (A	₽°,4	<u> এ</u> জ	100	-]	ļ	ł	L I I	-	1	କ୍ରିତ୍ୟ	о: С
	2		. 9			1010		00/1	24 07	5 FO	24.0	0.80	10.0

শস্য শারীরবিজ্ঞান


66

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NOR INC.				5 <u>1</u> 57	H	ĥ	Y S	000				77 T 82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- File	N.	5	NH N	000	5 A 6	1.04							
		3		7. ar	0 7	2		×.,>>	5	5	2	3	0 87	ຍ ຄຳ
		ê	0,00	01.0	e>.8	8.04	6 9.2	<i>К</i> 03	0,63	0.68	84°S	0 FS	4'08	A'SC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		٢	6.X	ন'ন্	1.67	28'8	30°S	23.4	4 80	58.5	000	6 . RX	4.6	29.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(8)	0 5	5.5%	0,00	0 9 9 9	11 . DN	33.8	トイン	バント	5.0.	۹ م ۲	0.64	א גי
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(a)	9 .	2422	262.9	20%	584.8	e n R	0,5P	હુ રુ	8°, 8	0 66	206,8	O BR
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(ବ)	ы́. Э	20.05	52.9	5.S	260.6	0 46%	ብ ኑናኛ	5.057	2,25,0	4.121	5.95	°.s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ð			l		ዲተ ያ	্র হে	A 36	< . () () ()	500	82, 5	I	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(a)	8ં વન	5.505	0,600	5,005			i			:	50.1	0'02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(e)	6.0%	94.0	0.28	90°0	<u>م</u> رز	25.0	59.0	ۍ م	. 69'r	.80	빗	0,05
	রপ্রেয়	3	28.4	7 B7	93,9	5 80	64.9	050	R'53	0,45	5.65	50.3	8 A¢	40.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ē	500	06.5	9.08	¢8,9	¢0.0	ନ <u>୮</u> ୫	ତ । 8	ନ୍ତି କ	ન દ8	58°,9	৮ নৃত	000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	28 28	56.5	39,8	204	のか	л С	100	500	パンシ	ۍ ۱۰	4 07	50,0
$ \begin{array}{c} \begin{array}{c} \kappa_{4}\kappa_{6} \\ \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \\ \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{4}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{6}\kappa_{6} kappa_{6} \end{array} \\ \end{array} \\ \begin{array}{c} \kappa_{6}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{6}\kappa_{6}\kappa_{6} \end{array} \\ \begin{array}{c} \kappa_{6}\kappa_{6}\kappa_{6} \end{array} \\ \end{array} \\ \begin{array}{c} \kappa_{6}\kappa_{6}\kappa_{6} \end{array} \\ \end{array} \\ \begin{array}{c} \kappa_{6}\kappa_{6}\kappa_{6}\kappa_{6}\kappa_{6}\kappa_{6} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \kappa_{6}\kappa_{6}\kappa_{6}\kappa_{6}\kappa_{6}\kappa_{6}\kappa_{6}\kappa_{6}$		8)	56,0	0.6%	8.07	1.5	5.55	56.50	58.5	5 8, N	\$°.85	8.9.	R	19.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(y)	ቅ <i>ኢ</i> ፅ	5,942	S-96.8	590.0	5.445	म <i>े</i> , 8	ର ଜ ଜ	н С Ч	ትርት	のない	F.002	17 57 16
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) ((a)	2	,88 , br	1 AN	8 8 A	0.465	5 1100	0007	0.59.8	9,94,8	556 6	20.0	8.5
		(છ		ļ			አጓፎ አ	1007	7004	9000	9 00¢	6 85	1	•
(4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (ھ	<u>৯</u> শ	0 0 C	1032	ବି ୦୧		ł					F.04	क8, br
6.49 0.46 0.46 6.49 0.46 6.49 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 </th <th></th> <th>(A)</th> <th>\$5.0</th> <th>0,50</th> <th>0,59</th> <th>0.85</th> <th>88 2</th> <th>54.0</th> <th>8,30</th> <th>69 O</th> <th>19 9</th> <th>047</th> <th>0,70</th> <th><0'0</th>		(A)	\$5.0	0,50	0,59	0.85	88 2	54.0	8,30	69 O	19 9	047	0,70	<0'0
6.40 8.0 8.8 9.8 9.8 8.8 9.9 9.8	সিলেট	3	187 187	x 6x	ନ୍ ଦେ	9 6	4.00	5.00	10 N	0,00	0,45	20.2	35,3	17 20
8.9 M. (b M. (b M. (c M. (c <t< th=""><th></th><th>r</th><th>9 3</th><th>36.5</th><th>80,8</th><th>85.0</th><th>8,88</th><th>83,4</th><th>°-'88</th><th>68,à</th><th>ه`88</th><th>\$2[`]8</th><th>8 AD</th><th>0.80</th></t<>		r	9 3	36.5	80,8	85.0	8,88	83,4	°-'88	68,à	ه`88	\$2 [`] 8	8 AD	0.80
36,8 36,8 36,8 38,8 38,9 38,9 38,9 38,9 38,9 38,9 38,9 38,9 38,9 38,9 38,9 38,9 37,9		،	8°	20.0	59,8	×.8×	र'नर	5.50	0,0	(e)	8,50	29.5	500	5) 5
କୁକୁକୁକୁକୁକୁକୁକୁକୁକୁକୁକୁକୁକୁକୁକୁକୁକୁକ		(8)	ROC	20.4	୍ଚ୍ଚ	8'% 7'	20.2	27	8%	22,6	50.6	12.4	No 8	10 10 10
、 「 「 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「		(¢)	N . DR	>>6	5 80 0	0.942	ういれる	े <i>रे</i> व	4 63	0.45	20° X	2 24	100.0	100.9
		(3) (3)	21	8°,8	ь, ь С	0,240	ୁ ଅକ୍ଷର ଅକ୍ଷର	5.25%	5.00	\$005	୫୬୯,୫	2 G S	514	25.0
		6				245.0	80% 8	8'40%	18 UR 9	হ বং চ	SS5 <	0,0	:	
		(r) (74.4	73 57 59	2,85	İ							52.2	રે જેવ
		(%) (%)	0.42	0,85	S\$.0	59.Y	4,83	18.62	30,28	5.5	0.80	205	21	6.75

বায়বীয় পরিবেশ

75-

.(৭) সূর্যালোক : ধর্ষাকালে আকাশ মেণ্ডাড্ড্য থাকায় সৌরবিকিরণের মাত্র্যা কম, আবার শীভকালে মেঘনুস্ত পরিক্ষার আকাশ থাকায় স্বচ্ছ সূর্যালোক পাওয়া যায়। বাংলাদেশে অতি সম্প্রতি সৌরবিকিরণ সম্পর্কিত উপাণ্ড সংগৃহীত হয়েছে। ৩.১২ নং চিত্রে ঢাকার অদুরে জয়দেবপুরের সৌবিকিরণের মাসিক গড় দেখানো হয়েছে।

চিত্র ৩,১২ : ঢাকার অদূরে জ্বয়দেবপুরের সৌরবিকিরণের মাসিক গড় (কিলোক্যালরি/বর্গসেণ্টিমিটার)। সেই সাথে দিবা–দৈর্ঘ্য এবং উজ্জ্বল সূর্যালোকের ঘণ্টা দেখানো হয়েছে।

(৮) শিশির, কুয়াশা ও তুষারপাত : বাংলাদেশে সাধারণত সেপ্টেম্বর থেকে ফেব্রুয়ারি পর্যন্ত শিশির ও কুয়াশা পড়ে। শীতককালে অনেক সময় এত বেশি কুয়াশা পড়ে যাতে দিনে সূর্য দেখা যায় না। বাংলাদেশের কোথাও তুষারপাত হয় না।

(৯) বায়ুমণ্ডলের গ্যাসীয় দূযণকারী পদার্থ : বাংলাদেশে কল–কারখানা কম হলেও, সেগুলো পরিবেশ সংরক্ষণ আইন যথাযথভাবে মানে না বলে বায়ুদূষণ হচ্ছে। ত্রুটিপূর্ণ মোটরযান থেকেও নির্গত হয় কালো ধোঁয়া। বাংলাদেশের বায়ূমণ্ডলে কি পরিমাণ বায়ুদূযণকারী পদার্থ আছে তা এখন পর্যন্ত সঠিকভাবে নিরাপিত হয়নি। নতি<u>ি</u>শিতোক অকলের আবহাওয়ার মাথে বাংলাদেশের আবহাওয়ার তুলনার জন্য যুক্তরাজেরে অ্যাবেরেসটুইথের আবহাওয়ার বিভিন্ন উপান্ত ৩_.১৪ নং সারদিতে উপস্থাপিত হলে।।

ઉપાસ
্যওয়ার
আবহ
ट्रियत
বেরিস
ম ব্
খুক্তরাজে
0.58
ø
मात्रनि

সংৰ্গাছ ডাপামান্ত্ৰা	कान् सहि	মেৰুল্যন্থি	물	والأ	<u>e</u>	تر سر	وطاغ	खाज न्	तारीच	जा है स्वि	<u>म(</u>	<u>हिल्ल्</u> स	यार भ ⁵ ंदद
⁽⁰ :त्रचतिम्रात्र)	rt 25	ج ج	Ř	а. Ф	, .	32,8	\$9.9	20.0	\$6.9¢	رو برو	"А	70 78	3
मर्वनि _{ष्} ठाभया <u>ज</u> ा	ه م	9.0	3,6	80 180	รับ	88. 44		P.0X	ط تع	بط ج	<u>م</u> ر د	00 00	. v
(व्यवनिंहान)													
সুর্বালে।ব বেন্টা/মাহ)	8 0, भ	42.4	6.1.8	3 40,8	18 1) 77 7	5°0°€	5'000	ريور ۽ اريور ۽	л 	20.00	د. ندر ب	5	2827
(পীর্বিধিরণ (ফোছ্ন, বর্গান্টায়: প্রত্যিনায়:	ら カ	8. 8.	אר בי'	\$ 9 7	R R	5 5 2	29.62	73 80 7	ж д	n 3)		2	
র্টি শান্ত (নিধিখিয্যার/ মাপ)	ہ اور 	₹2 2	// 	л У У	26 26 26	* 				3			······································
বাহুং কে বিংলাখ্যিয ন্	74 (***	/8	24 0 - 1	4	76 .0	در 	3. 	1 .a. 	· //. · · ·	· ·		ية. در	

<u> বায়বীয় পরিবেশ</u>

i

ভর, তাপ এবং ভরবেগের স্থানান্তর (Mass, Heat and Momentum Transfer)

ভর, গ্রাপ এবং ভরবেগ শ্থানান্তরের মাধ্যমে বায়বীয় পরিবেশের সাথে শস্য উদ্ভিদ পারস্পরিক ক্রিয়া করে। ভর স্থানান্তরের পদ্ধতিগুলো, যেমন– শস্যের পাতা ও পরিবেশের মধ্যে কার্বন ডাই– গ্রারাইও, জলীয় বাষ্পের বিনিময় এবং তাপের স্থানান্তর খুব নিকট সম্পর্কিত হওয়ায় একসঙ্গে আলোচনা করা হবে। এটিকে দুটি প্রধান ভাগে ভাগ করা হয়েছে—একটি আগবিক পর্যায়ে ক্রিয়াশীল এবং এক্ষেত্রে মাধ্যমের 'ম্যাস' স্থানান্তর হয় না, যেমন– পদার্থের ব্যাপন ও তাপের পরিবহণ এবং অপরটিকে সাধ্যরণভাবে পরিচলন বলে, এক্ষেত্রে ফ্লুইডের ম্যাস চলাচলের জন্য বন্তু চলাচল করে। বায়ুপ্রধাহের মাধ্যমে ভরবেগের স্থানান্তর হয়।

ঘনমাত্রার পরিমাপ (Measures of concentration)

তর ও তাপ স্থানান্তরের বিভিন্ন কৌশল বিস্তারিত আলোচনার পূর্বে খনমাত্রা বলতে কি বোঝায় তা জানা দরকরে। সাধারণভাবে, ভরের অথব্য অন্য কোনো সন্থা, যেমন তাপ অথব্য ভরবেগের উচ্চ খনমাত্রা হতে নিমু খনমাত্রায় স্বতঃস্ফুর্তভাবে স্থানাস্তর হয়। অবশ্য কোনো মিশ্রণে একটি সঞ্চার (i) খনমাত্রা বিভিন্নভাবে প্রকাশ করা যায়, যা এক একটি উদ্দেশ্যের জন্য উপযুক্ত; নিমের আলোচনা থেকে তা স্পষ্ট হবে।

(১) ঘনমাত্রা : একটি বহুল ধ্যবহৃত পরিমাপক হলো ঘনমাত্রা (Ci) অথবা ঘনত্ব (Pi), যেখানে Ci =Pi = মিশ্রণের প্রতি একক আয়তনে i-এর ভর (৩.৫)

অপরহাক্ষ, মোলার ঘনমাত্রা (cm;) ব্যবহার করা যেতে পারে:

 $\mathrm{C}^{\mathrm{m}}_{\mathrm{f}}$ = মিশ্রণের প্রতি একক আয়তনে i-এর

মৌলের সংখ্যা = C_i/Mi (৩.৬)

যেখানে Mi হলো আগবিক ওজন। যদিও গ্যাসের গঠনের পরিমাপক হিসেবে প্রায়ই ঘনমাত্রা ব্যবহার করা হয়, তবে বদ্ধ সিস্টেমে তাপমাত্রা অথবা চাপের পরিবর্তনের সাথে ঘনমাত্রার পরিবর্তন হয়, কারণ এগুলো আদর্শ গ্যাস সূত্র অনুযায়ী আয়তনের পরিবর্তন ঘটায়:

PV=nRT..... (0.9),

একেএে n হলো উপস্থিত মোলের সংখ্যা, Tাহনো পরম তাপমাত্রা, Pাহনো চাপ এবং R গ্রাস ধ্রুবক। যে ● তু গ্যাসের মতো তরল পদার্থ এত সংকোচনশীল নয়, সেহেতু দ্রবণে ঘনমাত্রা চাপ অথবা তাপমাত্রায় অনেক কম সংবেদনশীল।

তাপমত্রো, চাপ অথবা আয়তনের পরিবর্তন মোল ভগ্নাংশকে প্রভাবিত করে না, কারণ এরা সকল উপাদানকৈ সমভাবে প্রভাবিত করে।

(৩) ভর ভগ্নাংশ (Mass fraction) : ভর ভগ্নাংশ (mi) অপর একটি গুরুত্বপূর্ণ পরিমাপন।

mi = প্রতি একক মিশ্রণের ডারে i–এর ভর=Ci/ρ..... (৩.৯)

p হলে: মিশ্রণের খনার, এটি তাপমাত্রা এবং চাপের উপর নির্ভরশীল নয়। নিমুলিখিতভাবে ভর উণ্ণাংশ মোল ভগ্নাংশের সাথে সম্পর্কিত-

mi = xiMi/M..... (0.50)

এক্ষেত্রে, M হলো যিশুণের গড় অন্ধবিক ওজন।

25

আণবিক স্থানান্তর প্রক্রিয়াসমূহ

ব্যাপন-Fick-এর প্রথম সূত্র

একটি ফ্রুইডের অণুগুলোর দ্রুত তাপীয় গতির জন্য অণুগুলোর পুনর্বিন্যাস ঘটে এবং একাট অসমসন্থ ফ্রুইডে ভর ও তাপের স্থানান্তর ঘটে। এই প্রক্রিয়াকে ব্যাপন বলে। যেমন কোনো গতিহীন ফ্রুইডে উচ্চ ঘনমাত্রা থেকে নিয়ু ঘনমাত্রায় অণুর নিট স্থানান্তরের জন্য ভর স্থানান্তর ঘটে। কোন্যে একমাত্রিক সিস্টেমে কোনো এক সত্তা i-এর ফ্রাক্স ঘনত্র বা ভর স্থানান্তরের হার (11) নেগ্র ঘনমাত্রার গ্রেডিয়েন্ট এবং ব্যাপন গুণাঙ্ক নামক দ্রুবকের (Di) সাথে সম্পর্কিত যা গ্র্যাণতিকভানে নিয়ুলিখিতভাবে প্রকাশ করা যায় –

এটিই হলো Fick- এর ব্যাপনের প্রথম সূত্রের একমাত্রিক অবস্থা। এই সমীকরণে বাণান্ধকাচহ-হলো একটি গাণিতিক রীতি, যা নির্দেশ করে যে, ফ্লাক্স হলো নিমু ঘনমাত্রার দিকে।

তাপ পরিবহণ

পরিবহণের (conduction) মাধ্যমে তাপ সঞ্চালন ব্যাপনের অনুরূপ। পরিবহণ হলে। মাধ্যমের স্থানান্তর ছাড়াই উচ্চ তাপমাত্রা (অর্থাৎ গতীয় শক্তি) নিমু তাপমাত্রায় তাপের সঞ্চালন। কঠিন পদার্থের ফেত্রে আণবিক সংঘাতের (collisons) জন্য অণুগুলোর মধ্যে গতীয় শান্তি স্থানান্তরে। (অণুগুলো স্থানান্তরিত হয় না) মাধ্যমে শক্তি স্থানান্তর ঘটে, কিন্তু ফুইডের ফেত্রে উচ্চ শান্তিসম্পাহ অণুর ব্যাপন হতে পারে।

Fourier- এর সূত্রের সাহায্যে পরিবহণজনিত তাপ সঞ্চালন বর্ণনা করা হয়, যেমন প্রাঃ একক আয়তনে ইন্দ্রিয়গ্রাহ্য (sensible) তাপ সঞ্চালন (C, এর একক Wm⁻² = J m ¹ S⁻¹ -নিমুভাবে প্রকাশ করা হয় :

K হলো তাপীয় পরিবাহকতা (thermal conductivity) (Wm⁻¹ K⁻¹)। যদিও চাল সঞ্চালনের চালিকা শক্তি হলো তাপমাত্রার গ্রেডিয়েন্ট, সুবিধাজনক অবস্থায় আলার জন্দ দাল গাণিতিক পরিবর্তনের (manipulation) মাধ্যমে সমানুপাতিক ফ্রবককে ভর স্থানাওরের এককে রূপান্তরিত করা হয়। যদি T-কে একটি "তাপ ঘনমাত্রা" C_R=ρC_p T, যেখনে C_p হলো ফ্রু^{রু} চর আপেক্ষিক তাপ ধারণ ক্ষমতা (J Kg⁻¹), দ্বারা প্রতিস্থাপিত করা যায়, তাহলে ৬০০ না সমীকরণের মতো একটি সমীকরণ পাওয়া যায়:

 $C=-DH_p\,C_prac{\delta T}{\delta x}\,....($ ৩.১৩), এক্ষেত্রে DH হলো তাপীয় ব্যাপন গ্ণাঙ্ক।

ভরবেগ স্থানান্তর

যখন কোনো বস্তুর পৃষ্ঠতলের স্পর্শক বরাবর বল প্রয়োগ করা হয়, তখন পৃষ্ঠতলের ৬৫ জিল ধস্তুর সাথে সম্পর্ক রেখে ধীরে ধীরে গড়িয়ে যায়। একটি শস্তু কঠিন পদার্থ বিশৃতি না ২৫ জ রকম শিয়েরিং পীড়ন (shearing stress) ছানান্তর করে, এর প্রতীক হলে 1 (tau) হলে আ একক প্রতি একক আয়তনে বল (kgm⁻¹ s ²)। একটি ফ্রুইডে অবশ্য সাঁগকটন হঁ প্রস্পরের সাথে সম্পর্কযুক্ত হয়ে গড়িয়ে চলে, ফ্রুইডের একটি স্তর পরের ভরকে শিয়েরং পীড়ন প্রেমণে অপেক্ষাকৃত অযোগ্য, ফলে একটি ফ্রুইডের পৃষ্ঠতল বরাহের প্রবাহিত ২০৫৫ সংগ্ গতিবেগের গ্রেডিয়েণ্ট সৃষ্টি হয়। পার্শ্ববর্তী স্তরের অণুগুলোর পারস্পরিক ক্রিয়ার জন্য অন্তঃস্থ ঘর্ষণজনিত বলের উদ্ভব হয়, আর এটিই হলো কোনো ফ্রুইডের সান্দ্রতার (viscosity) পরিমাপক ; অসান্দ্র (non-viscous) ফ্রুইডের তুলনায় সান্দ্র ফ্রুইড শিয়েরিং পীড়ন প্রেরণ অধিকতর কার্যকর। এই প্রতিক্রিয়াকে নিউটনের সান্দ্রতার সূত্রের মাধ্যমে বর্ণনা করা হয়। এই সূত্রানুসারে পৃষ্ঠতল বরাবর একটি ফ্রুইডের শিয়েরিং পীড়ন গতিবেগের (ðu/ðx) সাথে সমানুপাতিক—

এক্ষেত্রে, n কে বলা হয় গতীয় (dynamic) সান্দ্রতা (Kg m⁻¹ s⁻¹)। এই সমীকরণ পূর্বে উল্লেখিত তাপ এবং ভর স্থানস্তেরের মতোই। এক্ষেত্রে শিয়েরিং পীড়নের পরিমাপ ভরবেগ ফ্রাক্স ঘনরের ন্যায়, যেখানে ভরবেগ হল্যে ভড় ×গতিবেগ। তাপ স্থানান্তরের মতো গতিবেগ গ্রেডিয়েন্ট প্রতিস্থাপন করা যায় একটি ভরবেগ ঘনমাত্রা গ্রেডিয়েন্ট দ্বারা (C_M = ভর × গতিবেগ/আয়তন = pu),তাই ব্যাপন গুণাঙ্কের পরিমাপের মতো একটি সমানুপাতিক ধ্রুবক পাওয়া যায়। ভরবেগর এই _ ব্যাপন গুণাঙ্করে (D_M) কাইনের্মেটিক সান্দ্রতাও (kinematic viscosity অর্থাৎ v) বলে।

পরিচলনজনিত এবং টারবুলেন্ট স্থানান্তর

অণুর মধ্যে তাপীয় চলনের জন্য ব্যাপনের মাধ্যমে ভর অথবা তাপের স্থানান্তর হয় এবং শান্ত (still) ফ্রুইডে (যেমন- পাতার কোষাবকালের বায়ু) ব্যাপনের এটিই প্রধান কৌশল। বায়ুমণ্ডলে উন্মুক্ত পৃষ্ঠওলের ফেত্রে (যেমন- পাতা) পৃষ্ঠতল বরাবর বায়ুপ্রবাহের জন্য ভর ও তাপ স্থানান্তরের হার অনেকাংশে বেড়ে যায়। দুটি প্রক্রিয়া সংঘটিত হয়। প্রথমত, বায়ুপ্রবাহ অনবরত পৃষ্ঠতল সন্নিকটবতী বায়ুকে দূরে সরিয়ে দেয়, তাই ঘনমাত্রার খাড়া (steep) গ্রেডিয়েন্ট বজায় থাকে (ব্যাপনের চালিকা শক্তি); সুতরাং শান্ত বায়ুর তুলনায় অধিকতর স্থানান্তর ঘটে। দ্বিতীয়ত, পাথার্থিশিষ্ট বায়ুপ্রবাহের জন্য স্থানান্তর দ্রুত হয়; এক্ষেত্রে বায়ুপ্রবাহের স্থে সরাসরি বস্তুও স্থানান্তরিত হয়।

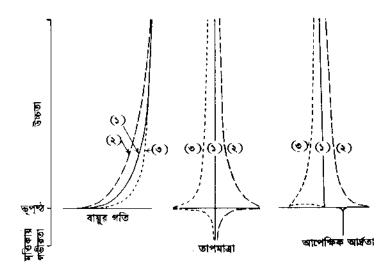
নিমু ধায়ুমণ্ডলে (lower atmosphere) বায়ু কখনোই শান্ত থাকে না। আনুভূমিক (horizontal) চলাচল ছাড়াও, ধায়ুর ক্ষুদ্র ক্ষুদ্র প্যাকেটের বিশৃংখল চলনও হয়। বায়ুপ্রবাহের প্রকৃত অধস্থা নির্ভর করে উপস্থিত পরিচলনের প্রকৃতির উপর। এটি ঘটতে পারে মুক্ত পরিচলনের (free convection) জন্য, এক্ষেত্রে বায়ুর ঘনরের পরিবর্তনের জন্য বায়ুপ্রবাহ হয় : যখন উত্তপ্ত বস্তুর সহিকটবর্তী বায়ু প্রসারিত হয়ে উপরে ওঠে অথবা শীতল বায়ু কোনো ঠাণ্ডা বস্তুর নিচে নেমে আসে তখন এটি ঘটে। অথবা কৃত্রিম পরিচলনের (forced convection) জন্যও ঘটতে পারে। এক্ষেত্রে বায়ু কর্তৃক বহিংস্থ চাপের গ্রেডিয়েন্ট তৈরির জন্য বায়ু চলাচল করে। কঞ্চ গরম করার জন্য ব্যবহাত প্রচলিত রেডিয়েন্টর প্রধানত নির্ভর করে মুস্ত পরিচলনের উপর, কিন্তু পাথারিশিষ্ট রেডিয়েন্টর রক্ষের অভ্যন্তরে তাপ স্থানান্তরের জন্য কৃত্রিম পরিচলনে ব্যবহার করে।

তাপ ও ভর স্থানাস্তরে মুক্ত এবং কৃত্রিম পরিচলনের তুলনামূলক গুরুত্ব নির্ভর করে তাপমাত্রা গেডিয়েন্টের জন্য সৃষ্ট প্লবতা (buoyancy) ধল এবং বায়ুপ্রবাহের জন্য সৃষ্ট ইনারশিয়াল (inertial) বলের (এটি টারবুলেন্দ তৈরি করে) সমতার মধ্যে। অধিকাংশ উদ্ভিদ পরিবেশে, কেবল মুক্ত পরিচলনের মাধ্যমে তাপ ও ভরের স্থানান্তর কদাচিৎ ঘটে, যদিও বায়ুপ্রবাহ খুবই মন্থর হলে এটি স্থানাস্তর প্রক্রিয়ার একটি গুরুত্বপূর্ণ উপ্যাদান।

বায়বীয় পরিবেশ

বায়ুমণ্ডলের নিমু স্তরগুলোর মধ্যে স্থানান্তর প্রক্রিয়া (Transfer process within the lower layers of the atmosphere)

বৃহৎ মাত্রার বায়ু স্থানান্তরের মাধ্যমে সাধারণ চলাচল সনাক্ত করা যায়। যেমন- প্রাণ্ডাইক আবহাওয়ার বিবরণীতে প্রকাশিত তথ্যাবলী। এর ভেতরেও বিভিন্ন রকমের অস্থায়ী চলাচল ঘটে , এটি ঘটে অসমভাবে পৃষ্ঠ তল উত্তপ্ত হওয়া, ঘর্যণ, স্থানীয় ভূ-প্রকৃতির পরিবর্তন এবং পৃষ্ঠ চল অসমান হওয়ার জন্য। অধিক ইনারশিয়াযুক্ত একটি বৃহদাকার উইন্ড-ভেন (wind vane) কোনো নির্দিষ্ট উচ্চতায় রাখলে এটি সাধারণত সম্পূর্ণরপে স্থির থাকে ; এটি নির্দেশ করে যে, বায়ু একদিকে প্রবাহিত হচ্ছে। যদি খুব বেশি সংবেদনশীল একটি উইন্ড-ভেন নিকটবর্তী স্থানে রাথা হয় এবং পরিবর্তন যদি সেকেন্ড অথবা মিনিটের ব্যবধানে অনুসরণ করা হয়, তাহলে দেখা যাবে বায়ুর বেগ ও দিকের পরিবর্তন পুনঃপুনিঃ ঘটছে। এর কাছে যদি একটি সংবেদনশীল ব্যাবোমাচান রাখা হয়, তাহলে খুব দ্রুত বায়ুর চাপের পরিবর্তন লক্ষ্য করা যাবে। এটিকে টারবুলেন্ড প্রবাহ আনুভূমিক সমতলক্ষের থেকে আপর একটি গড় দূরত্ব বরাবর (একে মিশ্রণ দেয়া বলে) একটি আনুভূমিক সমতলক্ষের থেকে আপর একটি সমতল ক্ষেত্রে বায়ুর মন্দ্র শুদ্রু প্যাকেট আনহ উপর ও নিচের দিকে চলাচল করে। এর ফলে বায়ুস্তরগুলোর মধ্যে অতি দ্রুত মিশ্রণ হয় এবং কোনো বস্তুর, যেমন– তাপ অথবা জলীয় বান্দের উদ্ড ঘনমাত্রা থেকে নিমু ঘনমাত্রায় সাধারণ্য আণবিক ব্যাপনের তুলনায় দুত স্থানান্তর হয়।


একটি কঠিন পৃষ্ঠতলের, যেমন ভূপৃষ্ঠ অথব্য একটি পাতো, উপর দিয়ে বায়ু চলাচল করলে ঘর্ষগজনিত বলের জন্য এর প্রবাহ হ্লাস পেতে থাকে এবং যে স্তরটি পুরোপুরি পৃষ্ঠতলে আছে তার কোনো চলন নেই অর্থাৎ এটি সম্পূর্ণরূপে স্থির। পৃষ্ঠতল থেকে খাড়াভাবে উপরের দিকে পরশর স্তরগুলোতে বায়ুর বেগ ক্রমাগত বাড়তে থাকে, কিন্তু এগুলো ল্যামিনার প্রধাহ দেখায়, অধাৎ সম্পূর্ণ বায়ু পৃষ্ঠতল বরাবর একই দিকে প্রবাহিত হয়, স্তরগুলোর মধ্যে খাড়াভাবে স্থানান্তর বায়, অধাৎ সম্পূর্ণ বায়ু পৃষ্ঠতল বরাবর একই দিকে প্রবাহিত হয়, স্তরগুলোর মধ্যে খাড়াভাবে স্থানান্তর এগহে দেখায়, অধাৎ সম্পূর্ণ টারবুলেন্ট হয়। এরকম বাউন্ডারি স্তরের মধ্যে বস্তুর স্থানান্তর, যেমন জলীয় বান্ধা, ঘটে আগবিক ব্যাপনের মাধ্যমে এবং টারবুলেন্ট স্থানান্তরের তুলনায় এর গতি অন্কে মন্থর। এমনা ক টারবুটে অক্ষলেণ্ড বায়ুর মাধ্যমে পৃষ্ঠতলের ঘর্ষণজনিত ড্র্যাগ (frictional drag) স্থানান্তরিত হয় যা একটি বায়ুর স্তর অপরটির উপর দিয়ে গড়িয়ে গেলে শেয়ারিং পীড়নের সৃষ্টি করে; এর জন্য ভরবেগের নিমুগামী ফ্রাক্স তেরি হয়।

বৃহদাকার এবং মোটামুটি সমন্তল পৃষ্ঠতল বরাবর কোনো বস্তুর স্থানাস্তর মূলত খাড়া , একক আয়তনের আনুভূমিক সমতলক্ষেত্র বরাধর কোনো বস্তুর স্থাস্তেরের হার (মর্থাৎ ফ্রান্স খনর) ঘনমাত্রা গ্রেডিয়েন্টের সমানুপাতিক , সমানুপাতিকতার গুণাঙ্ককে এডে (eddy) স্থানাস্তর স্তণাঞ্জ বলে। সাধারণভাবে F = – kdx/dz এবং বিশেষ করে যে সমস্ত বস্তুর সাথে আমর। আধন পরিচিত তা নিমুরপ :

ভরবেগ (প্রতি একক আয়তনে শিয়েরিং পীড়ন) M (kgm⁻¹ s⁻²) = $\rho a K_M du/dz_{a}$ (৩.১৫) তাপ : H(J m⁻²s⁻¹) = $-\rho_a C_p K_H d\dot{T}/dz_{a}$ (৩.১৬) জলীয় বান্স : E (kgm⁻² s⁻¹) = $-\rho a K_W dq/dz_{a}$ (৩.১৭) কার্বন ডাই-অক্সাইড : P (kgm⁻² s⁻¹) = $-\rho_a K_p dC/dz_{a}$ (৩.১৮) ari

এক্ষেত্রে, ho_a হলো ঘনত্ব, C_p সিক্ত বায়ুর তাপীয় ক্ষমতা u গড় অনুভূমিক গতিবেগ (velocity), T গড় তাপমাত্রা q গড় আপেক্ষিক আর্দ্রতা প্রেতি গ্রাম সিন্ড বায়ুতে জলীয় বাপের পরিমাণ গ্রাম), C কার্বন ডাই-অক্সাইডের গড় আপেক্ষিক ঘনমাত্রা, এবং K_M,K_H, K_w এবং K_p হলো নিজ নিজ স্থানান্তর গুনাঙ্ক এবং z হলো পৃষ্ঠতল থেকে উচ্চতা।

উপরোক্ত চার প্রকার স্থানান্তর গুণাঞ্চের মানই প্রধানত নির্ভর করে বায়ুর টারবুলেন্দের উপর। ভূপশ্চের উদ্ধে বায়ুপ্রবাহের বেগের তারতম্য উচ্চতার সাথে বৃদ্ধি পায় ; তাই কোনো নির্দিষ্ট উচ্চতায় বায়ুপ্রবাহের সাথে এগুলোও বেড়ে যায়। সুস্থির পরিবেশে (যেমন- সূর্যান্ত এবং সূর্যোদয়ের সময়) আদর্শ প্রোফাইল ৩.১০ নং চিত্রে দেখানো হয়েছে। দিনে সৌরবিফিরণ বৃদ্ধির জন্য মৃন্তিকা ও উদ্ভিদরাজি এটিকে বেশি শোষণ করে এবং তাপমাত্রার গ্রেডিয়েন্ট স্থাপিত হয়। উপরের স্তরের তুলনায় ভূপৃষ্ঠের সন্নিকটের উষ্ণ বায়ু কম ঘন, ফলে এটি উপরে উঠতে থাকে। এই পরিচলন বায়ুমণ্ডলের অস্থিরতা বৃদ্ধি করে, টারবুলেন্দ তথা স্থানান্তর গ্রেদিরে যায় এবং জলীয় সমরপ তাপমাত্রার প্রোফাইল তৈরি হয়। বাষ্পীভবনে সৌরবিফিরণ ব্যবহৃত হয় এবং জলীয় বান্দের গ্রেডিয়েন্ট তৈরি হয়।

চিত্র ৩,১৩ : একটি ছোট মস্ণ লনের উপরে ধায়ুপ্রবাহ, তাপমাত্রা এবং জ্বলীয় বাম্পের প্রোফাইল সরলীকৃত নকশার সাহায্যে দেখানে৷ হয়েছে। (১) সূর্যোদয়ের সময়, (২) মধ্যাফ্রে এবং (৩) রাতে।

95

রাতে বিপরীত অবস্থা হয়, বায়ুর নিচের স্তরের তুলনায় মৃত্তিকা এবং উদ্ভিদরাজি অধিক তাপ হারায় এবং এর জন্য নিমুমুখী তাপ ফ্লাক্স তৈরি হয়। শান্ত পরিবেশে তাপ স্থানান্তর এত মন্থর ২তে পারে যে, ভূপৃষ্ঠের শীতলীকরণের জন্য তাপমাত্রা শিশিরাঙ্কের (dew point) নিচে নেমে যাদ্র এবং পানি ঘনীভূত হয়। মৃত্তিকার পানি থেকে অধিকাংশ শিশির তৈরি হয়।

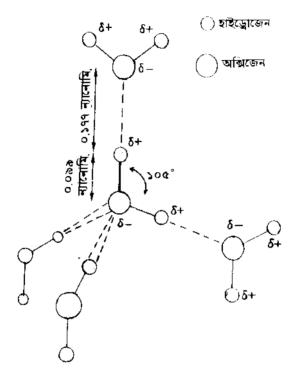
এই প্রভাবগুলো মেথ (বিকিরণের মাধ্যমে) এবং বায়ুপ্রবাহ (কাঁএন প্রারচলন বৃষ্ণির নাধ্যমে। কর্তৃক রূপান্তরিত হয়। উপরস্ত, শস্যের উচ্চতা বৃদ্ধির সাথে সাথে অবস্থা অধিকাতর জটিল হয়

শস্য উদ্ভিদের ক্যানোপির অভ্যন্তরে স্থানান্তর

শস্য উদ্ভিদের ক্যানোপির উপরের তুলনায় ক্যানোপির অভ্যন্তরে বায়ুগ্রবাহের প্রোফাইল এব স্থানান্তর প্রক্রিয়াগুলো অধিকতর জটিল। এটি প্রধানত নির্ভর করে উচ্চতার সংখে পাতার ক্ষেত্রফলের ঘনত্ব এবং বিস্তারের উপর। কোনো ক্যানোপিতে ভূপষ্ঠের কাডে বায়ুগ্রবাহের গতিবেগ সর্বোচ্চ হতে পারে, বিশেষ করে যেসব বনাঞ্চলের নিয়ুগুণে কম উদ্ভিগুল থাকে, আবার কোনো কোনো ক্ষেত্রে ক্যানোপির একটি নির্দিষ্ট উচ্চতায় এমন কি বায়ুপ্রবাহের দিকও ভিগ্ন হতে পারে।

ক্যানোপির অভ্যন্তরে বায়ুপ্রবাহ, ত্যাপমাত্রা, জলীয় বাপ্ণ ও কারক চাই- মঞ্জাইডের প্রোফাইলের পরিমাপ ব্যবহার করে এডে (eddy) স্থানান্তর গুণাঞ্চ নিষ্য্য এবং এসকল বঞ্জুর উংস ও সিঙ্কের (sink) অবস্থান নির্ধারণ করা যায়। যদিও এসকল গুণনার জন্য ৩৫ ভালাডাবে প্রতিষ্ঠিত হয়েছে তবে বাস্তব ফেত্রে উচ্চ সংবেদনশীল যন্ত্রপাতির প্রাপত্তা এবং ক্যান্যোপর অভ্যন্তরে সময়সংক্রান্ত এবং স্থানসংক্রান্ত অসাদৃশ্যতার জন্য এগুলো ব্যবহার করা বেশ কঠিন।

চতুর্থ অধ্যায় পানির সরবরাহ ও ব্যবহার


পানির ভৌত ও রাসায়নিক ধর্মাবলী

উদ্ভিদ কেনেধের একটি অত্যাবশ্যকীয় উপাদান পানি এবং গুৰু বীঞ্জে প্রায় শতকরা ১০ ভাগ এবং কতকগুলে। ফল ও কচি পাতায় প্রায় শতকরা ৯৫ ভাগ পানি থাকে। পানির কতকগুলো অনন্য বেশিষ্ট্য আছে। যেমন, কফ তাপমাত্রায় পানি তরল এবং শক্তিশালী দ্রাবকা হওয়ায় প্রাণরাসায়নিক বিক্রিয়ার ও পরিবহণের (স্বল্প- দূরত্নের ব্যাপন এবং জাইলেম ও ফ্লোয়েমের ভেতর দিয়ে দীর্ঘ-দূরস্ব চলাচল উত্তয় খ্যেত্রেই) একটি ভাল মাধ্যম। কতকগুলো প্রক্রিয়ায়, যেমন সালোকসংশ্লেষণ এবং আর্রবিশ্লেখণে পানি বিক্রিয়ক (reactant) হিসেবেও অংশগ্রহণ করে; আবার এয় তাপীয় ধর্মাবলী ডাপমাত্রা নিয়ন্ত্রণে এবং এর অসংকোচনীয় বৈশিষ্ট্য উদ্ভিদে বৃদ্ধি ও দূঢ়তা প্রদানে গুরুত্বপূর্ণ ভূমিক। পালন করে।

পানির গঠনের জনাই এর ধর্মাবলীর এত ভিন্নতা দেখা যায় (চিত্র ৪.১) এবং এটি ধাইড্মেন্ডেন এবং হাইড্মেক্সিন আয়নে বিশ্লেষিত ২য় যা সবসময়েই দ্রবণে থাকে। দুটি সহযোজী (covalent) O H বন্ধনীর মধ্যে কোণ (angle) এবং বন্ধনী বরাবর আধান কটনের অপ্রতিসমতার জন্য আধানের সুম্প্রন্থ মেরুপ্রবণতার সৃষ্টি হয় এবং এজন(ই পানি দ্বি-মেরু (dipole)। এই মেরুপ্রবণতার জনাং পাশাপাশি পানির অণুর মধ্যে অথবা পানি এবং অন্যান। অণুর মধ্যে তথাকথিত হাইড্রোজেন বন্ধনীর সৃষ্টি হয় (চিত্র ৪.১)। এই হাইড্রোজেন বন্ধনী দূর্বল হলেও (বন্ধনী শক্তি হলো মাত্র - ২০ কিলোজুল প্রতি অণ্তে এবং এর তুলনায় সহযোগী O-H বন্ধনীর শক্তি - ৪৫০ কিলোজুল প্রতি অণুত্রে) এর জন্য তাৎপর্যপূর্ণ কাঠামো তৈরি হয়, এমন কি তরল পানির ক্ষেত্রেও :

অন্তিঃআগরিক হাইড্রোজেন ধক্ষনীর জন্যই অন্যান্য ফুচ অণুর তুলনায় (যেমন অ্যামোনিয়া, 'মথেন অথবা কার্বন ডাই-অক্সাইড) পানি অনেক কম তাপে তরল থাকে। পানিকে প্রায়–পুরিন্যস্ত তরল অবস্থা বজায় রাখতে হাইড্রোজেন ধক্ষনী সাহায্য করে। তরন পানির সুবিন্যস্ততার একটি পরিমাপক হলেং কঠিন বরফকে তরল পানিতে রপান্তরে গর্ননের সুপ্ততাপ) তাপের পরিমাণ ২লো ৬.০১ কিলোজুল প্রতি মোল, বরফের সবগুলো হাইড্রোজেন বন্ধনী ডাগুতে যে শক্তির প্রয়োজন হয় এটি তর প্রায় শতকরা ১৫ ভাগ মার্ড।

লগনির অণুগুলোর মধ্যে হাইড্রোজন ধন্ধনীর দৃঢ়তা পানির শক্তিশালী সংশক্তি ধল প্রদান করে। এর সংশক্তি ধলের জন্য পানির পৃষ্ঠিটান (surface tension) খুব বেশি। ২৫° সেলসিয়াস তাপমান্রায় পানির পৃষ্ঠটানের পরিমাণ ৫.২৮,২১০^{-২} নিউটন প্রতি মিটারে। পানির (কশিক আরোহণে এবং মুন্তিকার রন্ধ ও কোয-প্রাটীরের সেলুনোজ-নির্মিত ম্যাট্রিয়ে পানি ধরে রাখতে লানির এহ ধমের গৃরু হপুণ ভূমিকা আছে। তরল পানি এবং কৈশিক নেয়ালের কঠিন দলার মধ্যে সংগ্রি (adhesive) বল ও তরল পানির অণুর মধ্যে সংশক্তি (cohesive) বলের জন্য কেশিক আরোহণ এই ম্যাট্রিয়ের শোষা আছে। তরল পানি এবং কৈশিক নেয়ালের কঠিন দলার মধ্যে সংগ্রি (adhesive) বল ও তরল পানির অণুর মধ্যে সংশক্তি (cohesive) বলের জন্য কেশিক আরোহল হয়। উচ্চ শেলীর উদ্ভিদের কোষ প্রাচীরের মন্যট্রিরোর রন্ধের ব্যাসার্ধ প্রায় ৫ ন্যান্যোমিটার এবং এই মন্যাট্রস্তের শোষণ বল হলো প্রায় ও০ মেগাপ্যাসকৈল (Mpa)। কোষ্য প্রচীর থেকে পানি বের করে আমতে এই পরিমাণ বলের প্রয়োজন। ২০ মেগুপানসকলে নোষণ বল ঘায় এ কিলোমিটার উঁচু একটি পানিয় স্তন্তকে ধরে রাখতে সমর্থ। একইভাবে পার্দি স্বর্শনের ঘৃঠিকার অভিকযীয় পানি চুইয়ে যাওয়ার পর মৃত্তিকার যেসব রদ্ধের ধ্যাস ৮০ মাইক্রোমিচারের কম, মার্গ্রের বলের জন্য তা পানিপূর্ণ থাকে (Russell, 1973)।

চিত্র ৪.১: পানির অণুর গঠন ; হাইড্রোজেনের নিট ধনা ১৬ এবং আইজেনের নিট খণা ১৫ আধানের জন্য ইলেক্ট্রোস্ট্যাটিক আকর্ষণের জন্য হাইড্রোজেন বন্ধনী ৫০০ি ২০১০।

প্রস্কেদনরত উদ্ভিদে পানি পরিবহণের সাথে পানির বিভিন্ন অণুর মধ্যে শক্তিশালী সংশান্ত বল সরাসরি সম্পর্কযুক্ত। একটি অভগ্ন (unbroken) বিশুদ্ধ পানির ওম্ভের তস্ত্রীয় প্রসারণীয় শক্তির (tensile strength) সর্বোচ্চ মান হাইড্রোজেন বন্ধনীর শক্তি থেকে নিণ্ট করং যায় এবং এই মান ১,০০০ মেগাপ্যাসকেলের) বেশি। তবে কখনো কখনো প্রায় ও মেগাপ্যাসকেলের বেশি প্রসায়ণীয় শক্তি পানির স্তম্ভকে ভেঙে ফেলে (Milburn, 1979)।

অণুগুল্যের মধ্যে অস্বাভাবিক শক্তিশালী হাইড্রোজেন বন্ধনীর জন্য এনের্ণ বড় মণ্ড মণ্ড মণ্ড মণ্ড পানির অণু আচরণ করে (Bernal, 1965 : Davis and Day, 1961) । এমনা প্রানির আঁলাবক ওজন ১৮) গলাঙ্ক ০° সেলসিয়াস এবং স্ফুটনাস্ক ১০০° সেলসিয়াস : এর খুব নিকট সম্পর্কি হ যৌগ হাইড্রোজেন সালফাইডের (আণবিক ওজন ৩৪) গলনাঙ্ক : ৮৬° অসলসিয়াস) এবং স্ফুটনাক্ষের (-৬১° সেলসিয়াস) তুলনায় অস্বাভাবিক রকম রেন্দি - চাই স্থলজ পরিবেশে পানি সাধারণত তরল অবস্থায় থাকে, কিন্তু অন্যান্য ম্ফুদ্র অণুর যৌগ তরল অবস্থায় থাকে না ' তবে পানি জমাট বেঁধে উদ্ভিদের নানা অসুবিধার সৃষ্টি করে : একই কারণে পানির আপেক্ষিক তাপ (Cp=85৮২ জুল প্রতি কেন্দ্রি প্রতি ডিগ্রি কেলভিন) (আপেক্ষিক তাপ হলো অপরিবর্তনীয় চাপে 5 কেন্দ্রি পানির ১° কেলভিন তাপমাত্রা বৃদ্ধি করতে যে তাপশক্তির প্রয়োজন) অনেক বেশি এবং তাপমাত্রার ব্রুত তারতমোর সময় উদ্ভিদ দেহে এটি বাফারের (buffer) মত্যে কাজ করে। তেমনি পানির বান্সীলবনের লীন তাপের (=২.৪৫৪ মেগাজুল প্রতি কেন্দ্রি ২০° সেলসিয়াস তাপমাত্রায়) অর্থাৎ অপরিবর্তনীয় তাপমাত্রায় ১ কেন্দ্রি তরল পানিকে বান্দে পরিণত করতে যে তাপশক্তির প্রয়োজন জন্য পাঁতলীকরণ হয়।(Gates, 1976)

মেন্ড দেশীয় (polar) গঠনের জন্য প্রানির ডাইইলেকট্রিক গ্রুথকও বেশি (D= ৮০.২, ২০ সেলসিয়াস তাপমাত্রায়)। একটি আমেরুদেশীয় (non-polar) তরল পদার্থ, যেমন হেক্সেনের তুলনায় এই মান ৪০ গুণেরও বেশি: কোনো মাধ্যমের বৈদ্যুতিক অধ্যানগুলোর মধ্যে অপ্রবন্দ্যতার পরিমাপক হলে ডাইইলেকট্রিক ফ্রুবক তাই টচ্চ ডাইইলেকট্রিক মানসম্পন্ন কেন্দো বস্তু, বিভিন্ন হাণুর মধ্যে আয়নিক আকর্ষণের শক্তিকে কমিয়ে দেয়। এই প্রভাবের জন্যই পানি অত্যন্ত শক্তিশালী দ্রাবক এবং আনেক প্রাণয়ায়ানিক বিক্রিয়ার জন্য ভাল মাধ্যম। পানির অন্যান্য ধম, দেমন- হাইড্রোন্ডেন এবং হাইড্রোক্সাইল আয়নে বিদ্রেষিত হওয়া, এর বর্ণালী বিশোষণারা, কঠিন অবস্থার (ব্রেফ) বৈশিষ্টাবেলী অনেক গুরুত্বপূর্ণ শর্য্যেরান্বিক প্রক্রিয়ার ভূমিয়া হান্টিকো রাখে।

পাতার পানির পটেনশিয়াল (Leaf Water Potential)

কোনো কোনো ক্ষেত্রে উদ্ভিদে কি পরিমাণ পানি আছে তা জাননেই যথেষ্ট। তবে সাধারণভাবে উদ্ভিদে পানির পরিমাণ জানার জন্য পানির পটেনশিয়াল পরিমাণ করা হয় ; এটি হলো কাজ করার জন্য মুক্ত শক্তি প্রাপ্যতার পরিমাণ। পানির পটেনশিয়ালকে পানির রাসায়নিক পটেনশিয়াল হিসেবে প্রকাশ করা হয়। রাসায়নিক পটেনশিয়ালের একক হলো শাঁজর একক (যোমন জুল প্রতি অণুতে), কিন্তু শারীর্বেজ্ঞানে একে চাপের এককে প্রকাশ করা হয়। এটি পাওয়া যায় রাসায়নিক পটেনশিয়ালকে পানির আংশিক মোলাল আয়তন (Vw=১৮,০৫×১০¹⁵ ঘনমিটার প্রাঁত অণু, ২০° সেলসিয়াস তাপনাত্রায়) শ্বারা ভাগ করে এবং পানির পটেনশিয়ালকে নিমুলিখিত সমীকরণের সাহায়া প্রাণ্ডায় :

 $\psi \stackrel{\mu \mathbf{w} \cdot \mu_{\mathbf{O}} \mathbf{w}}{\underset{\mathbf{v} \cdot \mathbf{w}}{\overset{\mu \mathbf{w} \cdot \mu_{\mathbf{O}} \mathbf{w}}}}}$

এক্ষেত্রে, µw হলে। পানির রাসায়নিক পটেনশিয়াল এবং µ₀w হলে। একই উচ্চতায়, তাপমাত্রায় এবং চাপে রেফারেন্দ অবস্থায় বিশুদ্ধ মুক্ত পানির রাসায়নিক পটেনশিয়াল। মুক্তভাবে লভ্য পানির পটেনশিয়াল শূন্য এবং পানি ঘটেতি হলে এটি কমতে থাকে এই মান ঋণাত্রক সংখ্যা হয়। তাই উদ্ভিদের ক্ষেত্রে উচ্চ পটেনশিয়াল বলতে বেঝায় কম ঋণাত্রক মান। যদিও প্রায়ই পানির পটেনশিয়ালের এফক হিসেবে হার (bar) ব্যবহৃত হয়, তথাপিও এর উপযুক্ত আন্তর্জাতিক একক হলো প্যাসকেল (pascal) (১ প্যাসকেল ৮ ১ নিউটন প্রতি বর্গমিটারে=১০^{-৫} বার); সুতরাং পানির পটেনশিয়ালকে মেগান্দ্যাসকেল (Mpa) (১ মেগান্দ্যাসকেল -১০ বার) হিসেবে প্রকাশ করা হয়।

পাহির মাট পটেননিয়ালকে নিমুলিখিত কয়েকটি উপাদানে ভাগ করা যায় :

এফেটো, ψ_p , ψ_{11} , ψ_m এবং ψ_g হলো যথাক্রনে চাপ (pressure), অসমোটিক, ম্যাট্রিক এবং অভিকর্মীয় (gravitational) পটেনশিয়াল। চাপ উপাদান (ψ_P) হলো রেফারেন্দ থেকে ২াইড্রোস্ট্যাটিক চাপের পার্থক্য এবং এটি ধনাত্বক অথবা ঋণাত্বক হতে পারে। দ্রবীভূত দ্রবের (solute) জন্য পানির মুক্ত শক্তি হ্রাসের মাধ্যমে অসম্যোটিক উপাদানের (ψ_Π) উদ্ভব হয় এবং এর মান সর্বদাই ঋণাত্বক। Van't Hoff-এর তত্ত্ব ব্যবহার করে অনেক জৈবিক (biological) দ্রবণের নিমুলিখিত সম্পর্ক পাওয়া যায় :

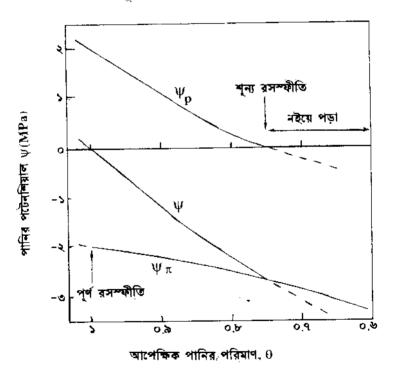
 $\psi_{\Pi^{=}} RTC_{S,\dots}$ (8.3)

এক্ষেত্রে C_s হলো দ্রবের ঘনমাত্রা যা প্রতি ঘনমিটার দ্রাবকে মোলের সংখ্যা (অথব আরো সঠিকভাবে প্রতি ১০^৩ কেজি দ্রাবকে মোলের সংখ্যা) : সাধারণভাবে, অনেক উদ্ভিদের অসমোটিক পটেনশিয়াল হলো প্রায় --১ মেগাপ্যাসকেল। ৪.৩ নং সমীকরণ ব্যবহার করে এবং ২০° সেলসিয়াস তাপমাত্রায় RT এর মান (২৪৩৭ জুল প্রতি মোলে) প্রতিস্থাপিত করে কোয রসের সম্পূর্ণ দ্রবের ঘনমাত্রা হবে (–১০^৬/২৪৩৭) ≅ ৪১০ অসমোল (osmole) প্রতি ঘনমিটারে। একটি অসমোল একটি মোলের মতোই, এতে অ্যাভোগ্যাড্রা সংখ্যক অসমোটিক্যালি সক্রিয় কণা থাকে। যেমন ১ মোল সোডিয়াম ক্লোরাইডে ২ অসমোল থাকে।

কঠিন বস্তুর পৃষ্ঠতলের বলের জন্য অর্থাৎ ম্যাট্রিক বলের জন্য ম্যাট্রিক পটেনাশিয়াল (ψ_m) উদ্ভব হয় এধং এর মান স্বণাত্বক। কখনো কখনো ψ_H এবং ψ_m –এর পার্থক্য করা কঠিন, কারণ কণাগুলো দ্রব কিংবা কঠিন বস্তু তা পার্থক্য করা দুষ্কর। তাই প্রায় ফেত্রেই ψ_mকৈ ψ_H –এর সাথে অন্তর্ভুক্ত করা হয়।

রেফারেন্দ থেকে উচ্চতার পর্থেক্যের জন্য সৃষ্ট পটেনশিয়াল শক্তির পার্থক্যের ফলে অভিকর্মীয় উপাদ্যনের উপাদানের (ψু) উদ্ভব হয়, এবং রেফারেন্দের উপরে হলে এটি ঋণাত্বক এবং নিচে হলে ঋণাত্বক। যদিও উদ্ভিদের ক্ষেত্রে এর মান শূন্য ধরা হয়, তথাপিও ভূপৃষ্ঠ হতে প্রতি এক মিটার উচ্চতার জন্য এর মান ০.০১ মেগাপ্যাসকেল করে বৃদ্ধি পায়, এজন্য সুউচ্চ উদ্ভিদে পানি চলাচলের সময় এটিকে গণ্য করা উচিৎ।

উদ্ভিদ কোষে পানির সম্পর্ক


উদ্ভিদ কোষের অর্ধভেদ্য কোষ ঝিল্লী দ্বারা আবৃত প্রোটোপ্লাস্ট অসমোমিটারের ন্যায় আচরণ করে। যেহেতু কোম ঝিল্লী দিয়ে পানি অপেক্ষাকৃত নুত প্রবেশ করতে পারে, সেহেতু কয়েক সেকেন্ডের মধ্যেই পরিবেশের সাথে কোষের পানির পটেনশিয়াল সাম্যবন্থায় পৌঁছায় উদ্ভিন কোযের আরেকটি গুরুত্বপূর্ণ বৈশিষ্ট্য হলো এদের অপেক্ষাকৃত দৃঢ় এবং প্রসারণে বাঁধাদানকারী কেন্ধে-প্রাচীর আছে। উদ্ভিদ কোষের পানির পটেনশিয়ালের দুটি প্রধান উপাদান হলো অসমোটিক এবং চাপ পটেনশিয়াল, সুতরাং

 $\psi_{\bm{W}} : \psi_{\bm{P}^*} \psi_{\Pi} \dots \dots \dots (8,8)$

চাপ পটেনশিয়াল (ψ_p) হলো কোষ-প্রাচীরের অভ্যস্তরে এবং বাইরের পটেনশিয়ালের পর্থেক্য। এটি সাধারণত ধণাত্বক এবং এটি রসম্ফীতি (turgor) চাপ নামে পরিচিত। কোষ কোনো নির্দিষ্ট পরিমাণ দ্রবের জন্য, পানির মোট পটেনশিয়াল হাসের সাথে সাথে রসস্ফীতি চাপও হাস পায়। প্রস্বেদনরত পাডার পানির পটেনশিয়াল – ০.৫ এবং – ০.০ মেণ্যপ্যাসকেলের মধ্যে।

Holter-Thoday চিত্রের (চিত্র ৪,২) সাহায্যে অপেক্রাকৃত সহজভাবে উদ্ভিদ কেথের (এবং কলার) পানির সম্পর্ক বর্ণনা করা যায়। কোযের পানি হারানোর সাথে সাথে কোষের আয়তন, ψw, ψu এবং ψp এর মধ্যে পারস্পরিক সম্পর্ক এই চিত্রে দেখানো হয়েছে। পূর্ণ রসম্ফীতি কোষে ψw=O, তাই ψ_Π--ψ_P। এই বিন্দুতে পানির পরিমাণ যা পূর্ণ রসস্ফীতি অবস্থায় পানির পরিমাণের ভগ্নাংশে প্রকাশ করা হয় (একে বলে আপেঞ্চিক পানির পরিমাণ, relative water content.θ)। পানি হারানোর জন্য কোধের আয়তন কমে যায়, তাই কোষ প্রাচীরের স্থিতিস্থাপক প্রসারণের জন্য সৃষ্ট রসস্ফীতি চাপ কোষের আয়তনের সাথে প্রায় একই অনুপাতে হ্রাস পেতে থাকে যতক্ষণ না রসস্ফীতি চাপ শূন্য হয় (যখন ψ_P=O)। কোযোর আয়তন থ্রমের সাথে সাথে অসমোটিক পটেনশিয়ালও হ্রাস পায়। রসস্ফীতি চাপ শূন্য হলে সাধারণত উস্তিদ মিইয়ে পড়ে (wilting)।

কোষ প্রাচীরের স্থিতিস্থাপকতা ৪.২ নং চিত্রের কার্ভের আকৃতি নির্ধারণ করে। এদি কোয প্রাচীর খুব দৃঢ় ২০, তাহলে কোনো নির্দিষ্ঠ পরিমাণ থানি ঘটিতির জন্য পানির পটেনশিয়লে এবং এর উপাদানগুলোর অপেক্ষাকৃত দুত পরিবর্তন হয়।

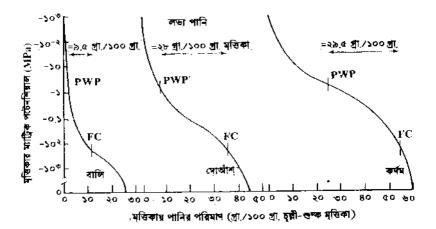
চিত্র ৪.২ : পূণ রসস্ফীতি একটি কোষ কিংবা কলা থেকে পানি হাসের সাথে সাথে মেট পানি পটেনশিয়াল (ψw), চাপ পটেনশিয়লে (ψp), অসমোটিক পটেনশিয়লে (ψp) এবং অংগ্রেফিক পানির পরিয়াণের মধ্যে পারস্পরিক সম্পর্ক Hoffer-Thoday চিত্রির সাহায়ো দেখানের ২য়েছে।

একক কোমের জন্য Hotler-Thoday চিত্র উপযুক্ত। কোনো কলায় বিভিন্ন কোযের আকার, আকৃতি, কোয প্রাচীরের স্টিভিস্থাপকতা এবং দ্রবেরে পরিমাণের ভিন্নতা আছে। উপরস্থু পার্শ্ববর্তী কে হন্তলো পরস্পরের উপর চাপ প্রয়েগ করার জন্য কলার চাপ উপাদন আছে। এসম্বেণ্ড, কোনো জন্টল কলার সাধারণ বৈশিষ্টাগ্রলী বর্ণনা করতে এই চিত্র ব্যবহার করা সম্ভব। কোষ প্রাচীরে এবং প্রধান দীর্ঘ দূরত্ব পরিবহণ পথ জাইলেমে সাধারণ খুব কম পরিমাণে চব থাকে, তাই এদের পানির পটেনশিয়াল ০.১ মেগপ্যোসকেলের কম। জাইলেম নালিকায় ψw এর প্রধান উপ্যদান হলো চাপ যা খুব বেশি ঋণাত্তক মানে পৌঁছতে পারে (খুবই বেশি পানি ঘাটতি মরুজ্ঞ উদ্ভিদে এই মান–৫.০ মেগাপ্যাসকেলের নিচে)। জাইলেম ভেসেল খুব দৃঢ় হওয়ায় খুব বেশি বিকৃতি না হয়েও এরা এই পীড়ন সহ্য করতে পারে।

মৃত্তিকা কর্তৃক পানি সরবরাহ (Supply of Water by the Soil)

মরু অঞ্চলের উদ্ভিদের জন্য পাতা দ্বারা শোষিত বৃষ্টির পানির ও শিশিরের গুরুঙ্গপূর্ণ ভূমিকা আছে। তবে অধিকাংশ স্থলজ উদ্ভিদের ক্ষেত্রে মৃত্তিকা থেকে মূল দ্বারা শোষিত পানির তুলনায় এদের গুরুত্ব খুবই কম।

মৃত্তিকায় পানির পরিমাণ প্রধানত নির্ভর করে আবহাওয়াজনিত প্রকরণের উপর, থিশেষ করে বাঙ্গীয় প্রশ্নেদনের তুলনায় বেশি বৃষ্টিপাতের (P=E) উপর। আর্দ্র ও শুক্ষ অঞ্চলের মধ্যবর্তী এলাকায় মৃত্তিকার পানি কেবল বাৎসরিক (P=E)- এর উপর নির্ভরশীল নয়, বছরব্যাংগী বৃষ্টিপাতের বন্টনও গুরুত্বপূর্ণ।


কোনো এলাকায় উদ্ভিদ কর্তৃক পরিশোষণের জন্য পানির প্রাপ্যতা মৃত্তিকার কতকগুলোর বৈশিষ্ট্যের উপর নির্ভরশীল (দ্বিতীয় অধ্যায় দ্রষ্টব্য)। দীর্ঘসময় স্থায়ী বৃষ্টিপাতের পর যখন মৃত্তিকা পানিতে সম্পৃক্ত হয়, তখন মৃত্তিকার রন্ধগুলো সাময়িকভাবে পানিতে পূর্ণ থাকে। তবে উদ্ভিদের ব্যবহারের জন্য এই পানির সবটুকু মুক্ত নিক্ষাশিত মৃত্তিকা ধারণ করতে পারে না।

যেহেতু মৃত্তিকার পানিতে সাধারণত দ্রব্যের পরিমাণ খুব কম থাকে, যেহেতু রন্ধ্রে পানি ধারণ করার প্রধান বল হলো ম্যাট্রিক বল, যা রন্ধের ব্যাস বাড়ার সাথে সাথে বৃদ্ধি পায়। যেমন ১০ মাইফ্রোমিটার ব্যাসের মৃত্তিকার রন্ধের ধারণঞ্চত বিশুদ্ধ পানির পটেনশিয়াল ০.০৩ মেগাপ্যাসকেল, এই রন্ধ থেকে পানি গ্রহণের জন্য কমপক্ষে ০.০৩ মেগাপ্যাসকেল চোযণ (suction) বলের প্রয়োজন হবে। একইন্ডাবে, যেহেতু নাতিশীতোফ্য এঞ্চলে প্রায় ৫ কিলোপ্যাসকেল মতো শোষণ শক্তির সমতূল্য মাধ্যকের্যণ শক্তি প্রয়োগ করে (Webster and Beckett, 1972), সেহেতু মৃত্তিকা পানিতে সম্পৃক্ত হওয়ার পর ৬০ মাইক্রোম্বিটারের অধিক ব্যাসের সকল রন্ধের ভিতর দিয়ে পগুরুম্ফ্রেউভাবে পানির চোয়ানো হবে। মুক্তভাবে নিক্ষাশিত মৃত্তিকায় এই চেয়োনো দুই থেকে তিন দিন পর্যন্ত চলতে পারে, এবং এটি শেষ হওয়ার পর মৃত্তিকা ফিল্ড ক্যাপাসিটিতে থাকে। এডিকর্যীয় পানি সাধ্যরণত উদ্ভিদ গ্রহণ করতে পারে না, যদি না চোয়ানো বঁশ্বাজান্ত হয়।

প্রস্কেদনের মধ্যমে পতে থেকে পানি বের হয়ে যাওয়ার জন্য উদ্ভিদ-মৃত্তিকা সিস্টেম ধরধর পানির পটেনশিয়ালের একটি গ্রেডিয়েন্ট স্থাপিত হয়। যদি সন্নিকটবতী মৃত্তিকার পানির পটেনশিয়ানের তুলনায় মুল্লের জাইলেমের পানির পটেনশিয়াল কমে যায়, তাংলে মুলে পানি প্রবেশ করে এবং জাইলেমের মধ্য দিয়ে তা প্রস্কেদনরত অঙ্গে (পাতা) পৌঁছায়। সুতরাং মৃত্তিকরে পানি উদ্ভিদের জন্য লভ্য হবে যদি মূলের জাইলেমের পটেনশিয়াল (এবং পরিশেযে পাতার পানির পটেনশিয়ান) মৃত্তিকার পানির পটেনশিয়ালের চেয়ে কম হয়। –৩ মেগাপ্যাসকেল পটেনশিয়ালেও মৃত্তিকার রক্ষে উল্লেখযোগ্য পরিমাণ পানি থাকে, কিন্তু এই পানির স্বাটুকু শোষণ করতে পাত্রুর পানির পটেনশিয়াল এত কমাতে হবে যা খুব সংখ্যক উদ্ভিদ সহ্য করতে পারে।

অধিকাংশ শস্য উদ্ভিদ প্রায় ০,২ মাইক্রোমিটারের বেশি রন্ধ্র থেকে পানি শোষণ করতে পারে যা –২,৫ মেগাণ্য্যসকেল প্রানিং পটেন্নশিয়ালের অনুরূপ। এই রন্ধ্রের সমস্ত পানি পরিশোষণের পর যথন পাতায় পাঠানোর মতো আর পানি থাকে না, তখন উদ্ভিদ স্থায়ীভাবে মিইয়ে পড়ে এবং মারা যায়, যদি মুদ্তিকায় পানি প্রয়োগ করা না হয়। ফিল্ড ক্যাপাসিটি এবং স্থায়ী উইল্টিং বিন্দুর মধ্যবর্তী পানিই হলো লভ্য পানি।

মৃত্তিকা থেকে উদ্ভিদ কর্তৃক পরিশোষণের জন্য লন্ডা পানির পরিমাণ প্রধানত নির্ভর করে মৃত্তিকার রন্ধ্রের পরিসরের উপর। এটি আবার মৃত্তিকার বুনট ও গঠনের উপর নির্ভরশীল। মোটা বুনটের মৃত্তিকার তুলনায় মধ্যম থেকে সৃষ্ণু বুনটের মৃত্তিকা উদ্ভিদের ব্যবহারের জন্য অপেক্ষাকৃত বেশি পানি ধারণ করতে পারে (চিত্র ৪.৩)। পানির সান্দ্রতার উপর ক্রিয়ার মাধ্যমে মৃত্তিকার তাপমাত্রা ও পানি লন্ড্যতার উপর প্রতাব আছে। ফিল্ড ক্যাপাসিটি সম্পর্কে উপরোক্ত আলোচনায় ধরে নেয়া হয়েছে যে, ৬০ মাইক্রোমিটারের বেশি ব্যাসের রন্ধ্রের ভেতর দিয়ে মাধ্যমে মৃত্তিকারে বেশি ব্যাসের রন্ধ্রের ভেতর দিয়ে মাধ্যমে মৃত্তিকার তাপমাত্রা ও পানি লন্ড্যতার উপর প্রভাব আছে। ফিল্ড ক্যাপাসিটি সম্পর্কে উপরোক্ত আলোচনায় ধরে নেয়া হয়েছে যে, ৬০ মাইক্রোমিটারের বেশি ব্যাসের রন্ধ্রের ভেতর দিয়ে মাধ্যমের প্রতাবে পানি চুইয়ে যয়ে। যুক্তরান্ড্যে শীত ও বসন্তকালের মাঠের মৃত্তিকা পরীক্ষা-নিরীক্ষা করে বিজ্ঞানীরা এই সিদ্ধান্তে উপনীত হয়েছেন (Webster abd Beckett, 1972)। কিন্তু Russell (1973) নিরপণ করেছেন যে, অধ–গ্রীক্ষমগুলীয় অঞ্চলের উস্থ আবহাওয়ায় পানির সান্দ্রতা কমে যাওয়ায় এবং মুক্তজাবে পানি চোয়ানের জন্য ১০ মাইক্রোমিটার ব্যাসের রন্ধ্রের ভেত্তর দিয়ে পানি চোয়ারে জন্য ৯০ মাইক্রোমিটারের কেন্দের উস্থ আবহাওয়ায় পানির সান্দ্রতা কমে যাওয়ায় এবং মুক্তজাবে পানি চোয়ানের জন্য ১০ মাইক্রোমিটার ব্যাসের রন্ধ্রের ভেত্তর দিয়ে পানি চোয়াতে পারে - রন্ধের আকারের উপর নির্ভর করে উল্লেখযোগ্য পরিমাণ লন্ড পানি কমে যাওয়ায় এবং মুক্তজাবে পানি চোয়ানের জন্য ১০ মাইক্রোমিটার ব্যাসের রন্ধ্রের ভেত্তর দিয়ে পানি চোয়াতে পারে - মৃত্তিকার পানিতে দ্রব্যের পরিমাণ বেড়ে গেলে মৃত্তিকার পারিমাণ লন্ড পানি কমে যোয়, তাই পরিশোমণের জন্য লন্ড দানিও হাস পারা। লবণাক্ত মৃত্তিকার এই প্রভাব থুব বেশি হয় !

5.9.৪.৩ : বেলে, লোআঁশা এবং কার্নন মৃত্তিকার প্রানি যুক্তকরণ কার্তা। FC=ফিল্ড ক্যাপাসিটি, PWP= স্থায়ী উইল্টিং বিদ্যু। উল্লেখ্য যে, যদিও দোনআঁশা এবং কার্দম মৃত্তিকার লাভ্য পর্যনির প্রিমাণ প্রায় একই রকম, দোনআঁশা মৃত্তিকায় এই পানির অধিকাংশা স্বংশ-০.১ মেগাপ্যাসকেলের বেশি ম্যাট্রিক পটেনন্যিয়ালে (ক্ষর্থাৎ চওড়া রস্কে) ধৃত থাকে।

কেবল সক্রিয়ভাবে পরিশোষণকরী মূলের অব্যবহিত সাদ্রিধ্য থেকেই উদ্ভিদ পানি পরিশোষণ করে না। মুলের সন্নিকটবর্তী পার্নি পরিশোষণের সাথে সাথে একটি নিঃশোষকরণ (depletion) অঞ্চল তৈরি হতে থাকে (Hain sworth and Aylmore,1986), ফলে মূলের পৃষ্ঠ

পানির সরবরাহ ও ব্যবহার

হতে কমপক্ষে কয়েক মিলিমিটার দূরে পানি প্রবাহিত হয়। একই সঙ্গে বড় রন্ধ্র থেকে পানি গ্রহণের জন্য মৃত্তিকা দিয়ে যে পানি প্রবাহিত হয় তার আয়তন কমতে থাকে। এর জন্য মৃত্তিকার হাইদ্যোলিক পরিবাহকতা কমে যায়। ফলে ক্রমাগত শুকিয়ে যাওয়া মৃত্তিকা থেকে মূল কত্ক অব্যাহততাবে পানি পরিশোষণের জন্য মূলের জাইলেম ও মৃত্তিকার পানির পটেনশিয়াল গ্রেডিয়েন্ট বজায় রাখতে জাইলেমের পানির পটেনশিয়াল ক্রমাগত হ্রাস পেতে থাকে।

মাটি থেকে মূল কর্তৃক পানি পরিশোষণ (Absorption of Soil Water by Roots)

স্থলজ উদ্ভিদের কাণ্ড ও পাতা বায়ুমণ্ডলে থাকে এবং ক্রমাগত পানি ত্যাগ করে যা মূলের মাধ্যমে মৃত্তিকা থেকে পরিশোষণ করে পূরণ হয়। পানি সমতার (water balance) ক্ষেত্রে, প্রস্বেদন, পানি পরিশোষণ এবং মূল থেকে প্রস্কেদনকারী অঙ্গে পানি পরিবহণ প্রক্রিয়াগুলো পারস্পরিক সম্পর্কযুক্ত। বায়ুর বান্দ চাপের ঘটতি (VPD, সম্পুক্ত বান্দ চাপ প্রকৃত বান্দ চাপ) বান্দীভবনের চালিকা শক্তি এবং মৃত্তিকার পানির পরিমাণ পানি সরবরাহের ক্ষেত্রে প্রধান ভূমিকা পালন করে। উদ্ভিদ তার সম্পূর্ণ পৃষ্ঠ (surface) বরাবর পানি পরিশোষণ করতে পারে, কিন্তু অধিকাংশ পানি মৃত্তিকা সরবরাহ করে। তাই উচ্চেশ্রণীর উদ্ভিদে বিশেষভাবে তৈরি মূলের উপর এই পানি পরিশোষণের কান্ধটি অর্পিত হয়েছে।

মূলতন্ত্রের বিস্তার (Extent of root system)

যদিও শস্য উদ্ভিদের মূল মৃত্তিকার ১ থেকে ৩ মিটার গভীরে প্রবেশ করতে পারে, তবে মৃত্তিকার উপরের স্তরে মূলের পরিমাণ বেশি থাকে (সারণি ৪.১)। প্রতি একক আয়তনের মৃত্তিকায় মূলের দৈর্ঘ্য (R_V) হিসেবে মূলের পরিমাণ প্রকাশ অধিকওর সুবিধাজনক। সুপ্রতিষ্ঠিত শস্যে, ধরা যাক পুষ্ণায়নের সময়, মৃত্তিকার উপরের ১৫ সেন্টিমিটারে মূল থাকতে পারে, এবং গভীরতা বৃদ্ধির সাথে সাথে এটি কমতে কমতে ৮০ থেকে ১০০ সেটিমিটার স্তরে প্রায় ০.৫ সেটিমিটার হতে পারে। এরকম একটি শস্য উদ্ভিদে প্রতি বর্গমিটার ভূমিতে প্রায় ২০ কিলেগমিটার মূল থাকে।

প্রজাতি	গভাঁরত: (সেন্টিমিটার)	R _v (সেন্টিমিটার ^১)
Poa pratensis	0-5¢	20 CO
<u><u> </u></u>		
- এই	0-50	G 20
	56-00	8
		2
গম	0-20	b.
	26-26	.tu
	24-46	5
२ श्व	<u>@@-}00</u>	<u>0</u> ,9
	2-50	Sic
	20-20	5.5
	\$0 00	0.8
	¢0-500	0_0
	<u> </u>	0,5
Medicago sativa	0-20	
Glycine max	-52	
Camellia sinensis	0.3.6	8
	80-89.0	>
	99.6-90.0	0,0

সারণি ৪.১ : মাঠে প্রতিষ্ঠিত শস্য উদ্ভিদের মৃলের পরিমাণ, R_v (প্রতি একক আয়তনে মূলের দৈষ্য)

:06

<u>_</u>-84

্যারা গাছানের ৬ থেকে ৪ সপ্তাহের মধ্যে ঘনভাবে বেনো গম শস্যের যুল ৪০ থেকে ৫০ সেন্টিনিটন্র নিচে চলে যেতে পারে এবং মূলের পরিমাণ পূর্বে বর্ণিত মানের প্রায় দশ ভাগের এক ভাগাং পূষ্ণায়নের পর মূল সাধারণত কিছুটা দীর্ঘ হয় এবং দানা ভর্তির (grain filling) সময় কিছু মূল নন্ট হয় আধিকাংশ মূলের ব্যাসের পরিসর প্রায় ৫×১০^{-২} (প্রাইমারি) থেকে ১০^{-২} সেটিমিটার (Siaiশয়ারি)।

মূল কর্ত্তক পানি পরিশো<mark>ষণ</mark>

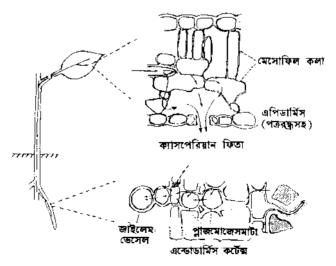
শসঃ উদ্ভিদ ওতক্ষণ পথাস্ত মৃত্তিকা থেকে পানি পরিশোষণ করে যতক্ষণ মৃত্তিকার দ্রবণের তুলনায় মূল স্ত্রাম এবং স্বুক্নু মূলের পানির পটেনশিয়াল অধিক ঋণাত্বক থাকে। মূলতন্ত্রের পরিশোষণকারী পৃষ্ঠ বেশি হলে এবং মূল দ্রুত মৃত্তিকার পানির সংস্পর্শে অ্যসলে পানি পরিশোষণও বেশি হয়।

Gardner (1960)-এর সূত্র অনুসারে-

অধাৎ প্রতি একক সময়ে মূল কর্তৃক পরিশোষিত পানির পরিমাণ মূল এবং মৃত্তিকার বিশিময় পৃষ্ঠ ৩লের আয়তনের (A) (অথাৎ প্রতি একক আয়তনের মৃত্তিকায় সক্রিয় মূলের ক্ষেত্রফল) এবং মূল ও মৃত্তিকার পানির পটেনশিয়ালের পার্থক্যের সাথে সমানুপাতিক ও মৃত্তিকার অভ্যস্তরে এবং মৃত্তিকা হতে মূলের পথে পানি চলচেলের রোধকের (r) সাথে বিপরীতভাবে সম্পর্কযুক্ত। বিধ্বুৎ শংস্য সন্দ্রিয় মূলের পৃষ্ঠের পরিমাণ প্রায় প্রতি বর্গসেটিমিটারে ১ বর্গসেটিমিটার এবং কাণ্ঠল উদ্ভিদে প্রতি গনসেটিমিটারে প্রায় ০.১ বর্গসেটিমিটার। মুলের কোষরসের ধনত্ব সাধারণত বেশি পাকে এবং এর জন্য পানির পটেনশিয়াল মাত্র কয়েক বার (bar) হয় এবং মৃত্তিকার অধিকাংশ কেশিক প্রদি পরিশেষেণে এটি যথেষ্ট। যদি মূলের পানির পটেনশিয়াল মাত্র –২ বার (bar) ধয়, গ্রহলে বেলে মৃত্তিকায় সাঁগ্রত্ব প্রানির দুই-তৃতীয়াংশেরও বেশি পানি পরিশোষিত হবে। কলম মতিকরে ব্যোগ্ডলো খুব সূড়া হওয়ায় বেশি পানি ধরে রাথে , যদি মূলের পানির পটেনশিয়াল ময়ে ৬ বার (bar) হয়, তাহলে কৈশিক পানির অর্ধেক পরিশোষিত হয়। কতিপয় উদ্ভিদ তাদের পানির পটের্নাশয়ান ও মৃত্তিকার পার্নির পটেনশিয়ালের পার্থক্য আরো কিছুটা বৃদ্ধি করতে পারে, এর জন্য বেশি পানি পরিশোষিত হয়। বেলে মৃত্তিকার রন্ধ সামান্য টার্নে (tension) ভেঙে যায়, এর জন্য মন্ত্রিকার নিচ্চে থেকে পানি সরবরাহ ব্যাপকভাবে বিষ্ণিত হয়। কর্দম মৃত্তিকার কৈশিকতা খুব সূক্ষ, ৬০ট টান খ্যা বেশি হলেও পানি পুনঃস্থাপিত হয়, কিন্তু পানি খুব মহুর গতিতে চলচেল করে এবং খুব কম দূরার হাতিকম করতে প্রারে (কয়েক মিলিমিটার থেকে কয়েক সেটিমিটার পর্যন্ত)। যখন মলের সহিকটের অন্যাসসাধ লন্ড্য পানি নিঃশেষ হয়ে যায়, তখন পানির সন্ধানে মূলের বৃদ্ধি হয় এবং মধ্যের স্পন্নির পরিশ্বোষণকারী ক্ষেত্রফল বেড়ে যয়ে। মৃত্তিকার অগ্রসর মান শুক্ষতার স যে সামে মূলতক্ষের কিছু অংশ গুকিয়ে মরে যেতে পারে এবং কিছু অংশের বৃদ্ধি খুব দ্রুত **হতে** প রে। ওক্ষ এলাকেয় জন্মানো উদ্ভিদে এই প্রধণতা বেশি দেখা যায়। এভাবে এমন একটি অবস্থা খাসতে পারে যখন মত্ত্রিকার পানির সকল উৎসই শেষ হয়ে যায়। তখন উদ্ভিদ মিইয়ে পড়ে, এমন কি রাতেও দ্বাভাবিক হয় না অথবা বাল্পীয়ভাবনের হাত থেকে রক্ষা করলেও নয় (যেমন-াইলনের ব্যাগ দিয়ে আবৃত করলে)। এই অবস্থাকে বলা হয় স্থায়ী উইলিটিং। বীরুৎ জাতীয় র্চার্টনের স্বর্হী উইল্টিং বিন্দু -০.১ থেকে --০.৮ মেগাপ্যাসকেল মৃত্তিকার পানির পটেনশিয়ালের

- × .:

পানির সরবরাহ ও ব্যবহার


সমন্তুল্য ; অধিকাংশ শস্য উদ্ভিদের এই মান –১০ থেকে –২০ মেগ্রাপ্রদেশকল এবং কর্ম্ভল উদ্ভিদের –২০ থেকে–৩০ মেগ্রাপ্যাসকেল।

উদ্ভিদে পানি পরিবহণ (Conduction of Water in Plants)

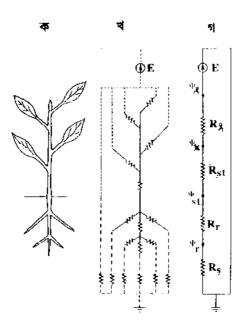
উদ্ভিদে পানির পথ (Path of water in plants)

উদ্ভিদে প্রস্কেদনীয় ফ্লাক্স ৪.৪ নং চিত্রে দেখানো হয়েছে। জাইলেম হলো উদ্ভিদে দৈগা বরাবর পানি প্রবাহের প্রধান পথ ; এক্ষেত্রে অজীবন্তু, স্থূল প্রাচীরযুক্ত ভেসেল বা ট্রাকিয়া এবং ট্রাকিড পরিবহণ কলার উপাদান। ডেসেলের মধ্যপ্রাচীর থাকে না এবং ভেসেলগুলো পর পর জোড়া লেগে একটি অবিচ্ছিন্ন নালিকার সৃষ্টি করে যার দৈখ্য কয়েক সেটিমিটার থেকে কয়েক ফিটার এবং ব্যাফ প্রায় ২০ মাইজোমিটার থেকে ৫০০ মাইজোমিটার। অপরপক্ষে, একটিমাত্র কোষ থেকে ট্রাকিডের উৎপত্তি হয় এবং এর ব্যাস প্রায় ১৫ মাইজোমিটার থেকে ৮০ মাইজোমিটার।

মূলের কটেকীয় কলার ভেতর দিয়ে মৃত্তিকা থেকে পানি অংশত কোষ শ্রেচীরের পানিপুণ মুক্ত স্থান (free space) দিয়ে এবং অংশত সিমপ্লাজম (symplasm.কোষ ঝিল্লীর ভেতরে সংযুক্ত প্রোটৌপ্লাজম) দিয়ে জাইলেমে প্রবেশ করে। সিমপ্লাজমের আলাল কোষগুলো প্লাজমোভেজমাটার মাহাথ্যে পরস্পরের সঙ্গে সংযুক্ত। জাইলেম নালিকংসমূহ কোম -ঝিল্লীর নাইরে পানিপুণ স্থানক অ্যাপোপ্লাস্ট বলে। মূলের কর্টেক্স এবং পরিবহণ কলার মধ্যে এন্ডোডামিস আছে। এর প্রাচীর সুবেরিনযুক্ত হওয়ায় (ক্যাসপেরিয়ান স্ট্রিপ) কোষ প্রাচীরের ভেতর দিয়ে পানি চলচেল বন্ধ হয়ে যায় এবং এখানে সকল পানি কোম-ঝিল্লীর ভেতর দিয়ে সাইটোপ্লাজমে প্রবেশ করে এবং এর ভেতর দিয়েই পানির পরিবহণ হয়। পরিবহণ কলার প্যারেনকাইমা কোমে মূলজ চাপের (root pressure) উদ্ধব হয় এবং বিপান্ধীয় শক্তির বিনিময়ে পানি (খনিজ মৌলসহ) অধিক তর দণ্ড গতিতে ভেসেলে প্রবেশ করে। পাতায় জাইলেম নালিকা সুদ্ধু শাধা এশ্যাখয়ে বিভক্ত থাকে এবং এবদর শীর্ষে অবস্থিত ট্রাকিডের মাধ্যমে পানি শিরার চারলিকে প্যারেনকাইমা কোযে প্রোন্ধ হার এবদে শীর্ষে আবিহুত ট্রাকিডের মাধ্যমে পানি শিরার চারলিকে প্যারেনকাইমা কোয়ে পৌডায় এবং এবার শীর্ষে আবিছিত ট্রাকিডের মাধ্যমে পানি শিরার চারলিকে প্যারেনকাইমা কোয়ে পৌডায় এবং এখনন থেকে ব্যাপনের মাধ্যমে মেসোফিল কলায় পৌজায়।

চিত্রাঙাঃ মৃত্তিক। পেকে পাতায় পানি প্রবাহের পথা মূল ও পাতার সিয়পু।ন্ট এবং কোষ প্রাচীরের ভেত্তর দিয়ে (অ্যাপ্যেপ্রান্ট) সমাস্তরাল পথ দেখানে হয়েছে।

পানি পরিবহণের চালিকা শক্তি পানির পটেনশিয়ালের পার্থকা


মৃত্তিক: এবং বায়ুমণ্ডলের মধ্যে পানির পটেনশিয়ালের গ্রেডিয়েন্টের জন্য উদ্ভিদের উধ্বদিকে পানি পরিবহণ হয়। এতে মূলজ চাপের কিছুটা অবদান আছে ; পানির পটেনশিয়ালের অন্যান্য উপাদান অপযাগু ২লে (যেমন - অধিক আর্দ্রতা) মূলজ চাপ কাজ করে। ভূ-নিম্নস্থ মূলের তুলনায় বিটপ অনেক বেশি বান্স চাপের ঘাটতির সম্মুখীন (resistances) জহেলেম নালিকার মাধ্যমে পাতা থেকে মূল পর্যন্ত পানির পটেনশিয়ালের গ্রেডিয়েন্ট সৃষ্টি করে ; কোষের পানির পটেনশিয়াল উদ্ভিদের গ্রেড়া থেকে অগ্রভাগ (top) পর্যন্ত অধিকরত ঋণত্বেক। পরিবহণ সিম্প্র্টেমের (vessel) প্রস্থচ্ছেদীয় ক্ষেত্রফল বেশি হলে, এতি একক সময়ে প্রবাহিত প্রানির পরিমাণ বেশি হয়। একটি বিটপের অথবা পত্রধৃত্তের (petiole) পরিবহণ সিস্টেমের ক্ষেত্রফল হলো সবগুলো জাইলেম উপাদ্যনের প্রস্তুচ্ছেদীয় ক্ষেত্রফলের সমষ্টি। সাধরেণত সরবরাহকৃত উদ্ভিদ অন্সের ওজনের প্রেক্ষিতে পরিবহন সিস্ট্রেমের ক্ষেত্রফল উল্লেখ করা হয়। উদ্যহরণস্বরূপ পত্রবৃত্তের পরিবহন সিস্টেমের ক্ষেত্রফল প্রকাশ করা হয় প্রতি একক পাতার সঙ্গীধ ওজন হিসেবে, কাণ্ডের ক্ষেত্রে বিটপের সম্পূর্ণ ওজনের তুলনায় ক্ষেত্রফল। যে সমস্ত উদ্ভিদের প্রস্কেদনের হার বেশি, তাদের আপেক্ষিক পরিবহণ সিশ্টেমের ক্ষেত্রফল বেশি। ৫ওগুলো মরুন্স উদ্ভিদের আপেক্ষিক পরিবহণ সিস্টেমের ক্ষেত্রফল প্রতি গ্রমে ২ থেকে ৩ বর্গমিলিমিটার। অধিক্যংশ কাণ্ঠল উদ্ভিদে এবং ছায়াজ উদ্ভিদের (sciophyte) আপেক্ষিক পরিবহণ সিম্টেমের ক্ষেত্রফল প্রতি গ্রামে ০.৫ বর্গমিলিমিটারের কম। জলজ উদ্ভিদ এবং রসালো উদ্ভিদের আপেফিক পরিবহণ সিস্টেমের ফেব্রফল খুবই কম। আধার একটি উদ্ভিদের বিভিন্ন অংশেও এর পার্থক্য আছে। বৃক্ষের গোড়া থেকে অগ্রতার্গের দিকে এটি বৃদ্ধি পায়, তাই অগভাগের বিটপ সুবিধাজনক অবস্থানে থাকে। দীর্ঘ দূরত্বে পানি পরিবহণে এভাবে ক্ষতিপুরণ হয়।

পরিবহণ রোধক (Conduction resistance)

ওাপেদন প্রবাহ উদ্ভিদের গোড়া থেকে অগ্রভাগের দিকে ওঠার সময় কতক গুনো রোধক অতিক্রম করে। প্রবাহ পথের জটিলতার কারণে (চিত্র ৪.৪ এবং ৪.৫), শেটডি শেটট প্রবাহ সাধারণত সরলীকত রোধক মডেল (চিত্র ৪.৫) অনুসারে ব্যাখ্যা করা হয়। Van den Honert (1948) কে অনুসরণ করে অনেক গবেষক এমন একটি সিস্টেম হাইড্রোলিক হিসেবে উদ্ভিদকে গণ্য করেছেন যা হাইড্রোলিক রোধকের একটি সরল সিরিজ (catena) দ্বারা গঠিত, এর ভেতর দিয়ে পানির পটেনশিয়ালের গেডিয়েন্ট বরাবর পানি প্রবাহিত হয় (চিত্র ৪.৫গ)। উদ্ভিদের মূলের পৃষ্ঠ হতে পতেরার মেস্দেফিল কলা পর্যন্ত এই রোধকগুলো অবস্থিত। যেহেতু এই প্রবাহ বিদ্যুতিক পটেনশিয়ালে পার্থকেরে জন্য ইলেক্টনের প্রব্যাহের মতো, সেহেতু একে ওহমের সূত্রের সমীকরণের মতো বর্ণনা করা যায়

$$\begin{split} & \underset{R_{S}R_{T}^{*}R_{SI}^{*}R_{I}}{\overset{\Psi_{S}}{=} \frac{\Psi_{S}^{*}\Psi_{L}}{R_{S}} = \frac{\Psi_{S}^{*}\Psi_{L}}{R_{S}} + \frac{\Psi_{T}^{*}\Psi_{SI}}{R_{T}} \\ & \underset{R_{SI}^{*}}{\overset{\Psi_{SI}^{*}}{=} \frac{\Psi_{X}^{*}\Psi_{X}^{*}}{R_{I}} + \frac{\Psi_{X}^{*}\Psi_{X}^{*}}{R_{I}} - \frac{\Psi_{S}^{*}\Psi_{X}^{*}}{R_{I}} \end{split}$$

এখনে β হলে, সিস্টেমের মধ্যে পানির ফ্লাব্রে (বাপীভবনের হার), $\psi_{S_1} \psi_{Y_1} \psi_{S_1} \psi_{X_2} এবং$ $<math>\psi_1$ হলে: যগাক্রমে মহিকা, মূলের পৃষ্ঠ, কাণ্ডের গোড়া, কাণ্ডের অগ্রভগ্য এবং গাঁডার রাগীভবনের ফ্রাবের পানির পাটনাগিয়াল। $\mathbf{R}_1, \mathbf{R}_3$ এবং \mathbf{R}_1 হলে। যথ্যক্রমে মৃত্তিকা, মূল, কাণ্ড এবং পাতার হাইড্রোলক রোধক (চিত্র ৪,৫গ)। যদিও উদ্ভিদের হাইড্রোলিক রোধক নির্ণয়ে এবং প্রম্বেদনের হার সীমান্ট্রিত করার প্রভাগক নির্ধারণে ক্যাটেনারি মডেল খুবই উপযোগী, কিন্তু কতকগুলো কারণে মাঠ পর্যায়ে উন্ট্রিদ প্রানির সম্পর্ক নির্ণয়ে এর ব্যবহারের কিছু অসুবিধা আছে।

চিত্র ৪.৫ : (ক) একটি উদ্ভিদের সরলীকৃত চিত্র ; (খ) মৃতিকা, মুল, কণ্ড ও পাঁতার প্রধায রোধক ; প্রতিনিয়ত কারেন্ট জেনারেটর I) দারা বাঙ্গীভবন হয় ; (গ) সরলীকৃত ক্যাটেনারি মডেল, খ–এর জটিল শাখান্বিত পথকে সরলরৈথিক সিরিজ হিসেবে এবং মৃত্তিকা (R_S), মূল (R_F), কাণ্ড (R_S) এবং পাঁতার (R_F) হাইড্রেলিক রোধক প্রত্যেককে একটিমাত্র রেসিন্টরৈ হিসেবে দেখানো হয়েছে।

প্রথমত, একটিমাত্র মূল, কাণ্ড ও পাতা দ্বারা উদ্ভিদ গঠিত নয়, প্রকৃতপঞ্চে, অনেকওলে। মূল, শাখা–প্রশাখা এবং পাতার সমন্বয়ে গঠিত। তাই, উদাহরণস্বরূপ একটি সম্পূর্ণ মূলতন্ত্বের রোধককে নিমুলিখিতভাবে প্রকাশ করা যয়ে :

 $\frac{1}{R_{r}} = \frac{1}{r_{x1}} + \frac{1}{r_{x2}} + \frac{1}{r_{x3}} + \frac{1}{r_{x3}} + \dots \quad (\text{S}, \text{A})$

এখানে _{গমান গম}ু ইত্যাদি হলে। প্রতিটি মূলের রেপেকা একাইভাবে শাখে ও পাতার রোধক গণনা করা যায়।

দ্বিতীয়ত, পানি পরিবহণের পথ বরাবর উদ্ভিদের বিভিন্ন অংশ থেকে পার্দ্না যেও ২০০ পারে কিংবা সংরক্ষণের জন্য জন্ম ২০০ পারে, এর ফলে প্রবাহের হার পরিবর্তিত হয়। যেমন - যদিও মৃত্তিকা থেকে বায়ুমণ্ডলে পানি প্রবাহের পথে পাতরে কোম সরাসরি পড়ে না, ফিস্তু নৃত প্রেদনের শুরুতে এরু পাতরে অ্যাপোপ্লাস্টে পানি সরধরাহ করে। একইভাবে, মূল ও কাণ্ডের কোষগুলো দিনে বেশি চাহিদরে সময় পানি হারায় এবং রাঙে পানি শোষণ করে। দিন ও রান্ডের পাতার পুরুত্ব এবং কাণ্ড ও মুলের ব্যাসের তারতম্য পরিমাপ করে এই বিনিময়ের মান নির্ণয় করা যায় (Kozlowski, 1972) [;]

ৃতীয়ত, অধেদনের ফেত্রে মৃত্তিকা থেকে বায়ুমণ্ডল পর্যন্ত সম্পূর্ণ পথই (soil-plantatmosphere continum) বিবেচনা করতে হয়। তবে মৃত্তিকা ও সিম্টেমের গ্যাসীয় উপাদান অন্তর্ভুক্ত করলে ওহমের সূত্রে সাদৃশ্যতা পুরোপুরি মেনে চলে না, কারণ এর ব্যবহারের মৌল শর্ত পূরণ হয় না: এ বিষয়ে Passioura (1984) বিস্তারিত আলোচনা করেছেন। একটি নিদিষ্ট লাম্প চাপ গটতিতে প্রম্বেদনের হার সাধারণত পাতার ব্যাপন রোধক (leaf diffusive resistance) বিশেষ করে, শাস্ত বায়ু ব্যতীত, পত্রবন্ধীয় রোধক নির্ধারণ করে। উদ্ভিদে তরল পানির প্রবাহের হাইডোলিক রোধক সাধারণত প্রত্যে ব্যাপন হারকে সীমায়িত করে না, কিন্তু কতবন্ডলো বিশেষ অবস্থায় শুকিয়ে যাওয়া মৃত্তিকা থেকে মূলে পানি প্রবেশের রোধক উদ্ভিদে পানির সম্পর্কে প্রভায়িত করে।

উদ্ভিদ থেকে পানি হারানো (Water Loss from plant)

উদ্ভিদ বায়বীয় অবস্থায় পানি হারয়ে (প্রস্নেদন) এবং কখনো কখনো খুব সামান্য পরিমাণে তরল অবস্থায় ধরোয় (gutaction)। তবে পানি সমতায় পানি হারানোর গুরুত্ব খুবই নগণ্য। উচ্চশেণীর উদ্ভিদ বায়বীয় অংশ, বিশেষ করে পাতার পাত্ররপ্তার ভেতর দিয়ে অধিকাংশ পানি হারায়, একে পত্ররন্ধীয় অংশদন বলে। অপরপক্ষে, ক্রকীয় কেয়েরে কিউটিকলের রস্তু দিয়ে (কিউটিকুলার অস্কেদন) খুব সামান্য পানি হারায়। মোসোফিল কোযের কোষ প্রাচীরের তরল পানি প্রথমে বাব্দে পরিণত হয় এবং অব-পত্ররন্ধীয় গহবরে জমা হয় এবং পত্ররন্ধের ভেতর দিয়ে বাউন্ডানি বার্ড্রান্থ অন্তিনত হয় এবং অব-পত্ররন্ধীয় গহবরে জমা হয় এবং পত্ররন্ধের ভেতর দিয়ে বাউন্ডারি স্তর্জ অন্তিনত হয় এবং অব-পত্ররন্ধীয় গহবরে জমা হয় এবং পত্ররন্ধের ভেতর দিয়ে বাউন্ডারি স্তর অতি হম করে বায়্মগুলে পৌহায়। বাব্দীয়করণ পৃষ্ঠ থেকে জলীয় ধাব্দ ব্যাপনের মাধ্যমে বায়্মগুলে পৌডায়। যে ভৌত প্রক্রিয়ার ভেজা পৃষ্ঠ থেকে পানির বাব্দীঙবন হয়, একই প্রক্রিয়া প্রস্কেদনও ঘটে। অচুর পরিমাণ পানি সরবরাহ থাকলে এবং জলীয় বাব্দের ব্যাপনে কোনো বিগ্ন সৃষ্টি না হলে যে বান্দীয়ভবন হয়, তাকে পটেনশিয়াল (সর্বোচ্চ) বাব্দীভবন (Potential evaporation) বলে। তেজাপৃষ্ঠ (যেমন- মৃস্তিকা, কোম প্রায়ীয়) থেকে প্রকৃত্ত (actual) বাব্দীয়ভবন অবনা পরিনশিয়াল বান্দীভবনের তুলনায় কম, কারণ প্রায় কথনোই হারানো পানি সম্পূর্ণ পূরণ করা হয় না।

পত্রবন্ধ্রীয় প্রস্নেদন : একে নিমু লিখিতভাবে প্রকাশ করা যায়-

 $E_S = \frac{c_1^{-}c_3}{r_a^{+}r_S} \ , \qquad (8, \nu_{-})$

অধাৎ পাতার আড্যন্তরে জলীয় বাব্দের _{সে}প্রতি খনসেটিমিটারে গ্রাম পানি) এবং বায়ুমণ্ডলে জলীয় বাব্দের (c_a) পাথকা থলো পত্রবন্ধীয় প্রধেদনের (চ্রুপ্রতি বর্গসেটিমিটারে প্রতি সেকেন্ডে গ্রাম পানি) সমানুপাতিক এবং পত্রবন্ধীয় রেগেক r_{য়} এবং বাউডারি স্তর রোধক (r_a) দ্বারা এটি সীফায়িত জলীয় বাব্দের ব্যাপনের বাউডারি স্তর রোধক বায়ুর বেগের সাথে থনিষ্ঠতাবে সম্পর্কযুক্ত ব্যায় বেগ প্রতি সেকেন্ডে ০.১ মিটার খলে এই রোধকের মান প্রতি সেটিমিটারে ১ ত সেকেড এবং বায়ুর বেগ প্রতি সেকেন্ডে ১০ মিটার খলে এই রোধকে মান প্রতি সেকিন্ড প্রতি সেকিন্ড এবং বায়ুর বেগ প্রতি সেকেন্ডে ১০ মিটার খলে এটি কমে ০.১-০.০ সেকেন্ড প্রতি সেন্টিমটারে সাঙায়।

পত্ররন্ত্রীয় রোধক

প্রতি একক পাতার ক্ষেত্রফলে পত্রন্ধের সংখ্যা (পত্রবন্ধের যনন্ধ) এবং রক্ষের ব্যাসের উপর পত্ররন্ধীয় রোগক নির্ভারশীল (সর্বোধ্য ৪,২)। অধিকাংশ উদ্ভিদ প্রজাতির পত্ররন্ধ আলোতে খোলা এবং অন্ধর্কারে ধন্ধ থাকে ; সৌরবিকিরণের সরাসরি প্রতিক্রিয়া অথবা অধিকাংশ গুলে এঙ্কার্ধ সারকাডিয়ান লয়ের (circadian rhythm) নিয়ন্ত্রণে এটি ঘটে। তবে কতকগুলে। ওক ইপুদ ব্যতিক্রম আছে। যেমন CAM উদ্ভিদ এবং গোল আলুর (Manstield, 1976) পএরন্ধ অপাকারে খোলা থাকে। যদি অব পত্ররন্ধ্রীয় গহবরে কার্বন ডাই–অপ্লাইডের পরিমাণ একটি সংকটকালান মাত্রার কম হয়, তাহলে পত্ররন্ধ্র খুলে যায় ; এই সংকটকালীন মাত্রা সালোকসংশ্লেখণের পথেন (C3, C4 এবং CAM) উদ্বর নির্ভরশীল। পত্ররন্ধ্রের রক্ষীকোষ্য পরীক্ষা করার অসুবিধার কার্বার, তাহলে পত্ররন্ধ্র খুলে যায় ; এই সংকটকালীন মাত্রা সালোকসংশ্লেখণের পথেন (C3, C4 এবং CAM) উপর নির্ভরশীল। পত্রবন্ধ্রের রক্ষীকোষ্য পরীক্ষা করার অসুবিধার কারণে, পত্রবন্ধ্র খোলার জটিল প্রক্রিয়া সম্পর্কে এখন পর্যন্ত ভালভাবে জানা সম্ভাব হয়নি (Jarvis and Mansfield, 1981)। তবে এটি সুম্পষ্টভাবে জানা গেছে যে, পাতাকে সৌরকিরণে রাখলে হাগেন অরন্ধে করে লান গেছে যে, পাতাকে সৌরকিরণে রাখলে হাগেন এবং এর রসম্ফীতি চাপ পার্টেকী বিধানত পটাশিয়াম, ক্লোরাইড এবং/অথবা জৈব এসিড আয়ন) জমা হয়ে কোষরসের অসমোটিক পটেন জিনেন একার্ড, বুলনায় লেয় বেরের বর্দ্ধ বিধায়ের দ্রাতি চাপ পার্বের্জী কোষে পুনি এছে। তাই রক্ষীকোয়ে জন্য পত্রবন্ধ্র খুলে যায় টোর বের্দ্ধের মাত্রা হুলে বরের বর্দ্ধ বেরাবর ক্রমিকাযের দ্রুদ্ধ প্রেটি লেখেনে এলে যায়ন জন্তার বন্ধি করেরে বরে এবং এর রসম্ফীতি চাপ পার্বের্জী লেমের দেরে বিড়ে সাত্রার উপর নির্ভর আকার এবং এর ভার দিরে চ্যাসীয় ব্যাপনের রোধক রসক্ষীতি চাপে লার্থকার নাপনের রোধক রসক্ষীতি চাপের দার্ঘরে পার্বার ব্যের্ধ্ব ব্যক্ষির ব্যাপনের রোধক রসক্ষীতি চাপের দেরে সন্দ্র সার্বারে ব্যক্ষির ব্যাপনের রোধক রসক্ষীতি চাপের দেরে সন্দ্র সির্দ্ধান্ধের ব্যক্ষির ব্যাপনের রোধক বর্দ্ধ বর্দ্ধ ব্যার্দ্ধ ব্যের আকার এবং এর ভার ব্রাক্য বর্দ্ধ বর্দ্ধ ব্যার্ধের ব্যের ব্যের্দ্ধ বর্দ্ধ বর্দ্ধের স্বার্দ্ধ বর্দ্ধ বর্দ বর্দ্ধ বর্দ্ধ ব্যার্টের হার্দ্ধের জন্য আকার ব্রের্দ্ধ ব্রাক্য বরের বর্দ্ধের ব্যান্ধের ব্যার্দ্ধ বর্দ্ধ বর্দ্ধ বর্দের স্বার্দ্ধ বর্দ্ধ বর্দের ব্যার্দ্ধ বর্দের ব্রার্দ্ধ বর্দ্ধের বর্দের ব্রার্দ্ধ বর্দের ব্রার্দ্ধ বর্দ্ধ বর্দের ব্রার্দ্ধ বর্দের বর্দ্ধের বরের বর্ধের ব্রান্ধ বর্দের বর্দ্ধ বর্দের বর্দ্ধ বর্দ্ধ বর্দের ব্যান্ধের বর্দ্ধের বর্দ্ধ বর্দের বর্দ্ধে

সারণি ৪.২ :	াকিছু সংখ্যক নির্বাচিও উদ্ভিদ প্রজ্ঞাতির পুণ প্রস্নারিত পাতার উৎ্জ্ব- ও
	নিমুপৃষ্ঠের পত্ররন্ধের ঘনত, পরিমাপ এবং রন্ধের ফেন্ডফল (Meidner and
	Mansfield (1968) এবং Kramer and Kozlowski (1974) থেকে গৃহাঁত।

প্রজাত	পত্ররন্ধের গনাঞ্চ (প্রতি বগমিজিমিটা <u>র)</u>		পত্রবন্ধের দেখা (মাইক্রোমিটার)	ৰন্ধের ফেন্রফল ক
	নিয় পৃষ্ঠ	উধ পৃষ্ঠ	<u>.</u>	j
একবীজপত্রী বীরু				
Allium cepa	\$402	200	58	\$ Q
Hordenm vulgare	b 4	90	¥1	ວຸດ
Triticum aestivum	so	90	\$'b	0, M
Zea mays	20b	85	28	<u></u>
দ্বিবীজপত্রী বীরুৎ				
Vicia faba	ж <u>с</u>	94 2	5F	5,0
Tradescantia virginiana	20	ч	64	0,8
Helianthus annus	200	200	15	•
Sedum spectabilis	s.e	22	\$د	0, S
আবৃতবীজী বন্ধ				
Carpinus betulus	290	ü	20	0, b
Populus deltoides	222	264	కర	ಲ್ಕರ
Quercus robur	9S0	0	70	0.5
Tilia europea	o	5 90	20	0.8
<u>Eucalyptus globulus</u>	0	590	\$ 0	്.ര്
ব্যক্তবীজী বক্ষ				
Pinus sylvestris	200		50	Σ_{i} N

ক, পত্রবন্ধ পুণ খোলা অবস্থায় (বেধ ৬ মাইজোমিটার) পাতার মোট ক্ষেত্রফলের (চভয় পৃষ্ঠ) শতকর হারে প্রকাশ করা হয়েছে। সুতরাং ধ্যইপোল্টেমেটাস বৃক্ষ প্রজাতির ক্ষেত্রে পেদ্রবন্ধ কেবল নিদ্ধু পৃষ্ঠে থাকে। রন্ধের ক্ষেত্রফলের মান শতকরা ৫০, কেবল নিদ্ধুপৃষ্ঠের জন্য। স্টোরবিজিরণ অথবা সরকান্ডিয়ান লয়ে পত্ররন্ধের মৌলিক প্রতিফ্রিয়া অন্যান্য প্রভাবকের জন্য পরিবভিত হতে পারে। যেমন– উদ্ধ তাপমাত্রায় শ্বসনের হার বেশি হওয়ায় পাতার বায়ুগৃহবরে লাবন ডাই–অস্সাইডির মাদ্রা বেশি হওয়ায় পত্ররঞ্জ বন্ধ হতে পারে। এই পদ্ধতি পানি সংরক্ষণের উন্নতি সাধন করে এবং এর জন্যই পাত্রার উদ্ধ তাপমাত্রা ও বান্সীয়ভবনের চাহিদা বেশি হওয়ার কারণে দুপুরে পত্ররন্ধ বন্ধ হয়ে যায়। কিন্তু এর ফলে পুনরায় পর্যান্ত পানির প্রয়োগ করা সত্ত্বেও কয়েক দিনের জন্য পত্ররন্ধ বন্ধ হয়ে যায়। কিন্তু এর ফলে পুনরায় পর্যান্ত পানির প্রয়োগ করা সত্ত্বেও কয়েক দিনের জন্য পত্ররন্ধ বন্ধ হয়ে যায়। কিন্তু এর ফলে পুনরায় পর্যান্ত পানির প্রয়োগ করা সত্ত্বেও কয়েক দিনের জন্য পত্ররন্ধ বন্ধ হয়ে যায়। এই মান Vicia faba –এ –১০ মেগাপ্যাসকেল, Zea mays এ ১.৮ মেগাপ্যাসকেল, Sorghum bicolor এ ২.০ মেগাপ্যাসকেল, Gossypium hirsnum –এ –৪.০ মেগাপ্যাসকেল এবং মরুজ চিরহরিৎ Larrea divaricata –এ–৫.৮ মেগাপ্যাসকেল (Ludlow, 1980)।

সম্প্রতিককালে কভিপয় পরীক্যা-নিরীক্ষার ফলাফল থেকে জানা গেছে যে, অতিরিক্ত কার্বন ডাই-অগ্রাইউ ছাড়াও পত্রবন্ধ্র বস্ক্লের জন্য আরও কতকগুলো প্রভাবক দায়ী। যেমন- হরমোন, বিশেষ করে অ্যাবসসিসিক অ্যাসিডের পত্রবন্ধের উপর নিয়ন্ত্রণ আছে (Mansfield, 1983)। পানি ঘাটতির সময় ক্লোরোপ্লাস্টে অ্যাবসসিসিক এসিড সংশ্রেষিত হয় এবং এটি পত্রবন্ধ্র বন্ধ করে, আবার পত্রবন্ধ্র খুলতেও এটি বিলম্ব ঘটাতে পারে।

বাউন্ডারি স্তর রোধক

ায়ুপ্রবাহ না থাকলেও,পরিচলনজনিত তাপ বিনিময়ের কারণে একটি পাতার চারদিকের বায়ু টারবুলেন্ট হয়। ফলে বায়ু সম্পূর্ণরূপে মিশে যায় এবং ধীর গতির ব্যাপনের পরিবর্তে ম্যাস প্রবাহের জন্য প্রস্কেদনরত পাতা থেকে অনেক বেশি বুত গতিতে পানির অণু অসম্পত্ত বায়ুতে চলে যায়। তবে পত্রপৃষ্টে একটি অপেক্ষাকৃত শান্ত বায়ুর স্তর থাকে, বান্টদ্যরি স্তর, জলীয় বাঙ্গকে টারবুলেন্ট বায়ুতে প্রবেশের পূর্বে এর ডেতর দিয়ে অবশ্যই ব্যাপিত হতে হয়। এই স্তরের পুরুত্ব নিউর করে বায়ুরে গতিবেগ এবং পাতার আকার এবং আকৃতির উপর।

Holmgren এবং তাঁর সহকর্মীরা (1965) এবং Meidner এবং Sheriff (1976) এর উপাত্ত ব্যবহার করে একটি আদর্শ মেসেউদ্ভিদের কিউটিকল ও পত্রবন্ধ্র এবং বস্টেডারি স্তরের ভেতর দিয়ে জলীয় বাষ্প ব্যাপনের আপেফিক রেখেকের তুলনা করা সম্ভব :

কিউটিকুলার রোধক (r_c) - ২০ থেকে ৮০ সেকেন্ড প্রতি সেন্টিমিটারে (কিছু বৃক্ষ প্রজাতির মান আরো অনেক বেশি),

পত্ররন্ধীয় রোধক (r_s): —০.৮ থেকে ১৬ সেকেন্ড প্রতি সেটিমিটারে,

বাউন্ডারি স্তর রোধক (r_a) : – ৩.০ সেকেন্ড প্রতি সেন্টিমিটারের

(শংখুর বেগ যখন ০.১ মিটার প্রতি সেকেন্ডে, বিউফোর্ট স্কেলে ০), এবং ০,০৫ সেকেন্ড প্রতি সেন্টিমিটারে (বায়ুর বেগ যখন ১০ মিটার প্রতি সেকেন্ডে, বিউফেটে স্কেলে ৬)। উল্লেখ্য যে, পাএরন্ধ সম্পূর্ণ বন্ধ থাকালে (r.,) এর মান ও (r.,) এর সমান।

যেহেত্ পত্ররশ্ধীয় এবং কিউটিক্লরে পথ সমান্তরল অবস্থানে থাকে, সেহেতু r_c এর উচ্চ মনে নির্দেশ করে যে, যতকণ পত্ররস্ত্র খোলা থাকে ততকণ মোট প্রদেদনের তুলনায় কিউটিকুলার প্রাস্বেদন খুবই কম। একটি প্রস্কেদনরত উদ্ভিদের পাত্যের ব্যাপন রোধক (leaf diffusive resistance- R₁) ইল্টো r_র এবং r_s --এর যোগফল ; অধিকাংশ ফেব্রে r_s -- হলো R₁ এর প্রধান উপ্যাদান, সুতরাং প্রস্কেদনের হারের প্রধান নিয়ামক হলো পত্ররন্ধের রন্ধ। তবে বায়্র গতিবেগ কমে

<mark>পানির সরবরাহ</mark> ও ব্যবহার

গেলে, বাউন্ডারি ন্তরের পুরুত্ব বেড়ে যায় এবং তখন r_a এর গুরুত্বও কেন্ড যায়। বাধুর আঁতনের খুব কম হলে অথবা শান্ত বয়্তুতে (এটি খুব ক্য ঘটে), পত্ররন্ধের রন্তের একটি পারিধনে _{বি} প্রেম্ফনকে নিয়ন্ত্রণ করে যা Bange (1953) এর একটি ক্র্যাসিক পরীক্ষার মন্ত্রান্ড প্রাণ দ্যাণিত হয়েছে। একইভাবে কার্বন ডাই-অক্সাইডে অথবা দূষণকারী গ্যাসের প্রাতার ব্যাপালন হার শান্ত বায়ুতে অনেক কম।

কিউটিকুলার প্রস্বেদন

দ্বকীয় কোষের কিউটিকলের ভেতর দিয়ে জলীয় ব্যক্তের ব্যাপনকে কিউটিকুলার প্রকেন্দ কলে। পূর্বেই উল্লেখ করা হয়েছে যে, কিউটিকুলার ব্যাপন রোধক সাধারণত খৃথ বেশি। রাপ জানসেন বহিঃস্থ প্রাচীরে কিউটিন ও মোমের ল্যামেলির বিন্যাস, ঘনর ও সংখ্যা ৬ কউটিক নেব পুরু দ্রা উপর এই রোধক নির্ভর করে। যখন দ্বক গুকিয়ে কুঁচকিয়ে যায়, তখন হাইড্রোফোবক গুরাভান খুথ নিকটে আসে এবং এর ফলে কিউটিকুলার ব্যাধক দ্বিগুণ হয়ে যায়। বিন্যু তাপসায়াজ কিউটিকুলার ব্যাপন রোধক বেড়ে যায়। প্রকৃত্তবন্দে, প্রন্ধেন্দ হাসের ফেয়ে, কিউটিকুলার লাগেন ব্যাক খুথ কিবটি আসে এবং এর ফলে কিউটিকুলার ব্যাধক দ্বিগুণ হয়ে যায়। বিন্যু তাপসায়াজ কিউটিকুলার ব্যাপন রোধক বেড়ে যায়। প্রকৃতপক্ষে, প্রন্ধেন্দ হাসের ফেয়ে, কিউটিকুলার লাগেন খুথ কার্যকরী। এমন কি ছায়াযুক্ত এবং ভেজা পরিবেশে জন্মানো উদ্ভিদের কিউটিকুলার লাগেন্দরে মাত্রা, মুক্ত পানির পৃষ্ঠ হতে বাষ্ণীয়ভবনের মাত্রার শতকরা ১০ ভাগের কম, চিরুরেন কান্দরেরের পাতার মান শতকরা ০ ৫ ভাগ এবং ক্যকেটাস্পে পটেনশিয়াল বাষ্ণীভবন শতকরা ৫০ লাজার ব্যাত্ব

সুবেরিনযুক্ত ত্বকীয় কোষ থেকে পানি হারানেরে মাত্রা কিউটিকুলার প্রন্ধেলনের মানার মতে ই এটি নিউট করে পেরিডার্মের গঠন, দেন্টিসেলের প্রবেশ্যতা এবং বাকলের ফাটলের চলেন্ডান উপস্থিতি অথব্য অনুপস্থিতির উপর।

প্রস্বেদন এবং কার্বন ডাই-অক্সাইড বিনিময়

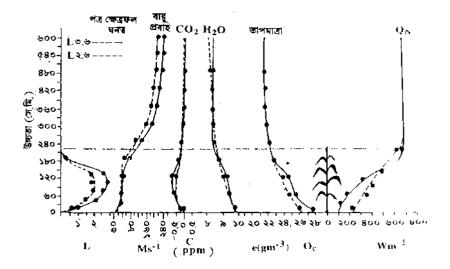
পূর্বেই উল্লেখ করা হয়েছে যে, উদ্ভিদে প্রস্কেন্দ্র এবং কার্বন ডাই- অয়ইন্ড পৃথণ প্রবন্ধন মাধ্যম সম্পর্কযুক্ত ; পত্ররঙ্গ দিয়ে জলীয় বাঙ্গ ও কার্বন ডাই। এঞ্চইড উভয়েরই কাপন ২য়া কার্বন ৬,হা অক্সাইড গ্রহণের জন। উদ্ভিদকে অবশ্যই পানি ত্যাগ করতে হয় এবং যখন সানি হারানে কম হয়। তখন কাৰ্বন ডাই–অক্সাইড গ্ৰহণও কম হয়। জনীয় বান্স ও কাৰ্বন ডাই–অক্সাইডের ব্যাপনের বাব এক রকম নয়। ইতক্ষণ পর্যন্ত বায়ুমগুলের বয়েু পানি দ্বারা সম্পৃক্ত না হয়, তাতক্ষণ প্রধান ১০১ ব **অভ্যন্তরের এবং বায়ুমগুলের জলীয় বালে**ার চালের পার্থকা, বায়ুমগুল এব*া*কুলেল্লেল্লান নালন ডাই–অক্সাইড ঘনমগ্রোর পর্যেক্যের তুলনায় আনেক বেন্দি। ২০1 সেন্দ্রসন্থাস ভাপমানয় নব শতকরা ৫০ ভাগ আপেষ্কিক অর্দ্রতায় কার্বন ডাই অক্সাইডের গেডিয়েন্টের চুলন্দ্য জ্যান্দ বান্সের গ্রেডিয়েন্ট প্রায় ২০ গুণ বেশি। একমাত্র এ কারণেই কার্বন ডাই স্বায়াইড় গৃহনের ভুলনার পানির বাঙ্গীয়ভবন অধিকতর প্রততার সঙ্গে সংঘটিত হয়। উপরস্থ, একই রক্তম জেচিয়েন থাকলে, কার্বন ডাই–অক্সাইডের তুলনায় পানির অণু ক্ষুদ্র হওয়ায়, দেড় ওণ বেশি স্বাচ নামব <u>ব্যাপন হয় কার্বন ডাই-অক্সইডের ব্যাপনের পথ অধিকাতর দীর্ঘ, একে ব্রোরেপ্লোপ্ট প্রারেণ করতে</u> হয় এবং দ্রবণীয় অবস্থায় কার্বন ডাই--অক্সাইডের চলাচল খুবই মন্তর। সুতরাং ব্যাপদের যে কেনেন দিয়ামকের পরিরতন হলে। প্রস্কেদন/ সালোকসংশ্বেষণের অনুপাত স্বসমহ পরিবতন হয় লোভন্থ, খোলা থাকলে, পাত্যর অভান্তরে ব্যাপন রোধকের জন। (বিশেষ করে কার্বের্ণায়লেশ- ভালকের জন্য), প্রস্কেদনের তুলনায় কার্বন ডাই অক্সাইড গ্রহণ অধিকাতর সীমর্গেত ২৪ পারবদ্ধ বন্ধ থাকলে, কার্বোক্সাইড গ্রহণ সম্পূর্ণরাপে বন্ধ হয়ে যায়, ক্রিস্তু কিউটিকল দিয়ে পর্যন ত্রাদ ক্রাণ্ড হ

চলতে থাকে, ফলে প্রস্বেদন/ সালোকসংশ্লেষণ অনুপাত অসীম হয় (infinity)। থখন পত্রবন্ধ আংশিক খোলা থাকে, তখন পানি ত্যাগ এবং কার্বন ডাই-অক্সাইড গ্রহণের মধ্যে একটি মুহিণজনক রফা হয়। প্রাকৃতিক পরিবেশে, সকালে কার্বন ডাই-অক্সাইড গ্রহণের জন্য উদ্ভিদ কম পানি ব্যয় কন্থে, কারণ এসময় প্রস্বেদনের তুলনায় সালোকসংশ্লেষণ দ্রুত হয়। সূর্যকিরণ বাড়ার সাথে সংথে বায়ু উত্তপ্ত হয় এবং জলীয় বাব্দের পরিমাণ হাস পায়, তাই কার্বন ডাই-অক্সাইড গুহণের তুলনায় পানি হারানো বেশি হয় এবং প্রস্নেদন/সালোকসংশ্লেষণ অনুপাত বেড়ে যায়।

পানি ব্যবহার এবং খাদ্য তৈরির মধ্যে সমতা বিধান উদ্ভিদ গ্যাস বিনিময়ের একটি প্রধান সমস্য। অন্য উদ্ভিদের তুলনায় কতকগুলো উদ্ভিদ এটি ভালভাবে করতে পারে, এজন্য এগুলো ওক্ষ পরিবেশে ভালভাবে টিকে থাকে। শস্য উদ্ভিদ ও বনজ উদ্ভিদের মধ্যে সম্পর্ক জানা খুব ওরুজপূর্ণ। এই সম্পর্ক দু'ভাবে প্রকাশ করা যায়।

প্রথমত, উদ্ভিদ বা শস্য কর্তৃক সম্পূর্ণ মৌসুমে প্রতি একক ওজনের স্তক্ষ পদার্থের (dry matter) জন্য উদ্ভিদটি কি পরিমাণ গুদ্ধ পদার্থ তৈরি হয়েছে। বিভিন্ন প্রজাতিতে এই মান বিভিন্ন। কোনেং শস্যের জন্য কি পরিমাণ পানি ব্যবহার করেছে এবং দ্বিত্রীয়ত, প্রতি লিটার বাব্পকৃত পানির জন্য কৈ পরিমাণ সেচের পানির প্রয়োজন তা এই তথ্য থেকে জানা যায়। কয়েকটি উদ্ভিদের গুদ্ধ পদার্থ তৈরির সময় গড় পানি ব্যবহার (প্রতি গ্রাম শুচ্চ পদার্থের জন্য ব্যবহাত গ্রাম পানির পরিমাণ) নিমূরপ :

😋 উদ্ভিদ : ভূট্টা ৩০০, মিলেট ৩০০, Amaranthus ৩০০ এবং Portulaca ২৮০।


C3 উদ্ভিদ : ধান ৬৮০, রাই (rye) ৬৩০, জই ৫৮০, গম ৫৪০, যব ৫২০, আলফালফা ৮৪০, বিন ৫০০, গোল আলু ৬৪০, সূর্যমুখী ৬০০, তরমুজ ৫৮০ এবং জুলা ৫৭০।

শস্য থেকে বাম্পীভবন (Evaporation from a Crop)

শসের ক্যানেশপি থেকে বাপীভবনের মান নির্ণয়ের জন্য, ক্যানোপির ভিতরে নিট বিকিরণের (QN) পরিমাণ জানা দরকার। হস্ব-দৈখ্যের বিকিরণের নিমুমুখী ফ্লাক্স এবং দীর্ধ দৈর্ঘ্য বিকিরণের ভিধ্বমুখী ফ্লাক্স এবং দীর্ধ দেঘ্য বিকিরণের ভিধ্বমুখী ফ্লাক্স এবং দীর্ধ দৈঘ্য বিকিরণের ভিধ্বমুখী ফ্লাক্স এবং দীর্ধ দৈঘ্য বিকিরণের ভিধ্বমুখী ফ্লাক্স এবং দীর্ধ দৈঘ্য বিকিরণের ভিধ্বমুখী ফ্লাক্স এবং দায়ে থেকে গোনোপির কোনো এক স্থানের QN পাওয়া যায়। QN এবং Z-এর (ভূপৃষ্ঠ থেকে উচ্চতা) সম্পর্কিত কার্ডের যে কোনো স্থানের গেডিয়েট থেকে সেই স্থানে পাতা ও হুক শোঘিত নিট বিকিরণের পরিমাণ জানা যায় (চিত্র ৪,৬)। লীন তাপ (latent heat) এবং উদ্রীয়গ্রাহাযে (sensible) তাপের বৃদ্ধির মধ্যে এটি বিভেদিত। জলীয় বান্স এবং তাপের ফ্লাক্স, মধ্যে এটি বিভেদিত। জলীয় বান্স এবং তাপের ফ্লাক্স, মধ্যে এটি বিভেদিত। জলীয় বান্স এবং তাপের ফ্লাক্স, মধ্যে এটি বিভেদিত। জলীয় বান্স এবং তাপের ফ্লাক্স, মধ্যে এটি বিভেদিত। জলীয় বান্স এবং তাপের ফ্লাক্স, মধ্যে এটি বিভেদিত। জলীয় বান্স এবং তাপের ফ্লাক্স, মধ্যে এটি বিভেদিত। জলীয় বান্স এবং তাপের ফ্লাক্স, মধ্য এটি বিভেদিত। জলমা যায়। যেন ৪,৬ নং চিত্র QN এর ফ্লাক্স নিমুমুখী, কিন্তু জলীয় বন্দে ও ওেপেরে ফ্লাক্স সম্পূর্ণ কাংনেলানির ভিতরেই উধ্বমুখী, কিন্তু কার্বন ডাই–অক্সাইডের ফ্লাক্সের নিচের ৬০ সেটিমিটার পর্যন্ত উধ্বমুখী, বেবল উপযুক্ত স্থানন্তের গ্রণাক্ষ (K) জানা থাকলে ফ্লাক্সের মান জিনা মান্ড জিলা যায়। যান লাফা জানা যায়। জন্য বান্টা কেলে ফ্লাক্সির্যা। কেবল উপযুক্ত স্থানক্ত গ্রণাক্ত গ্রণাক্ষ বিকেরের মান কিন্দের বেরের মান নির্ণাণ্ড এখনক গ্রের জেনা নার্য এটানিটিত।

এতদসভেও, ক্যানোপির কোনো নির্দিষ্ট উচ্চতায়, পাতার ক্ষেত্রফলের খনত্ব, পাতার ব্যাপনের রোধক, বাউডেরি স্তর রোধক, আপতিত বিকিরণ, বায়ুর গতিবেগ এবং জলীয় বাষ্ণের ঘটতির ত রতমা জেনে শস্য থেকে এবং শস্যের অভ্যন্তরে জলীয় বাষ্ণ ও তংপের ফ্রান্স অনুমান করা হয়েছে। এরকম একটি হিসাব থেকে পাতার রোধকের গুরুত্ব সম্পর্কে জন্ম গেছে। একটি নির্দিষ্ট পর্যরবেশে, পাতার রোধকের মান বৃদ্ধি পাওয়ায় ক্যানোপির বিভিন্ন স্তরে প্রম্বেদনের হার অধিকতর একরাপ হয়, মেন্ট প্রধেদনের হার হাস পায় এবং ক্যানোপির তাপমাত্রা তেপে যায়। তবে কানোপির বাইরের আবহাওয়ার পরিবর্তনের সাথে এসকল মানের পরিবর্তন হয়।

 ~ 8

চিত্র ৪,৬ : ভুট্টা শসেরে পাতার ক্ষেত্রফলের ধনও, ব্যয়ুর গতিবেগা কাবন ৬৬ মন্ডান ঘনমাত্রা, জলীয় বান্সের ঘনমাত্রা, তাপমাত্রা এবং নিট বিকিরণের বর্ণন

মৃত্তিকা পণ্ঠ থেকে পানি হারানোর ক্ষেত্রেও এই পদ্ধতি ধ্যবহার করা যেতে পালে কিছ মৃত্তিকাপৃষ্ঠের ঠিক উপরে K এর পরিবর্তন সম্পর্কে অনিশ্চয়তা আছে। নিনের আগবান্দ সময় মৃত্তিকাপৃষ্ঠ নিট বিকিরণের নিমুমুখী ফ্লাক্স থাকে। যদি মৃত্তিকা পণ্ঠ ভেজা হয়, তাহলে বাল্টা চলনের জন্য অধিকাংশ নিট বিকিরণ ব্যবহৃত হয় ; শস্যের পৃষ্ঠের জলীয় বাঙ্গের প্রায় এক চ হালেশ মৃত্তিকার পানি থেকে আসে। তবে পৃষ্ঠ থেকে কয়েক মিলিমিটার মৃত্তিকা পণ্ঠ হেলে এগনে চললি মৃত্তিকার ব্যাপনের রোধকের মাত্রা অনেকাংশে বড়ে যায়। তখন মৃত্তিকা পিষ্ঠ কেরে সম্পেরে রাজ্য থেকে ব্যবহৃত হয় তথাকে বাজ্যে যাগে। তখন মৃত্তিকার পানি থেকে আসে। তবে পৃষ্ঠ থেকে কয়েক মিলিমিটার মৃত্তিকা পণ্ঠ কেরে ওকা মেন্দ্র স্বাধি ব্যক্তির জলীয় বাঙ্গের প্রায় লেন্দ্র হালেশ মৃত্তিকার পানি থেকে আসে। তবে পৃষ্ঠ থেকে কয়েক মিলিমিটার মৃত্তিকা পণ্ঠ কেরে লোগ চললির ব্যাপনের রোধকের মাত্রা অনেকাংশে বড়ে যায়। তখন মৃত্তিকা পেষ্ঠ কেরে কেরে বাজ্যিত হয় এবং বল্যে কেরে নাগ্য জালেন ব্যাগের ব্যাগেরে সাহায্যে পরিমাপ করা যায়। শস্যের উপর নিট বিকিরণ সেয়ণের মাত্রা লিন্দ্র করা যায়। লগ্যের নিট বিকিরণের মৃত্র হানের মাত্রা বিকেরণের করা যায়। নার্য্য বিকেরণের বির্বিরণের মন্ত্রা বিকিরণের মন্ত্রা হেরে কয়নোপি কর্ত্বক নিট বিকিরণ নের মন্ত্রা হেরে কয়নোপি কর্ত্বক নিট বিকিরণ লোষণের মাত্রা নিন্দ্র করা যায়। বিদ্যার উপর নিট বিকিরণ লোষণের মাত্রা নিন্দ্র ব্যায়। যায়।

উদ্ভিদে পানির সমতা (Water Balance of Plant)

পানি পরিশোষণ এবং হারানোর হারের পর্যাক্য খলে। উদ্ভিদে পর্যনর সমতা। এথাৎ প্রানত সমতা পানি পরিশোষণ–প্রস্কেদন। এক্ষেত্রে প্রস্কেদনকে ভৌত প্রক্রিয়া হিসেবে বিবেচনা না করা বারন হারানোর পরিমাপক হিসেবে গণ্য করং হয়। সুতরং প্রতি একক ফ্রেডফেলের পর্বিবতে হাতে নকক ওজনে (সাধারণত সজীব ওজন) পানি হারানোর পরিমণে প্রকাশ করা হয়। পর্যন সমতান জন একটি নিদিষ্ট সমধ্যে যে পরিমাণ পানি হারায় তা পুরণ করা দরকার।

•••

পানি পরিশোষণ, পরিবহণ এবং হারানোর হারের মথোপযুক্ত সমন্য ঘটলে, সপ্তোধজনক পানির সমতা বজায় থাকে। প্রস্কেদনের মাধ্যমে যে পরিমাণ পানি হারয়ে তা যদি সরবরাহ করা না হয়, তথনই পানির সমতা ঝণাত্রক হয়। এই পানি ঘাটতির জন্য যদি পত্রইন্ধ্র আংশিক বন্ধ হয়, এতে প্রস্কেন হ্রাস পায় এবং পানি পরিশোষণ যদি আগের মতোই চলে, তাহলে কিছু সময়ের মধ্যে পানির সমত। ঋণাত্রক অথবা ধনাত্রক হয়। প্রাকৃতিক পরিবেশে, দিনে প্রায় সবসময়ই পানির সমতা ঋণাত্রক অথবা ধনাত্রক হয়। প্রাকৃতিক পরিবেশে, দিনে প্রায় সবসময়ই পানির সমতা ঋণাত্রক অথবা ধনাত্রক হয়। প্রাকৃতিক পরিবেশে, দিনে প্রায় সবসময়ই পানির সমতা ঋণাত্রক হয়। ওফ মোস্যে রাতে ভিদ্তিদে পানি সম্পূর্ণ পুনরুদ্ধার হয় না , এজন্য বৃষ্টিপাত না হওয়া পর্যন্ত দিনের পর দিন এই ঘাটতি বাড়তে থাকে। এজন্য পানি সমতার ঋতুগত তারতম্য পরিলম্বিত হয়।

ার্লা পানি পরিশ্যেষণ ও প্রস্কেদনের মান নির্ণয় করে সরাসরি পানি সমতার পরিমাপ করা যায়। মঠ পর্যান্ডে পানি পরিশোষণের মান নির্ণয় খুবই জটিল, এজন্য উদ্ভিদে পানির পরিমাণ অথবা পানির পটেনশিয়াল নির্ণয় করে পরোক্ষভাবে পানির সমতার পরিমাপ কর হয়।

পাতা এবং বিটপের পানির পরিমাণ পুনঃ পুনঃ পরিমাপ করে পানি খাটতি নির্ণয় করা যায়। কোনো সময়ে পানির পরিমাণ হয় সম্পুঞ্চ অবস্থায় পানির পরিমাণের শতকরা হার (আপেফিক রসম্ফপীতিত্ব) অথবা অপেফিক পানির পরিমাণ হিসেবে প্রকাশ করা হয়। কোষের পানির পরিমাণের তরেওম্য কোষরসের খনমাত্রা এবং কোষের পানির পটেমশিয়ালকে প্রভাবিত করে। কোষের অসমোটিক পটেনশিয়ান কোষের পানির সমতার নির্দেশক। পানির সমতা রুণাত্বক হলে অসমোটিক পটেনশিয়ান বাড়ে। উদ্ভিদ প্রজাতি, আকার, বৃদ্ধির দশা এবং কলার বিভিন্নতার উপর অসমোটিক পটেনশিয়ালে বাড়ে। উদ্ভিদ প্রজাতি, আকার, বৃদ্ধির দশা এবং কলার বিভিন্নতার উপর অসমোটিক পটেনশিয়ালের মান নির্ভর করে। পানি সমতার সবচেয়ে সংবেদনশীল নির্দেশক হলো পাতা ও বিটপের পানির পটেনশিয়াল।

শস্যের পানি সমতা (Water Balance of Crop)

শস্যের এবং যে মৃত্তিকায় এর মূল প্রবেশ করে তার পানি সমতার অবস্থা নিমুলিখিত সমীকরণে প্রকাশ করা যায় :

 $\mathbf{P}_f = \mathbf{A}\mathbf{W} + \mathbf{L}_E + \mathbf{L}_O \ \ (8, \aleph)$

এই সমীকরণে শস্যের জন্য পানির একমত্রে উৎস হলো বৃষ্টিপাত (P_T)। বৃষ্টির পানির কিছু অংশ উদ্ভিন ও মৃত্তিকা থেকে বান্দীভবন হয় বান্দীয় প্রস্নেদন, L_E) এবং কিছু অংশ ভূপৃষ্ঠ দিয়ে গড়িয়ে এবং মৃত্তিকা থেকে বান্দীভবন হয় বান্দীয় প্রস্নেদন, L_E) এবং কিছু অংশ ভূপৃষ্ঠ দিয়ে গড়িয়ে এবং মৃত্তিকা এ৬/ওরে অনুস্রবণ হয় (Lo)। তবে স্বন্দ সময়ের জন্য সংরক্ষিত পানির পরিমাণ বাড়তে (+ ΔW) অথবা কমতে (-ΔE) পারে, কারণ কখনো কখনো বান্দীভবন এবং অনুসুরণের ভূলনায় বেশি বৃষ্টি হয় অথবা উদ্ভিদের প্রয়োজন অনুযায়ী বৃষ্টি হয় নাং হাইদ্রোলজিতে পানি বলতে কেবল মৃত্তিকার স্বান্ধ পরি হাইদ্রের প্রয়োজন অনুযায়ী বৃষ্টি হয় নাং হাইদ্রোলজিতে পানি বলতে কেবল মৃত্তিকার সন্ধিত পানি অর্থাৎ কৈশিক এবং লন্ডা অভিকর্মীয় পানিকে বোঝায়। নান্ডিশীতোয় অঞ্চলে বসন্তকালে ধরফ গলার পর স্বচেয়ে বেশি পানি মৃত্তিকায় থাকে, গ্রীত্মকানে বস্থিপাত হাকে এবং গানি কমতে হাকে এবং গ্রীন্দের শেষে সর্বনিম্ন মাত্রায় বের্যায়। নান্ডিশীতো হলেও বান্দি কার্দের পানি কমতে হাকে এবং গ্রীত্মের শেষে সর্বনিম্ন মাত্রায় বের্যায়। নান্ডিশীয় আজনে বান্দি ক্রিজন পানি কমতে হাকে এবং গ্রীন্দের প্রে কেন্দ্র লার্টে বিষ্টিয়ে গার্কিরে পানি কমতে হাকে এবং গ্রি মে স্তিকোয় ব্যাক্ষা বের্যায়। নান্টিশীয়ে আজনে বান্দি ক্রিজন পানি কমতে হাকে এবং গ্রীন্দের শেষে সর্বনিম্নু মাত্রায়। বিষ্টিম্বান্দ্র বিষ্ঠানে বান্দি করা ব্যায়। গ্রীত্মমান্দ্র বিষ্টায় আজনে ব্যাজনে মৃত্তিকা পানিপুণ হয়। পরিবেশতাত্বিকভাবে উল্লেখা করা যয়, উদ্ভিন্দের পানির এবং লিচারেরে (inter) মধ্যে রক্ষিত পানিও বয়ে আন্ত বাদ্র বন্ধ আন্ত হার্যা বান্য

পানি সমতায় বৃষ্টিপাতের সেই পরিমাণ পানি গুরুত্বপূর্ণ যা দ্রুত মৃত্রিকায় এবেশ করে। গন শস্যক্ষেতে, প্রাকৃঙপক্ষে বৃষ্টিপাতের (Pr) সবটুকু পানি মৃত্রিকায় প্রবেশ করে নাা; উদ্ভিদ ক্যার্মোপির ফার্ক দিয়ে গাঁওত অংশ এবং কাণ্ড ও পাতা দিয়ে গড়িয়ে পড়া অংশ মন্টিকায় পৌছায়।

228

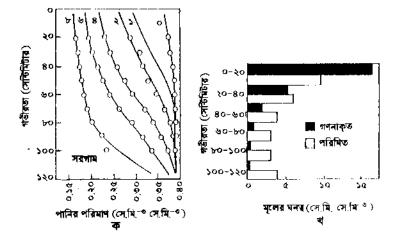
কাণ্ড ও পাতায় পতিত -পানিয় কিছু অংশের বাঙ্গীভবন হয় এবং খুব সামান্য অংশহ^{ান্ট ভা}ঙদ শেষেন্ করে। তাই উদ্ভিদে লেগে থাকা পানি (Li, বাঁধাপ্রদান ফতি) ফতি বলে পারিগণিত হয়। এজনা সম্পূর্ণ নির্ভূলভাবে পানি সমতা সমীকরণকে নিমুলিখিও ভাবে প্রকাশ করা যায় :

 $P_{f} - L_{i} = \Delta W + L_{E} + L_{O} \dots (8.5\sigma)$

মৃত্তিকায় পতিও সবটুকু পানিই বাস্পীয় প্রস্নেদনের জন্য লভ্য নয়। এনের কিছু ২০শ হপৃথ দিয়ে গড়িয়ে অন্যত্র চলে যায় এবং আরও কিছু অংশ অনুস্রবণের মাধ্যমে মান্ডকার অনেক মাধ্য চলে যায়। গড়িয়ে যাওয়া পানির পরিমাণ নির্ভর করে ভূ-প্রকৃতি এবং উদ্ভিদরাজির প্রকাত্ত ইণ্ডর

প্রবল বৃষ্টিপাতের পর মূল অঞ্চলের মৃত্ত্তিকা ফিল্ড ক্যাপাসিটিতে এবং পাতার কোষপাল প্রায় পূর্ণ রসম্চ্ষীতি **অবস্থায় থাকে। সর্যোদ**য়ের পর পত্রবন্ধ খুলে যায় এবন আপা ১০ বিকিরণ বান্সীভবনের শক্তি সরবরাহ করে। কোর্য প্রাসীর পালি হরোয় ও প্রোচ্চাপ্রাজন এবং পাশব হা কোন থেকে পানি গ্রহণ করে পানির পটেনশিয়ালের সাম্যাবস্থা বজায় থাকে। পাঁনি হারানোর জন্য ওলাবে স্বায়তন ও রসস্ফীতি চাপ হাস পয়ে এবং পানির পটেনশিয়লে কমে যায়। পাশ্বর ঠা কোষ ৬৫৫ পানি গ্রহণের জন্য শিরা, কাণ্ড, মূল ও মূলের চারপাশের মুন্তিকা বরুষর পর্যনর পর্যেনশিয়ালের গেডিয়েন্ট তৈরি হয়। একটি সরলীকত মউল ব্যবহার করে, মৃত্তিকা, মুনের পৃষ্ঠ ও পা গর জন দিনের পানির পার্টনশিয়ালের পর্যায়ক্রমিক পরিবর্তন ৪.৭ নং চিত্রে দেখানে হয়েছে , প্রথম উদন্য ন্ধবতে বহিঃস্থ প্রতিক্রিয়া (যেমন– সৌরবিকিরণ)। অথবা অন্তঃস্থ লায়ার (rhythm) প্রত্যন্ধের এজ ক্রমন চওড়া হতে থাকে এবং সাথে সাথে প্রস্কেদনের হারও বাড়তে থাকে 🗟 জিলের ২৫০০০ ক রোধকের জন্য কেবল পানি পটেনশিয়ালের গ্রেডিয়েন্ট স্থাপনের পরই মৃতিকা থেকে পা সম পান পৌছায়। যেহেতু মৃস্তিকা ফ্লিন্ড ক্যাপাসিটি অবস্থায় আছে (ψ মৃত্তিক' 🐇 O), সেংহতু পাতার পানির পটেনশিয়াল –০.৬ মেগ্রাপ্যাসকেল না হলে পানির প্রবাহ পর্যাপ্ত ২৫৫ না ; এর জন কর্তাক থন্টার জন্য পাতায় হান্ধা পানি ঘাটতি হয়। ডেজা মুন্তিকার হাইড্রোলিক রোধক কম হল্যায়, পানির পটেনশিয়ান্দের খুব সামান্য পার্থকা থাকলেও (১০.১ মেগাপ্যাসকেন) মৃত্রিকা একে মৃত্রন পানি প্রবেশ করে।

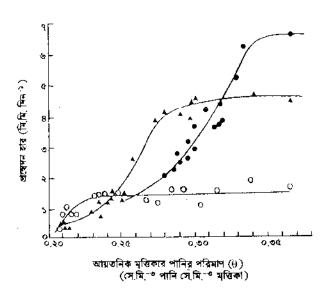
সন্ধ্যায়, পত্রবন্ধ বন্ধ হওয়ার সাথে সাথে প্রথেদনের হারও কমে যায় এবং পানি হাবনের তুলনায় পাতায় পানির প্রবেশ বেশি হয়। ফলে পাতার অ্যাপেক্লেন্ট এবং কোষ প্রাণহে হিলে হার এবং সারা রাতে মৃত্তিকা এবং পতোর পানির পটেনশিয়ালের পাথকা থাকে নান হলে হারন দিনে উদ্ভিদ কর্তৃক কিছু পানি শোষিত হওয়ায় সাম্যাবস্থায় মৃত্তিকা এবং উদ্ভিদের পানের পানে শান হলে হার এখন প্রায় -০.১ মেগপ্যোসকেল। দ্বিতীয় দিনে উদ্ভিদ/পানি সম্পক্ষ প্রায় প্রথম সিনের মাজে এবং পরে হার একটি পার্থকা হলো যে, এখন পানি প্রবাহ বন্ধায় রাখতে পাতার পানির পটেনশিয়ালে প্রায় —০.৯ মেগাপ্যাসকেল। দ্বিতীয় দিনে উদ্ভিদ/পানি সম্পক্ষ প্রায় প্রথম সিনের মাজে হবে প্রায় —০.৯ মেগাপ্যাসকেল। উপরস্থু, মৃত্তিকা গুন্দ হওয়ার জন্য হাইটোলিক রোগক বাছিরে হলে করেছে এবং মূলে পানি প্রবেশের জন্য পানির পটেনশিয়ালের পার্থকা ২০০ হবে নাম থেকে নাম মেগপ্যাসকেল।


তৃতীয় দিনের শুরুতে, মৃদ্ধিকা, মূল ও পাতার সাম্যাবস্থা পানির পানির্দাশয়াল কমে কর মেগাগ্যাসকেল হয়েছে এবং সারাদিনই পাতার পানির পটেমলিয়াল ১০০ মেগাগ্যাসকেল ২০৫০ দরকার। মৃদ্ধিকার রোধকের ক্রমাগত বৃদ্ধির দুটি প্রভাব আছেন প্রথমত, আডার দিনের মতে একই পরিমাণ পানি সরবরাহের জন্য মৃত্তিকা এবং মূলের পানির পটেনালিয়ালের পানির সার্বে ০,৩ মেগাপ্যাসকেল, কিন্তু সবচেয়ে বেশি গুরুত্বপূর্ণ যে, মৃত্তিকায় পানি চলচলা হার্বাজ্য

চিত্র ৪.৭ : পাঁচ দিন পর্যন্ত মৃস্তিকার লভ্য পানি নিঃশেষ হওয়ার সাথে পাতা, মূল এবং মৃত্তিকার পানির পটেনশিয়াল এবং প্রস্বেদনের হারের সম্পর্ক।

পানির পটেনশিয়াল সাম্যাবস্থায় আসছে না। ফলে দিনের অধিকাংশ সময় পাতায় হাল্কা থেকে মধ্যম পানি ঘটেতি হচ্ছে: চতুর্থ দিনে অবস্থা আরও গুরুতর হয় থখন পাতায় পানির পটেনশিয়াল --১.৫ অথবা পাতার তাপমাত্রা অতিরিক্ত হওয়ায় দুপুরবেলায় এল্প সময়ের জন্য পত্ররন্ধ বন্ধ হয়ে যায়। পরিশেযে, পঞ্চম দিনের শেযে, যখন মৃত্তিকার পানির পটেনশিয়াল –১.৫ মেগাপ্যাসকেলে দাঁড়ায় (স্থায়ী উইল্টিং বিন্দু), তখন আর কোনো লন্ড্য পানি থাকে না এবং ৬ণ্ঠ দিনে উদ্ভিদটি মিইয়ে পড়ে এবং মৃত্তিকায় পানি প্রয়োগ না করলে উস্তিদটি মারা যায়।

কতকগুলো পদরামিটারের সাথে, বিশেষ করে মৃত্তিকার হাইড্রোলিক ধর্মাবলী, মৃত্তিকার বিভিন্ন স্তরে মূলের ঘনমন্ত্রো, আবহাওয়াজনিত অবস্থা যা রান্সীঙ্গবনকে প্রভাবিত পত্রবন্ধের উন্দীপনা এবং শস্যের অভ্যস্তরে পানি প্রবাহের রোধক, ৪.৭ নং চিত্রের কান্ডের আকার পরিবর্তিত ২য়। মৃত্তিকা গুরুহানের সময় বিভিন্ন স্তরে পানির পরিমাণ তথা পানির পটেনশিয়ালের উপর বিশেষভাবে গুরুহ দেয়া হয় (চিত্র ৪.৮)। মৃত্তিকার মূলের বিস্তার প্রধানত নির্দেশ করে, যে অঞ্চলে সবচেয়ে বেঞ্চ মূলের ঘনমত্রা থাকে সে অঞ্চল সবচেয়ে বেশি মূলের ঘনমাত্রা থাকে সে অঞ্চল সবচেয়ে বেশি মূলের ঘনমাত্রা থাকে সে অঞ্চল সবচেয়ে বেশি মূলের ঘনমাত্রা থাকে সে অঞ্চল সবচেয়ে বেশি মান হার যা কালোপিন্দ্র বিভিন্ন স্তরেও সুষ্পষ্ট পানির পটেনশিয়ালের প্রেডিয়েন্ট থাকতে পারে, কি ব্র এই ব্যোচায়জের প্রেডিয়েন্ট তামাকে –১.০ থেকে –০.৪ মেগাপ্যাসকেল, বুলরাশ মিলেরে –১.০ থেকে –০.২ মেগাপ্যাসকেল রেকড করা হয়েছে। অপরণকে, আপেমিক পানির পরিমাণ (অর্থাৎ পূর্ণ রসস্ফীতির তুলনায় কি প্রিয়াণ পানি আছে) উপরেয় পাতা থেকে নিচের পাতায় কম, যদিও নিচের পাতা কম নিট বিকিরণ পায় এবং পানি প্রব্যাহের পাত্র প্রবৃত্তক রোধকও কম।



চিত্র ৪.৮ : একটি শুক্ষকরণ (drying) চক্রে (ক) গভীরতার স্থপে মৃত্তিকার পানিব পানিব পানিব এবল (খ) গভীরতার সাথে মূলের ঘনত্বের সম্পর্ক। কার্ড ০০৮ হলো মৃত্তিকা ডেজানোর পর থেকে দিনের সংখ্যা। ধৃত্ত হলো পরীক্ষার উপাত্ত এবং ৩৬ পেকে কার্ডিওলো আক হয়েছে। সেরকম, সাদা থিল্টোগ্রাম হলো গ্রকৃত পরিমাপ এবং কালো হিল্টোগ্রাম ধনে গণনাকৃত (calculated) পরিমাণ।

প্রকৃত প্রস্কেদনের হার, পটেনশিয়াল (সবোচ্চ) প্রস্কেদনের হার (অর্থাৎ প্রারঞ্জ সম্পূর্ণ আল: অবস্থায় যে প্রস্কেদন হয় এবং এটি কেবল আধহাওয়া দ্বারা নিয়ন্ত্রিত) এবং মৃষ্টিকার প্রানির পরিমাপের সাথে ঘনিষ্ঠ সম্পর্ক আছে (চিত্র ৪.৯)। পটেনশিয়াল প্রস্বেদন ঘটতে পারে যখন মৃত্তিকা সিঙ্গ থাকে : মৃত্তিকা শুদ্দ হতে শুক করলে পানির চাহিদা পূরণের জন্য উদ্ভিদে পানি প্রবেশ এবং পরিবহণ দ্রুত গতিতে চলতে পারে না, পাতার পানির পটেনশিয়াল কমে যায়, পত্ররঞ্জ আংশিক বন্ধ হয় এবং প্রস্বেদনের হার হাস পায়।

পৃথিবীর পানি সমতা এবং উদ্ভিদের উপর এর প্রভাব (The Earth's Water Balance and its Significance for Vegetation)

পৃথিৱী পৃষ্ঠে পানির প্রধান আধার হলো সমুদ্র। পৃথিবীর মোট পানির শতকরা ৯৭ ভাগের বেশি (প্রায় ১.৪×১০^{১৮} টন পানি) এতে আছে। প্রায় শতকরা ২ ভাগ পানি বরফ আকারে জমাট বাঁধা অবস্থায় মেরুঅঞ্চলে এবং হিমবহেে থাকে। পৃথিবীর শতকরা ০.৬ ভাগের সামান্য বেশি পানি ভূমিমুস্থ পানি, এর মাত্র শতকরা ১ ভাগ পানি ভূপৃষ্ঠের এত কাছে থাকে যেখানে উদ্ভিদের মূল প্রবেশ করতে পারে, বাকী অংশ শঙ শত মিটার নিডে থাকে। ভূলপৃষ্ঠ এবং সমুদ্রের উপরে যে পানি মেঘ, কুয়াশা এবং জলীয় বাষ্ণকারে থাকে পৃথিবীর মোট পানির তুলনায় খুবই নগণ্য--শতকরা ০.০০১ ভাগের বেশি নয়।

চিত্র ৪.৯ : উচ্চ (বন্ধ বৃত্ত), মধ্যম (ত্রিভুজ) এবং নিমু (মুক্ত বৃত্ত) পটেনশিয়াল প্রম্বেদনের দিনে মৃত্রিকার পানির পরিমাণের সাথে ভুট্টা শস্যের প্রকৃত প্রম্বেদনের সম্পর্ক।

পানির চলাচল এবং জাগতিক পানি সমতা (Water Circulation and Global Water Balance)

বিভিন্ন অবস্থায় সঞ্জিত পানি জটিল প্রক্রিয়ার মাধ্যমে পারস্পরিক সাম্যাবস্থা বজায় রাখে। বৃষ্টিপাতের মাধ্যমে পাওয়া পানির তুলনায় সমুদ্রের বেশি পানি বান্সে পরিণত হয় এবং অতিরিক্ত জলীয় বান্স স্থলভূমিতে বাহিত হয়। বিশ্বব্যাপী গড়ে প্রতি একক স্থলভূমি যে পার্নমাণ পার্নি গ্রহণ করে তার চেয়ে কম পানি বান্সীভবনের মাধ্যমে হারায়, কারণ ভূ-পৃষ্ঠ যেনা পার্নির পৃষ্ঠের মতে। নয়। উপরস্থ জলভাগের তুলনায় স্থলভাগ কম। বিভিন্ন ভূ পদার্থবিদ এবং ভাগহাওয়লাদ পৃথিবঁরে পানির যে সমতা পত্র (balance sheet) তৈরি করেছেন তা নিলেশ করে অ, সমৃণ ও রাজ্যজন এক ঘন কিলোমিটার (৪×১০^{১৩} টন) পানি প্রতি বছর স্থলভাগকে সরধরহে কনে এবং প্রাণ্ড বরায় এক পরিমাণ পানি নদীর মাধ্যমে সমুদ্রে ফিরে আসে। এটি আরো নির্দেশ করে যে, পৃথিবীবালী কেলল ভূপৃষ্ঠে পতিত বৃষ্টিপাতের প্রায় শতকরা ৪০ ভাগ জলীয় বান্সা আসে সমূদ্র থেকে। ব্যক্তি আন্দ আসে ভূপৃষ্ঠের বান্সীভবন থেকে, বিশেষ করে উদ্ভিদ থেকে (প্রস্থেননের মন্যাম); মেট বান্সীয় প্রয়োগ ভূপৃষ্ঠের বান্সীভবন থেকে, বিশেষ করে উদ্ভিদ থেকে (প্রস্থেননের মন্যামে); মেট বান্সীয় প্রয়োদনের শতকরা ৫ থেকে ২০ ভাগ আসে মৃত্তিকা পৃষ্ঠ থেকে। উদ্ভেহারে চানগ্রভারে (turnover) কারণে (গড়ে জলীয় বান্সা দশ দিন বায়ুমণ্ডলে থাকে) পৃথিবী প্র্যেরা যেরুল বস্তুর মধ্যে পরিমাণগতভাবে পানির চলাচল সবচয়ে তাহপর্যপূর্ণ চক্র। পৃথিবীর সবচয়ে এক বস্তুর মধ্যে পরিমাণগতভাবে পানির চলাচল সবচয়ে তাহপর্যপূর্ণ চক্র। পৃথিবীর সবচয়ে ভল বস্তু মন্দ্রিয়াণগতভাবে প্রাণির চলাচল বরুছে তামগন্তূত সৌর্বিরিজনে: একটি বিরাচ এল পানির বান্সীভবনের কাজে ব্যবহৃত হয়। যেহেতু বায়ুমণ্ডলের পান্দি বৃষ্টির আকরে আলার দ্রপৃষ্ঠ ফিরে আসে সেহেতু চক্রে এই অংশটুকু বন্ধ (closed)।

আৰ্দ্ৰ ও শুম্বৰ (Humid and Arid Regions)

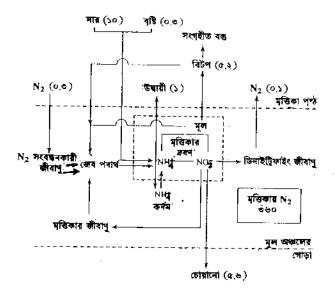
সমুদ্র ও জলভাগ উত্তয় জায়গাতেই কতকগুলো অঞ্চল আছে যেখানে নাম্পীভবনের হার বেশি কিংগা কম এবং অতিরিক্ত কিংবা কম বৃষ্টিপাত হয়। প্রখ্য সুয়কিরণ বাম্পীভবনকে এরান্বিত করে এবং গ্রীষ্মগুলীয় অঞ্চলে সমুদ্র থেকে প্রতি বছর বাম্পীভবনের হার ২০০০ মিলিমিচর বা তার চেয়েও বেশি। স্থলভাগে নিরক্ষরেখা বরাবর অঞ্চলে বৃষ্টিপাত বেশি এবং বন্দ্রীভবনের হারড স্বচেয়ে বেশি। অবনিরক্ষীয় অঞ্চলে বৃষ্টিপাত কম হওয়ায় এবং উচ্চ চাফেশে। মঞ্চল শীতন হওয়ায় বাষ্পীভবন কম হয়।

কোনো এলাকার পানি সমতা নির্ণয়ে বৃষ্টিপাত ও বংশীভবনের পারমণ ৮৬৬ থ বিষয় নয়, এদের পারস্পরিক সম্পর্ক গুঁরুত্নপূর্ণ বিষয়। যদি বাৎসরিক বান্দ্রীভিবনের তুলনায় বাংসাবক বৃষ্টিপাত বেশি হয়, তাহলে সেই এলাকাকে আর্দ্র (humid) এবং বিপরীত ভবস্থা হলে চাকে ওক্ষ (arid) এলাকা বলে। স্থলভাগের প্রায় এক–তৃতীয়াংশ অঞ্চলে বৃষ্টিপাডের গাটতি ঝাডে, এর অর্ধেক (ভূ–পৃষ্ঠের প্রায় শতকরা ১২ ভাগ) খুল বেশি গুল্ব অর্থাৎ বাংসারেক বৃষ্টিপাডের পার্চাতি ঝাডে, এর অর্ধেক (ভূ–পৃষ্ঠের প্রায় শতকরা ১২ ভাগ) খুল বেশি গুল্ব অর্থাৎ বাংসারেক বৃষ্টিপাডের পার্চাতি ঝাডে, এর অর্ধেক (ভূ–পৃষ্ঠের প্রায় শতকরা ১২ ভাগ) খুল বেশি গুল্ব অর্থাৎ বাংসারেক বৃষ্টিপাডের পার্চাতি ঝাডে, এর অর্ধেক (ভূ–পৃষ্ঠের প্রায় শতকরা ১২ ভাগ) খুল বেশি গুল্ব অর্থাৎ বাংসারেক বৃষ্টিপাডের পার্বাজ ২৫০ মিলিমিটারের কম এবং বায়ুর বান্সীভনের ক্বমতা প্রতি বছরে ১,০০০ মিলিমিটারের বোশ। অপরপক্ষে, অতিরিক্ত আর্ধ এলাকায়, স্থলভাগের শতকরা ৩ ভাগের ও কম, প্রধানত ১০ আর্ক ৩০" উত্তর ও দক্ষিণ অক্ষাংশে এবং সুউচ পর্বতমালার, যা জলীয়রান্সপূর্ণ বায়ুকে প্রাতহত করে, অনুবাত (leeward) অংশে অবস্থিত। সমুদ্র থেকে দূররতী ভূখণ্ডে ক্রমানত আন আবহাওয়া, মাঝারি ধরণের গুন্দতা (semi-arid) যোনে মাঝে সাঝে গুব্দ আবহাওয়া বিরাজ করে এবং পরিশেষে শুব্দ অঞ্চল, যেখানে শুক্ষ আবহাওয়া স্থায়ী, পরিলক্ষিত হয়।

কোনো এলাকার ধাৎসরিক বৃষ্টিপাত ও ধান্সীভবনের মধ্যে সম্পাক সেই এলকোর আগতে ব শুক্ষতা মোটামুটিভাবে নির্দেশ করে। এই এলাকায় জন্মানো উদ্ভিদের জনা অবশ্য ভুক প্রণ্য বিষয় হলো সবচেয়ে বেশি প্রয়োজনের সময় (শস্য উৎপাদনের মৌস্মে) পানি সরবরণ্ট নিশ্চিত করা।

সীমিও বৃষ্টিপাত সবসময় গুণ্ফতা সৃষ্টি করে না ; শীতল মেরু অঞ্চলে বৃষ্টিপাত কম, কিন্তু এ অঞ্চল শুক্ষ (arid) নয়, কারণ এখানকার বায়ুর বাঙ্গীভবনের ক্ষমতা কম। আধার ডান্ডদ কাঠন অবস্থার অঞ্চক্ষেপণ (precipitation) সঙ্গে সঙ্গে গ্রহণ করতে পারে না।

পঞ্চম অধ্যায় শস্য উদ্ভিদের খনিজ পুষ্টি


শস্য উদ্ভিদের থনিজ মৌলের প্রধান উৎস মৃত্তিকা। যদিও বীজে যথেষ্ট পরিমাণ থনিজ মৌল থাকে, অওক্রোদ্গামের পর থেকেই মৃত্তিকার খনিজ মৌল পরিশোষণ শুরু হয় এবং যে সমস্ত খনিজ মৌল চারাগাছের মূল ও বিটপে পাওয়া যায়, তার অধিকাংশই আসে মৃত্তিকা থেকে।

মন্ত্রিকা থেকে খনিজ মৌল সরবরাহ (Supply of mineral elements from the soil) যে সমস্ত খনিজ মৌন শস্য উদ্ভিদ ব্যবহার করে তা মৃত্তিকার দ্রবণে আয়ন অবস্থায় থাকে। খনিজ ্র্যাল কর্দুম কণা (clay particle) এবং জৈব পদার্থের সাম্বে আয়ন অবস্থায় লেগে থাকে, দ্রুত বিন্যোগশীল অজেব যৌগে, খুবই স্থায়ী খনিজে, বিন্নেধণশীল জৈব পদার্থে এবং জীবস্তু অতি ক্ষুণ্ণ উদ্ভিদ ও প্রাণীতে থাকে। উদ্ভিদের জন্য অধিলম্বে লভ্য মৌলগুলো মৃত্তিকার দ্রবণে ক্যাটায়ন এবং অ্যানায়ন হিসেবে থাকে, এই দ্রবণ আবার পরিশোষিত আয়নের সাথে (প্রধানত ক্যাটায়ন) সামন্যাবস্থায় থাকে এবং মৃত্তিকার দ্রবণ থেকে উদ্ভিদ কর্তৃক আয়ন পরিশোষণের সাথে সাথে কমপক্ষে আংশিক হলেও পূরণ হয়। তাই শস্যের বৃদ্ধিকালে কি পরিমাণ পুষ্টি উপাদান পাওয়া যায় তা পরিমাপ করা সহজ নয়। কারণ নাইট্রোজেনসহ প্রত্যেকটি মৌলের একটি বিরাট অংশ অপেক্ষাকৃত স্থায়ী যৌগে থাকে, তাই এদের মোট পরিমাণ নির্ণয় অকার্যকর। মৃত্তিকার প্রথণ বিশ্লেষণ করলে, কেবল সেই সময়ে অবিলম্বে লভ্য মৌল্বের পরিমাণ জান্য যায়। যা জানা দরকার ত' হলো প্রথম্বে অর্থাৎ বপনের সময়ে কি পরিমাণ মৌল মৃত্তিকার দ্রবণে আছে, শস্য উৎপাদন কালে কি পরিমান্ন মৌল লভ্য হবে এবং এই মুক্তকরণে কি কি নিয়ামক ক্রিয়াশীল তা মূল্যায়ন করা। সাধারণত মৃত্তিকার উপরের ২০ থেকে ৩০ সেটিমিটার স্তরের পরিমাপ করলেই যথেষ্ট, কারণ এই ওরে, বিশেষ করে কৃত্রিম সার প্রয়োগকৃত মৃত্তিকায়, সর্যোচ্চ মাত্রায় মৌল থাকে এবং এখানেই অধিকাংশ মূল বৃদ্ধি পায়।

বিভিন্ন খনিজ মৌলের আচরণের যথেষ্ট পার্থক্য আছে, তাই এদেরকে পৃথকভাবে আলোচনা করাই অধিকতর যুক্তিসঙ্গত। এ অধ্যায় কেবল নাইট্রোজেন (N), ফসফরাস (P), পটাশিয়াম (K), ক্যালসিয়াম (Ca) এবং ম্যাগনেসিয়াম (Mg) সম্পর্কে অংলোচনা করা হবে ; অন্যান) মৌল যেমন-লেহো (Fe),ম্যাঙ্গনিজ (Mn), সালফার (S), জিঞ্চ (Zn), কপার (Cu), মলিবডেনাম (Mo) এবং বোরন (B) একই রকমঙ্গবে অত্যাবশ্যকীয়, যদিও খুব কম পরিমাণে প্রয়োজন হয়।

নাইট্রোজেন

মৃত্তিকায় নাইট্রেন্ডেন চক্রের একটি সরলীকৃত রেখাচিত্র ৫,১ নং চিত্রে দেখানো হয়েছে। মৃত্তিকায় কংয়কর নাইট্রেন্ডেন প্রদান সংঘটিত হয় সার প্রয়োগে, বৃষ্টির মাধ্যমে (০,২ থেকে ২ গ্রাম প্রতি বর্গনিটারে প্রতি বছরে) অথবা মিথোজীবী ব্যাকটেরিয়া Rhizobium যা লেগ্যুমের সাথে যুক্ত থাকে (এবিমিশ্র ক্লেন্ডেরে অথবা লুসারনি শস্যের মাধ্যমে প্রতি বছরে প্রতি বর্গমিটারে ১০ গ্রাম পর্যন্ত) তার মাধ্যমে। মুক্তজীবী নাইট্রোজেন সংবন্ধনকারী জীব, ডিনাইট্রিফাইং জীব এবং উদ্বায়ীকরণের মাধ্যমে নাইট্রোজেন হারানো বাদ দেয়া যেতে পারে, কারণ শস্য উৎপাদনের সময়কালে (এসময়ই আমাদের বিবেচ্য বিষয়) এদের অবদান খুবই নগণ্য। উদ্ভিদ কত্ঁক পরিশোষিত হওয়ায় এবং/অথবা চোয়ানোর জন্য মূল অঞ্চল থেকে দূরে সরে যাওয়ার জন্য মৃত্তিকা নাইট্রোজেন হারামে। আমেনিয়াম (NH4+) অথবা নাইট্রেট (NO3-) আকারে উদ্ভিদ নাইট্রোজেন পরিশোষণ করে : প্রথমটি সাধারণত কদর্ম কণা এবং হিউমাসের সাথে লেগে থাকে এবং দ্বিতীয়টি মৃত্তিকার দ্রবণে মুক্ত আবস্থায় থাকে। তাই প্রবল বৃষ্টিপাত অথবা অতিরিক্ত পানি সেচের জন্য মূল অঞ্চল থেকে নাইট্রেট ধ্যেও হয়ে থাকে। তাই প্রবল বৃষ্টিপাত অথবা অতিরিক্ত পানি সেচের জন্য মূল অঞ্চল থেকে নাইট্রেট ধৌও হয়ে নিচের স্তরে চলে যায়। জৈব পদাথের ভাঙনের জন্য অ্যামোনিয়ামের মাধ্যমে প্রতিনিয়ন্ড নাইট্রেট পূরণ হয় এবং অ্যামোনিয়ামের মতো উদ্ভিদ এবং মন্ত্রিকা প্রিশোষিত হয়। সাধারণত *Nitrobacter* এবং সম্ভবত অন্যান্য ব্যাকটেরিয়া কত্ঁক অ্যামোনিয়াম আয়ন অতি দুত নাইট্রেট পরিণত হয়।

চিত্র ৫.১ : নাইট্রোজন চক্র। সংখ্যাগুলো হলো ইংল্যান্ডের রথামস্টেডের শস্যক্ত (cropped) মৃত্তিকার উপরের ২২ সেন্টিমিটার অংশে বার্ষিক পরিবর্তন (গ্রাম প্রতি বর্গমিটারে)। উদ্বাধীকরণ এবং ডিনাইট্রিফিকেশনের মাধ্যমে ঘাটতি সবসময়ই কম, মুক্তজীরী নাইট্রোজেন সংবন্ধনকারী জীবের মাধ্যমে জমা সবসময়ই কম, কিন্তু লেগ্যমের সাথে সংযুক্ত Rhizobium কর্তৃক জমার পরিমাণ প্রতি বছর প্রতি বর্গমিটারে ১০ গ্রাম পর্যন্ত। অন্যান্য উপাদানের অনেকখানি পরিবর্তন হয়, কিন্তু সর্বমোট যে পরিমাণ নাইট্রোজেন থাকে, তার তুলনায় এটি বেশ কম। মৃত্তিকার দ্রবণ এবং কর্দম কণায় লেগে থাকা আয়নের ঘনমাগ্রা, অর্থাৎ যা দ্রুত উদ্ভিদের জন্য লন্ডা, নির্ভর করে ৫.১ নং চিত্রে বর্ণিও প্রতিটি প্রক্রিয়ার অগ্রসর হওয়ার হারের উপর। বিভিন্ন শ্রবহুয়ে এগুলো ভিন্নতর হয়। তবে এদের দুটি তাৎপর্যপূর্ণ বৈশিষ্ট্য হলো যে, মৃত্তিকায় উপস্থিত নাইট্রোজেনের মাত্র শতকরা ১ ভাগ উদ্ভিদ গ্রহণ করে এবং সার হিসেবে প্রয়োগ করা অর্ধেকের বেশি থেকে তিন-চত্তর্থাংশ নাইট্রেজেন পরবর্তী শস্য উদ্ধার করে।

বিভিন্ন পরিস্থিতিতে যে পরিবর্তন ঘটে তা কিছুটা বিস্তারিও জ্ঞানা যাক। ধরা যাক, আমরা এমন একটি আবর্গদ জন্মি নিয়ে শুরু করলাম যা থেকে গম শস্য সদ্য কাটা হয়েছে। আমরা আশা করতে পারি যে, প্রতি কেন্ডি শুক্ষ মুক্তিকায় ১ মিলিগ্রাম নাইট্রোজেন আছে অ্যামোনিয়ান অবস্থায় এবং ২ মিলিগ্রাম নাইট্রোজেন আছে নাইট্রে অবস্থায় (অর্থাৎ ৩ পিপিএম)--- ধরা যাক, উপরের ২৫ সেন্টিমিটার মৃত্তিকাশ্ব প্রতি বর্গমিটারে প্রায় ০.৬ গ্রাম। এই স্তরে সর্বমোট নাইট্রোজেনের পরিমাণ প্রতি বর্গমিটারে প্রায় ২০০ থেকে ৪০০ গ্রাম, অর্থাৎ প্রায় হজ্যের গুণ বেশি। এরপর এখানে ঘাস-ক্রাভার শস্য ধপন করে ধরা যাক পাঁচ বছর ধরে রাখা আছে। এই সময়ে, ঝ্যামোনিয়াম এবং নাইট্রেট নাইট্রোজেনের পরিবর্তন ২বে খ্ব সামানঃ ; নাইট্রেট নাইট্রোজেন প্রায় ১ পিপিএম থাকে এবং অ্যামেনিয়াম নাইট্রোজেন ধীরে দীরে বেড়ে প্রায় ৩ পিপিএম হয়। ৫.১ নং চিত্রে দেখনো সবগুলো প্রক্রিয়া এসময় চলতে থাকে, কিন্তু নাইট্রেট ও জ্যামেনিয়াম আয়ন যতে। তাড়াতাড়ি তেরি ২য়, ততো তাড়াতাড়ি উদ্ভিদ এবং মৃত্তিকার জীব দ্বারা পরিশোযিত হয়। প্রতি বছরে প্রতি বর্গনিটারে প্রায় ৪ থেকে ১০ গ্রাম হারে মোট নাইট্রোজেন বৃদ্ধি পায়। এই জন্মি থেকে প্রাণিজ দ্রব্য অথবা হে (hay), যা খুব দুন্ত নিরূপণ করা যায়, বাদ দিলে পাঁচ বছর পর আমরা পাবো প্রতি বর্গমিটারে প্রায় ৩৪০ গ্রাম। এর পর এই জমি চাধ করে পতিত ফেলে রাখা ধলো। এখানে দ্রুত নাইট্রেট নাইট্রেন্ডেন ধৃদ্ধি পেতে থাকবে, ধরা যাক প্রতিদিন ০.০ পিপিএম ধরে। নিাইট্রেন্ডেন খনিজ্ঞীকরণ, একে তাই বলে, নির্ভর করে মোট জিও নাইট্রোজেনের পরিমণের, C_N গ্রাম প্রতিগ্রাম মৃত্তিকায়, এবং তাপমাত্রার, T (া সেলসিয়াস) উপর। এটি মোটামুটিভাবে প্রকাশ করা হয় ১০ ি(০,২୩–১) CN দ্বারা (একক গ্রাম প্রতি দিন), যদি মৃত্তিকায় পর্যাপ্ত পানি থাকে<u>। এখনকার</u> পরিবেশ এমন যে, এখানে ধন ধন হল্বো বৃষ্টিপাত হয়, এজন্য নাইট্রিফাইং ব্যাকটেরিয়ার কাজ চলতে থাকে, নাইট্রেট আয়ন চোধ্রায় না। যদি মৃত্তিকার পানি ধারণ কিন্তু ক্ষমতার দ্বিগুণ বৃষ্টিপাত হয় তাহলে উপস্থিত অধিকাংশ নাইট্রেট চুইয়ে দূরে সরে যাবে। পতিত রাখার প্রায় ছয় মাস পর. সেখনে প্রায় ৬০ পিপিএম অথাৎ ১৮ গ্রাম নাইট্রোজেন প্রতি বগমিটারে থাকবে নাইট্রেট আকারে। আবাদি জমিতে এই মান সাধারণত ১০ থেকে ৬০ পিপিএম ২য়, এবং শুব্দ মৌসুমে গ্রীক্ষমগুলীয় মৃত্তিকায় এটি বেড়ে ১০০ পিপিএম হতে পারে। এবং এটি জমিতে প্রয়োগকৃত নাইট্রোজেন সার শস্যের বৃদ্ধির জন্য লভ্য হয়। যদি সবুঞ্চ সার অথব। অন্য কোনো ভৈব পদার্থ মৃত্তিকায় যোগ করা হয়, তাহলে এর জন্য অণুজীবের বৃদ্ধি ন্যাপক হয় এবং এরা লভ্য নাইট্রোজেন পরিশোষণ করে, ছেব পদার্থের ডাঙনের সাথে সাথে নাড্য নাইট্রোজেনের মত্রা <িদ্ধি পায়।

ফসফরাস

দ্যতিকায় কতকগুলো খনিজের ফসফেট গ্রুপ হিসেবে, অদ্রবণীয় ক্যালসিয়াম ফসফেটের আকরে এবং হাইড্রেটেও লোহা ও অগুলুমিনিয়াম অক্সাইডের পৃষ্ঠে ফসফরাস লেগে থাকে। এটি জৈব পদার্থে, বিশেষ করে ইনেংসিটল ফুসফেটে ও নিউক্লিক অ্যাসিডেও থাকে। অনেকাদ নিশ্চিত করেই বলা যায় যে, উদ্ভিদ কেবল H₂PO4° আয়ন অক্ষারে ফসফরাস পরিশ্যেষণ করে। উদ্ভিদের ফসফরাস প্রাপ্তি নিতর করে সাম্যাবস্থা, ব্যালসিয়াম, লোথেও অ্যালুমিনিয়াম যৌগ থেকে H₂PO4 -মুক্ত হওয়ার হার এবং যৌগ পদার্থের ডাঙনের হারের উপর। যখন সুপারফসফেট হিসেবে দ্রখণীয় অবস্থায় মনোক্যালসিয়াম ফসফেট [Ca(H₂PO₄)₂] মৃত্তিকায় প্রয়োগ করা হয়, এটি দ্রুও ডাই-ক্যালসিয়ামে (Ca HPO₄) রাপান্তরিত হয় এবং কর্দম কণ্ণার সাথে লেগে থাকে ৷ মৃত্তিকার প্রকারের উপর ভিত্তি করে ০,০০৩ থেকে ৩ পিপিএম পর্যন্ত H₂PO₄- ফায়ন মৃত্তিকার দ্রবণে ক্রমাগত বজায় থাকে ৷ তবে ডাই- ক্যালসিয়াম অবস্থা অধিকতর অদ্রবণীয় অবস্থায় পরিগত হয় য খুব ধীরে ধীরে লভ্য হয় ৷ তাই, সাধারণত এটি দেখা যায় যে, প্রদের সারের কনাচিৎ শতকরা ১০ ভাগের বেশি ফসফরাস প্রথমধারে বপন কর্য় শস্য পরিশোষণ করেও পারে এবং সন্তরত আরো ১০ ভাগ ফসফরসের দ্বিতীয়বারে বপন করা শস্য পরিশোষণ করে

এখন পর্যন্ত মৃত্তিকায় ফসফরাসের রসায়ন সম্পর্কে আমাদের জ্ঞান সীমিত এবং লভ্য ফসফরাসের পরিমাণ নির্ণয়ের সম্পূর্ণ সন্তোষজনক পদ্ধতি নাই। সাধারণভাবে বলা যন্ত্র যে, তিন প্রকার ফসফরাস মৃত্তিকায় সাম্যবস্থায় থাকে : দ্রবণীয় Pद লেবাইল P ল্ল অন্লেবাইল P । দ্রবণীয় P সম্ভবত প্রধানত H₂PO4⁺ আয়ন দ্বারা গঠিত : লেবাইল P আয়ন আকারে অথবা কর্দম কণায় লেগে থাকা মোটামুটিভাবে দ্রবণীয় স্ফটিক, যেমন- হাইড্রোয়াল অ্যাপাটাইট হিসেবে থাকে এবং অ–লেবাইল P অন্তবণীয় যৌগে থাকে। এক অবস্থা থেকে অন্য অবস্থায় পরিণত হওয়ার হার নির্ভির করে সাম্যাবস্থা ধ্রুত্রক এবং বিক্রিয়কের (reactant) পরিমাণের উপর : নিভিন্ন মন্ত্রিকায় এগুলোর যথেষ্ট ভিন্ধতা পরিলক্ষিত হয়।

পটাশিয়াম, ক্যালসিয়াম ও ম্যাঙ্গানিজ

এই মৌলগুলো প্রধানত ক্যাটায়ন আকারে কর্দম কণার সাথে নেগে থাকে এবং নিভিন্ন জৈব যৌগে থাকে। এছাড়াও এগুলো মৃত্তিকার কতকগুলো খনিজে থাকে ; বিশেষ করে পটাশিয়াম সমৃদ্ধ খনিজ থেকে অধিকতর ক্রত K+ আয়ন পাওয়া যায়। কতিপয় মন্দ্রিকা অত্যস্ত দচভাবে পটাশিয়াম আয়ন ধরে রাখে, তাই মৃত্তিকার উপর ভিত্তি করে মৃত্তিকায় প্রয়োগকত প্রটাশিয়াম সাবের পুনঃপ্রাপ্তি শতকরা ১০ থেকে ১০০ ভাগ। সংযক্ত অয়েনগুলো অন্য আয়ন, বিশেষ করে মূলের হাইড্রোজেন আয়নের সাথে বিনিময়যোগ্য। কদম কণায় সংযুক্ত আয়নের প্রতিস্থাপনের অনায়সঞ্জ (ease) নিমুরূপ : Na >K>Mg>C>H। বিনিময়যোগ্য আয়নের পরিমাণ থেকে মৃত্তিকার আন্তন সরবরাহকারী ক্ষমতা এবং এজন্য সারের প্রয়োজনীয়তা সম্পর্কে ধারণা পাওয়া যায়। অবশ্য যে সমস্ত মৃত্তিকার দ্রুত ক্ষয়ীতবন হচ্ছে তাদের ফেত্রে এটি মোটেই গুরুত্বপূর্ণ নির্ণায়ক নয়। বিভিন্ন মত্তিকয়ে এই মানের (প্রতি কেন্ড্রিতে মিলিতুল্যাঞ্চক) পরিসর হলো ক্যালসিয়ামের জন্য ১১ থেকে ৩০০, ম্যাগনেশিয়ামের জন্য ৭ থেকে ৫০, পটাশিয়ামের জন্য ৮ থেকে ১৭ এবং সেডিয়ামের জন্য ৫ থেকে ৭০। কোনো মৃত্ত্বিকায় বিনিময়যোগ্য আয়নের মোট পরিমাণ এবং প্রতিটি আয়নের অনুপত নির্ভর করে যে অবস্থায় মৃত্তিকা গঠিত ২য়েছে, কি কি পদার্থ মৃত্তিকায় প্রয়োগ করা হয়েছে (যেমন-চুন প্রয়োগ) এবং বিভিন্ন কর্দম খনিজ এবং হিউমাসের আপেক্ষিক পরিমাণের উপর হিউমাসের বিনিময় যোগ্যতা (প্রতি কেন্দ্রিতে মিলিত্র্যাঙ্গ্রু) ১,৫০০ থেকে ৩,০০০, মটমরিলোনাইটের ১,০০০, ইলাইটের ৩০০ এবং কেয়োলিনাইটির ১০০।

মূল কর্তৃক আয়ন পরিশোষণ

মৃত্তিকায় জন্মানো উদ্ভিদ লঙ্য আয়নের সবটুকুই পরিশোষণ করতে পারে না। কেবল মূলের অভি সঙ্গিকটের আয়নই পরিশোষিত হয় ; মৃত্তিকার এক দিক থেকে অন্য দিকে চলাচলের জন্য আয়ন মূলের সন্ধিকটে পৌছায় অথবা পূর্বে আয়ন পরিশোষিত হয়নি মৃত্তিকার এমন এলকেণ্ড ঘূল বৃদ্ধি পেয়ে আয়নের সন্নিকটে পৌঁছলে অতি সহজেই আয়ন পরিশোষিত হয়। কোনো সময়ে এ দুটি পদ্ধতির কোনটি বেশি গুরুত্বপূর্ণ তা নির্ভর করে আয়নের প্রকৃতি, মৃত্তিকার প্রকার ও উদ্ভিদ প্রজাতির উপর। তবে চারপাশের সকল আয়ন মূল অত্যাবশ্যকীয়ভাবে পরিশোষণ করে না, আয়ন পরিশোষণের এই পার্থক্য বা নির্বাচনমূলক প্রবেশ্যতা সম্পর্কে পরে আলোচনা করা হয়েছে।

এক্ষেত্রে, v হলো মূলে পানি প্রবেশের আপাত বেগ। মূল কর্তৃক আয়ন পরিশোষণ এবং মৃত্তিকার প্রবণে আয়নের চলাচলের আপেম্মিক হারের নির্ভর করে মৃত্তিকার প্রবণের আয়নের ঘনমাত্রা এবং মূলের পৃষ্ঠের আয়নের ঘনমাত্রার পার্থক্য পরিলচ্চিত্ত হয়। সুতরাং একটি ব্যাপন গ্রেডিয়েন্ট সৃষ্টি হয় এবং মূলের দিকে অথবা মূল থেকে দূরে আয়ন ব্যাপিত হয় তা এই গ্রেডিয়েন্টের দিকের উপর নির্ভর করে। এই ফ্লান্ধ (Pd) নিমুলিখিতভাবে প্রকাশ করা যায়–

ু মৃষ্ট্রিকার গঠন, মৃত্ত্রিকার প্রানির পরিমাণ এবং অন্যান্য আয়নের উপস্থিতির উপর ব্যাপনের এই খ্রাক্স নির্ভাৱ করে।

যখন ব্যাপন এবং খ্যাস প্রবাহ উভয়ের মাধ্যমেই একটি আয়ন চলাচল করে, তখন মূলের দিকে মেট ফ্রুক্স নিমুলিখিতভাবে প্রকাশ করং যায় :

 $F=Fd+Ff=D \xi dc/dz+vC....(0, 0)$

উদ্ভিদ ও মৃত্তিকরে কতকগুলো বৈশিষ্ট্য মৃত্তিকার দ্রবণ থেকে আয়নের ক্রমাগত কমে যাওয়া নিয়ন্ত্রণ করে। মৃত্তিকার বৈশিষ্টোর মধ্যে মৃত্তিকায় আয়নের ব্যাপন এবং ম্যাস প্রব্যাহের আপেক্ষিক হার, বাফারিং ক্ষমতা এবং উদ্ভিদের বৈশিষ্টেরে মধ্যে আয়ন পরিশোষণের হার, মুলের ঘনত্ব এবং মূলরেয়ের উপস্থিতি কিংবং অনুপস্থিতি অন্যতম। যদিও মূলরোম আয়ন পরিশোষণের জন্য মূলের পৃষ্ঠ আয়তন বৃদ্ধি করে, মৃত্তিকার আয়নের নিয়ন্ত্রিত চলাচলের জন্য মূলরোম অঞ্চল সাধারণত আয়নের ঘনমাত্রা অনেক কমে যায়। সুতরাং মূলরোমের সর্বসাকুল্যে প্রভাব হলো মূলের ক্রায়্বনর বাংস বৃদ্ধি করা। কোনো আধিকতর সচল অংক্যনের পরিশোষণ এবং মৃত্তিকায় বিস্তার মূলরোমের উপস্থিতিতে কম সংবেদনশীল

পর্বেই উল্লেখ করা হয়েছে যে, একটি মূলের চারপাশে আয়নের ঘনমাত্রা হ্রাস পাওয়া একটি হাটিল প্রক্রিয়া। এ পর্যন্ত একটি একক মূলে, মূলতন্ত্রে নয়, আয়ন পরিশোষণই বিবেচনা করা হয়েছে একটি মূলতথে আয়ন পরিশোষণের সময়সীমা শুধু একক মূলের সময় একত্র করে পাওয়া যাবে নং, করেণ সময়ের সাথে সাথে এদের যেমন- ফসফেট, এই প্রভাব আরও জটিল। এখানে মূলরোম অঞ্চলে আয়নের হ্রাস অতি দুত হয় এবং মৃত্তিকার কোনো অংশে মূল প্রেছিননার পাঁচ দিনের মধ্যেই আয়ন পরিশোষণ একেবারে বন্ধ ইয়ে যায় (Nye and Tinker, 1977)। ঘন মলতপ্রবিশিষ্ট উদ্ভিদের ক্ষেত্র, লভা আয়নের জন্য বিভিন্ন মূলের প্রতিযোগিতার কারণে আয়নের মাত্রা দ্রুত কমে যাওয়ায় পরিশোষণ হ্রাস প্রায়। মৃত্তিকায় আয়নের ঘনমাত্রা বৃদ্ধি করে (যেমন- সার প্রয়োগ করে) প্রাথমিক অবস্থায় এই প্রতিযোগিতা কমানো যায়। তবে এই প্রভাব বেশি দিন স্থায়ী হয় না, কারণ অতিরিন্ত পুষ্টি উপাদান সরবরাহের জন্য এই অঞ্চলে পাশীয় মূলের বৃদ্ধি দ্রুত হয়।

এক্ষেত্রে উল্লেখ্য যে, পুষ্টি উপাদানের নিমু মাত্রা ধৃদ্ধিকে সীময়িত করে না, যদি আয়ন পরিশোযণের হারের তুলনায় বেশি হারে ক্রমাগত পুষ্টি উপাদানের সরবরাহ বজায় রাখা হয়। বহমান পুষ্টি দ্রবণে প্রতি ঘনমিটারে ৫ মিলিমোল নাইট্রেটে চার সপ্তাহ পর্যন্ত গম গাছ জন্মানো যায় এবং প্রতি ঘনমিটারে ৭০০ মিলিমোল নাইট্রেটে টমেটোর ভাল ফলন পাওয়া যায়।

যদি সরলভাবে মূলের পৃষ্ঠ বরাবর আয়নের স্থানান্তরকে আয়ন পরিশোষণ হিসেবে ধরা হয়, তাহলে একে নিম্নুলিখিত ভাবে প্রকাশ করা যায় :

 $F=2\prod \vec{R} \approx Lr Cr.....(4.8)$

এঞ্চেত্রে, R (সেন্টিমিটায়) হলো মূলের গড় ব্যাসার্ধ, Lr (সেন্টিমিটার) হলো _{ক্ল}এদের মোট দেঘ্য এবং হলো আপাত স্থানাস্তর গুণাঙ্গক যা মূলের সম্পূর্ণ পৃষ্ঠের গড় এবং এটি মূল কর্তৃক আয়ন পরিশোষণের দক্ষতার পরিমাপক। অনেকদিন আগেই জানা গেছে যে, মূল পৃষ্ঠের একক ফেত্রফলে আয়ন পরিশোষণের হার সময়ের সাথে এবং মূলের দৈর্ঘ্য বরাবর পরিবতন হয়; আবার একটি মূলতন্ত্রের বিভিন্ন মূলেও আয়ন পরিশোষণের হারের পরিবর্তন হয়। সুতরাং অধিকতর সম্পূর্ণ বিশ্লেষণের জন্য এই পরিবর্তনগুলো বিবেচনা করা দরকার। যদিও এই প্রভাবগুলোর সাধারণীকরণের জন্য পর্যাপ্ত উপাত্তের অভাব আছে, এরকম একটি বিশ্লেষণের ফলাফল সারণি ৫.১-এ উপস্থাপিত হয়েছে।

সারণি ৫.১ : ফসফেট ও ক্যালসিয়াম পরিশোষণে চার সপ্তাহ বয়সের যবের (জাত–মেরিস বেজার) বিভিন্ন প্রকার মূলের অবদান

	/ সেমিনাল (axes)	নোডাল অক্ষ	পানীয় (lateral)
মেটি দৈঘ্য (মিটার) সম্পূর্ণ পরিশোষণে	8,2	್ರೆಕ್	85-
শতকরা অবদান			
ফসফেট	20	ాం	৬০
ক্যালসিয়াম	50	90	580

উপরেক্ত সমীকরণের (৫.১ থেকে ৫.৪) মাধ্যমে যে বিশ্লেষণের বর্ণনা দেয়া হয়েছে তা মূলে বিভিন্ন প্রকার আয়নের বিভিন্ন প্রকার চলাচলের পার্থক্য নির্ণয়ে সাহায্য করে, কিন্তু এই উদ্দেশ্যে পরীক্ষণের কাজে ব্যবহার করা খুব কটিন এবং ভ্রুএর পরিমাপ করাও সহজ নয়। এই বিশ্লেষণকে বর্ধিত করার পথ হলো উদ্ভিদ কর্তৃক আয়ন পরিশোষণ বিবেচনা করা।

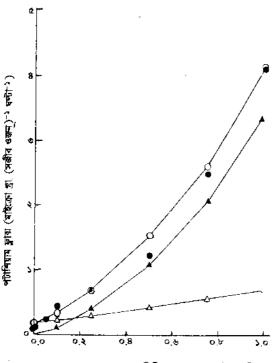
্যদি একটি উদ্ভিদের মোট ওজন W হয় এবং উদ্ভিদে একটি আয়নের গড় ঘনমাত্রা হয় X. তাহলে উদ্ভিদে আয়নটির ফ্রাক্স নিম্নলিখিতভাবে প্রকাশ করা যায়-

$$F = \frac{d(wx)}{dt} = \frac{dw}{dt}(x) + \frac{dx}{dt}(w) = (w)(x) \begin{pmatrix} dw & 1 \\ dt & w \end{pmatrix} + \frac{dx}{dt} + \frac{1}{x} \end{pmatrix} \dots (\ell, \ell)$$

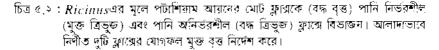
$$uqr \pi \Re \varphi qr (\ell, r) uqr (\ell, r) uqr (\ell, r) uqr (\ell, r)$$

 $2 \prod \vec{R} \stackrel{\scriptstyle \sim}{\scriptstyle \sim} = (wx/Lr \ Cr) \left\{ (dw/dt) (1/w) + (dx/dt) (1/x) \dots (\ell, \delta) \right\}$

শস্য শারীরবিজ্ঞান

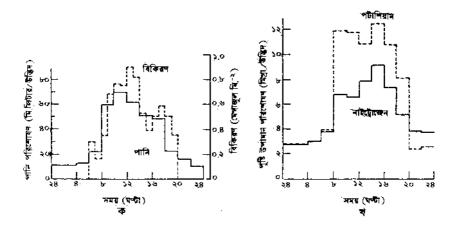

এক্ষেচে, R 💭 হলো আয়নটি পরিশোষণে মূলতন্ত্রের গড় দক্ষতার পরিমাপ এবং উদ্ভিদের সরল পদর্গ্রহিটার থেকে এর মান পাওয়া যায়। এট হলো প্রতি একক মূলের দৈর্ঘ্যে উদ্ভিদের গুণ্ড ওজনের অনুপতে (w/Lr), মূলের পৃষ্ঠে এবং উদ্ভিদে খায়নের ঘনমাত্রার অনুপাত (X/Cr), এপেঞ্চিক বৃদ্ধি হার (dw/dt) (T/w) এবং ঘনমাত্রার আপেক্ষিক হারের (dx/dt) (T/X) পরিবর্তন। Cr এর পরিমাপ হলো সবচেয়ে কঠিন ভালভাবে নাড়ানো পুষ্টি দ্রবণে ধারণা করা হয় যে, Cr=C, মত্তিকায় আয়নের ঘনমাত্রা।

উপরোক্ত আলোচনা থেকে এটি প্রতীয়মান হয় যে, মৃত্তিকা ও মুলের ভেতর সুষ্পষ্ট ইন্টারফেস ৯৫৬। তবে মূলের চারদিকে মিউসিজেল (mucigel, আঠালো বস্তু)–এর উপস্থিতি এবং অনুষঙ্গ মণুজীর নির্দেশ করে যে, ইন্টারফেসের পরিবর্তন সময়ের সাথে হতে পারে। উপরস্ত, মূল অঞ্চলের রোগসৃষ্টি করে না এমন কণ্ডিপয় অণুজীব লভ্য আয়নের জন্য মূলের সাথে প্রতিযোগিতা করতে পারে। আবার বিপরীতভাবে, কাষ্ঠল উদ্ভিদে এক্টোটোপিক মাইকোরাইজা এবং কতকগুলো শস্য উদ্ভিদের ভেসিকুলার আরব সন্থুলার মাইকোরাইজা পেম্বক উদ্ভিদে ফসফেট এবং কথনো -কখনে" অন্যানন আয়নের সরবরাহ বৃদ্ধি করে। একইভাবে, নাইট্রোজেন সংবন্ধনকারী Rhicobium থেকে কম পরিমাণে নাইট্রোজেন পোষক লেগ্যমজাতীয় উদ্ভিদে স্থনান্তরিত হয়। একই মৃত্তিকায় মাইকোরাইজাবিহীন মূলের তুলনায় মাইকোরাইজাযুক্ত মূলের ফসফেট পরিশোষণ বেশি ২য়, বিশেষ করে মৃত্তিকায় যদি অলপ পরিমাণে ফসফেট থাকে। এর সম্ভাব্য কারণ হলো ছত্রাকের হাইফি কতৃক অধিক আয়তনের মৃত্তিকা অনুসন্ধান এবং মৃত্তিকার তুলনায় হাইফির অভ্যন্তরে অধিকতর দ্রুত গতিতে আয়ন চলাচল করে। পোষক উদ্ধিদের নাইট্রোজেন পুষ্টিতে Rhizobium এর অবদান ্রবং মৃত্তিকা থেকে অঞ্জিন নাইট্রোজেন আয়নের মধ্যে বিপরীও সম্পর্কযুক্ত। এতসসত্তেও অধিকংশ শস্যের প্রাথমিক পথায়ে অলপ পরিমাণে নাইট্রোজেনঘটিত সার প্রয়োগে তল ফল পাওয়া যায়, কারণ এই সময় ব্যক্তেরিয়াম দ্বারা মূল আব্রুন্ত হয়, অবুর্দ তৈরি শুরু হয় এবং উদ্ভিদের প্ৰণতন্তা হয়।


মৃত্তিকার মতো উদ্ভিদের মূলে আয়নের মোট ফ্রায় দুটি পৃথক ফ্রায়ে ভাগ করা যায় ; একটি ২(না উদ্ভিদ কর্তৃক পানি পরিশোষণ এবং অপরটি হলো পানি পরিশোষণ থেকে স্বতন্ত্রা (চিত্র ৫(২)। মূলের ভেতর দিয়ে জাইলেমে প্রবাহিত আয়নগুলো প্রায় সম্পূর্ণরূপে মুক্ত স্থান (free space) এথাং কেন্দ্র প্রাচীর এবং কোষ বিল্লীর বাইরের রন্ধু দিয়ে চলাচল করে। কিছু কিছু থেত্রে ধ্বংশা জাইলেমে প্রবেশের পূর্বে এদের কোষ বিল্লী দিয়ে স্থানান্তর হয়। এই স্থানান্তর এন্ডোডামিসে অথবা এমন কি জাইলেমের আরো সম্লিকটে হতে পারে।

াব্টভন্ন খনমাত্রার বহিন্দে দ্রবণে আয়ম পার্রশোযণের হারের পরিবর্তনের কাইনেটিক বিশ্লেষণ নিদেশ করে যে, "মায়নগুলোর পরস্পরের সাথে সংযুক্ত হওয়ার প্রবণতার ভিন্নতার দুটি কৌশল আছে

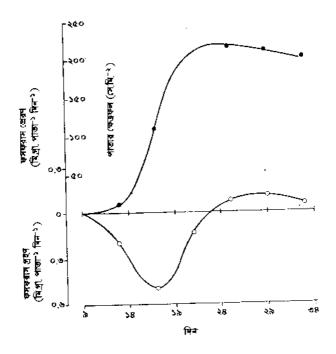
খবের মলের এলের একটির সিস্টেম১—পটাশিয়ামের জন্য Ks বেশ কম এবং প্রতি ফার্মিটারে প্রায় ৫,০২০ মোল (Ks হলো আয়দের বহিংস্ক, ঘনমাত্রা ঘখন পরিশোষণের হার সবোচ্চ মানের অধেক) ; এখান পচাশিয়ামের সাথে মূলের সংযুক্ত হওয়ার প্রবণতা বেশি। Ricinus–এর পটাশিয়ামের পানি আনির্ভরশীল ফ্রান্সের Ks সিস্টেম ১ এর মতো। সিস্টেম ২-এর Ks এর মান প্রতি ঘনমিটারে প্রায় ১৭মেলে, অর্থাৎ K এর সাথে সংযুক্ত হওয়ার ক্ষমতা কম, যদিও উত্তয় সিস্টেম পরিশেষণের সর্বোচ্চ হার প্রায় ১২ মিলিমোল প্রতিধান মূলের সঙ্জীব ওজন প্রতি হার মানি কার্যজ্য ১৭মেলে, অর্থাৎ K এর সাথে সংযুক্ত হওয়ার ক্ষমতা কম, যদিও উত্তয় সিস্টেম পরিশেষণের সর্বোচ্চ হার প্রায় ১২ মিলিমোল প্রতিধান মূলের সজীব ওজন প্রতি হলটায় খব কম ঘন্যাত্রার পটাশিয়ামে সিস্টেম ১ সম্প্রক্ত হয়, প্রতি ঘনমিটারে ১ মোলের কম, এর পরিমণ্ণ মন্তিকার দ্বন্দ পাওয়া যায়। এটি প্রস্তাব করা হয়েছে যে, কোয় ঝিল্লিতে সিস্টেম ১ এবং উন্দোগ্রাস্টে (কোংগণহরারে রিল্লি) সিস্টেম ২ এর্থান্সিলি ; অবশ্য অপর একটি প্রস্তাবে বলা হয়েছে যে, উভয়েই কোষ ঝিল্লীতে সমান্তরালভাবে ক্রিয়াশীল। যখন বিটপে আয়ন পরিবহণের উপর বহি:স্থ আয়নের ঘনমাত্রার প্রভাব বিশ্লেষণ করা হয়, এটি সিস্টেম ১ কাইনেটিকস অনুসরণ করে। এটি—এর সাথে আরেকটি পর্যবেক্ষণ যে, যে সমস্ত অয়েন মূলের কোথের কোষগহবরে প্রবেশ করে না, তাদের তুহ্ননায় যে সমস্ত আয়ন কোষগহবরে প্রবেশ করে ত্যদের জাইলেমে প্রবেশ করতে অধিক সময় লাগে—এই প্রস্তাবকে সমর্থন করে যে, মুলের কোযের কোষগহবরে আয়নের পরিবহণে সিস্টেম ২ অংশগ্রহণ করে এবং এটি প্রধান পরিবহণ পথ থেকে ভিন্ন।



মাধ্যমের ঘনমাত্রা (মিলিমোল K) (আইসোটনিক)

মুক্ত স্থান অথবা সিমপ্লজনের (পারস্পরিক সংযুক্ত সাইটোপ্লাজম) মধ্য দিয়ে জেইলেমে এবং পরিশেষে বায়বীয় অংশে আয়ন চলাচলের আপেক্ষিক মাত্রা নির্ভর করে পানি পরিশেষেণের হার এবং উদ্ভিদের পুষ্টি উপাদানের পরিমাণের উপর। যে সমস্ত উদ্ভিদে অধিক পরিমাণে পুষ্টি উপাদান আছে, তাদের আয়নের মোট ফ্লাক্স প্রস্বেদনের হারের উপর নির্ভরশীল, অপরপক্ষে যে সমস্ত উদ্ভিদে কম পরিমাণে পুষ্টি উপাদান আছে তাদের মোট ফ্লাক্স প্রস্বেদনের হারের উপরে নির্ভরশীল নয়। এই পার্থক্যের কারণ হলো, যে উদ্ভিদে কম পরিমাণে পুষ্টি উপাদান অধিক পরিমাণে আয়ন থাকে, অর্থাৎ পরিশোষিত আয়ন মলের চাহিদা প্রথমে প্রহণ করে। • দিন এবং রাতে আয়ন পরিশোষণের হারের পাথক্য হয় এবং এটি অবশ্যই পানি পরিশোষণের হারের সাথে সম্পর্কযুক্ত (চিত্র ৫.৩)। তবে পানি পরিশোষণের পাথক্য সত্ত্বেও, নাইটোজেন ও পটাশিয়াম উভয়ের পরিশোষণ দিনের দ্বিতীয়ার্ধে বেশি হয়েছিল, দিনের প্রথমার্ধের তুলনায় এসময় ফাণ্ডীকারী দুব্যের পরিমাণ বেশি ছিল বলে আশা করা যায়।

প্রাথমিক অবস্থায় উদ্ভিদের বয়েরীয় অংশে জাইলেমের মাধ্যমে আয়ন সরবরাহ হয়, প্রস্কেদন প্রব্যহের সাথে অধিকাংশ আয়ন দ্রবণীয় অবস্থায় চলাচল করে। ফারীয় মৃত্তিকার ধাতুর আয়ন ৯৬শং পর্যায়ক্রমিক আয়ন বিনিময় বিক্রিয়ার মাধ্যমে জাইলেম ভেসেলের প্রাচীর বরাবর চলাচল করে।


চিত্র ৫.০ : গ্রীনহাউজে টমেটো শস্যের (ক) সৌরবিকিরণ (বিচ্ছিন্ন লাইন) ও পানি পরিশোষণ (অবিচ্ছিন্ন লাইন) এবং (খ) পটাশিয়াম (বিচ্ছিন্ন লাইন) এবং নাইট্টোজেন (অবিচ্ছিন্ন লাইন) পরিশোষণের দিন রাতের তারতম্য।

যে সমস্ত আহল ভাইনেমে প্রবেশ করে তা অবশ্যই সরাসরি কটেক্স অতিক্রম করে অথবা মুলের কোয়ে কিছু সময়ের জন্য সঞ্চিত থাকে। যদিও অনেকগুলো আয়ন উদ্ভিদ যে অবস্থায় পরিশেষণ করে সেই অবস্থায় জাইলেমে চলাচল করে, অন্যান্য আয়নের ক্রত বিপাক ক্রিয়া সংঘটিত হয়। উদাহরণস্কর্প, যব গ্রাছ কর্তৃক পরিশোয়িত ফসফেটের শতকরা ০০ ভাগ ১০ সেকেডের মধ্যে নিটাল্ল ওটাইডে আস্ত্রীকরণ হয় এবং ৬০ সেকেডের পর শতকরা ০০ ভাগ ১০ সেকেডের মধ্যে নিটাল্ল ওটাইডে আস্ত্রীকরণ হয় এবং ৬০ সেকেডের পর শতকরা ০০ ভাগ জ মোগে মিশিত হয়। এইটোজেন সাধারণত অ্যামোনিয়াম অথবা নাইট্রেট অবস্থায় পরিশোষিত হয়, কিন্তু আলেইনো এসিড সংশ্লেষণের পূর্বে একে বিজ্ঞারিত হতে হয়। সুতরাং উদ্ভিদে এটি হি অংশ্যে পরিব্যাহিত হয় তা নির্ভর করে উদ্ভিদে নাইট্রেট রিডাকটেজের অবস্থানের উদ্ভিগে এটি হি আলেইতে এটি প্রথানত মূলে এবং অন্যান্য প্রজাতিতে পাতায় থাকে। প্রথম ক্ষেত্রে পাতা থেকে আর্টকারী দ্রব্যে সরবরাহের উপর নাইট্রেটের বিজ্ঞারণ নির্ভরশীল এবং বিটপে অধিকাংশ মাইট্রেকেন বিজ্ঞানিত অবস্থায়, প্রায়ই ল্লুটামিন অথবা অ্যাসপ্যারজিন হিসেধে পরিবাহিত হয়। এসব কারণে বিচাপে সম্বরণত নাইট্রেটের ঘনমাত্রা অভ্যন্তে কম। অপরপক্ষে, যখন নাইট্রেট বিজ্ঞারণ

1.00

পাতায় ঘটে, তখন জাইলেম দিয়ে নাইট্টেট দ্রুত পরিধাহিত হয় এবং পাতা থেকে ঞ্লোয়েম দিয়ে পরিবাহিত বিজ্ঞারিত নাইট্টোজেনের সরবরাহের উপর মূল নির্ভরশীল।

কোনো অঞ্চে আয়ন সরবরাহের পরিমাণের সাথি সাধারণত এর প্রস্কেদনের হারের সম্পর্ক আছে। যে অঙ্গ সবচেয়ে বেশি পরিমাণে আয়ন গ্রহণ করে, পূর্ণাঙ্গ পাতা, তাদের আবার কর্চি প্রসারণশীল পাতা, বিটপের শীর্ষ এবং বর্ধনশীল ফলের তুলনায় আয়নের প্রয়েজনীয়তা অনেক কম। পূর্ণাঙ্গ পাতা থেকে ফ্রোয়েম দিয়ে মূলত আয়নের পূর্ণ বন্টনের মাধ্যমে কচি পাতা, শীর্ষদেশ এবং বর্ধনশীল ফল আয়ন পায়। প্রধানত ফ্রোয়েমের মাধ্যমে কোনো পাতার নিট আয়ন গ্রহণকারী অবস্থা থেকে জাইলৈমের মাধ্যমে আয়ন গ্রহণকারী কিন্তু ফ্রোয়েম দিয়ে নিট প্রেরণকারী অবস্থার প্রবির্তা ৫.৪ নং চিত্রে দেখানো হয়েছে।

চিত্র ৫.৪ : প্রাত্যার ক্ষেত্রফল বৃদ্ধি (বন্ধ বৃত্ত) এবং স্পসফরাস চলাচলের পরিবতনশীল প্রাটার্দের (মৃক্ত বৃত্ত) উপর পাত্রার রয়েসের প্রভাব।

আয়ন সরবরাহের উপর পাতার (এবং অন্যান্য অন্তের) কেথের প্রসারণ নির্ভরশীল। যথন পাতা পূর্ণ প্রসারিত অবস্থায় পৌড়ায় এবং অন্তনের প্রয়েজনীয়তা গ্রাস পেতে থাকে, তখন পাতা থেকে সাধারণত নিট আয়ন প্রেরণ আরস্থ হয়। ফ্রেয়েমে আয়ন প্রেরেণের হার ও জাইলেমে আয়নের সরবরাহের হারের মধ্যে কোনো সম্পর্ক নেই বলেই প্রতীয়মান হয়। এ অবস্থায় আদম হওয়ার কিছু নেই যে, যখন ফ্লোয়েমে চলাচলকারী মৌল, থেমন– নাইট্রোজেন, ফসফরসে এবং পটাশিয়ামের সরবরাহ স্রীমিত, তখন পুষ্টি উপাদানের ঘাটতির প্রথম লক্ষণ পরিণত পাতায় নেখা যায়। ক্ষারীয় মৃত্তিকার ধাতুর আয়নগুলোর প্রকৃতি আবার ভিন্ন, কারণ এগুলো খুব সহজে সিভ নলে প্রবেশ করতে পারে না, এজন্য পাত্যয় এসকল আয়নের ঘনমাত্রা সবসময়ই বৃদ্ধি পায়। সূতরাং জাইলেমের মাধ্যমে সরবরাহকৃত ক্যালসিয়ামের উপর কচি পাতা নির্ভরশীল এবং এজন্য ক্যালসিয়াম ঘাটতির প্রাথমিক লক্ষণ কচি পাতায় দেখা যায়। একইভাবে অন্যান্য অঙ্গ যার খুব ধু ও বৃদ্ধি ঘটে, কিন্তু প্রস্বেদনের হার খুব কম, এদেরও ক্যালসিয়াম ঘাটতির লক্ষণ দেখা যায়।

শস্য কর্তৃক খনিজ মৌল পরিশোষণ (Absorption of Mineral Nutrients by Crops) পুরে বর্ণিত আয়ন পরিশোষণের উপর যে সকল প্রকরণ আলোচনা করা হয়েছে, তা মাঠে জন্মানো উদ্ভিদের আয়ন পরিশোষণের ক্ষেত্রেও প্রযোজ্য। দুরে দুরে ধপন করা উদ্ভিদের মূল নিচে এবং পাশে সহদিকেই ধৃদ্ধি পত্নে। সুতরাং পরিশোষণের জন্য লঙা মৃত্তিকার পরিমাণ হলো মূলের প্রধান অঞ্চগুলোর (axes) দৈখ্যের গড়ের খন (cube)। যেহেতু মূলের শীর্ষের দিকের নবীন অংশে সবচেয়ে বেশি আয়ন পরিশোষণ হয়, মৃত্তিকার যেসব অঞ্চল থেকে আয়ন পরিশোষিত হয় তা নির্দেশ করে যে, এই অঞ্চলের মূলের বৃদ্ধির হার এবং আয়নের ঘন্দাত্রা বেশি (সারণি ৫.২)।

সারণি ৫.২ : মিনেটের Pennisetum typhoides মূলের বিভিন্ন অংশ কর্তৃক ফসফরাস পরিশোষণের শতকরা হার। উদ্ভিদের মধ্যে পারস্পরিক দূরত্ব ১২২ সেটিমিটার ১১১ সেটিগিলের :

	× ১২২ সেটিমিট	गड ।		· · ·		
শনের বয়স (দিন)	। গাভীরতা । (সংশ্যিমিয়ার : ।	র্ডান্তু দে	উদ্ভিদের গ্যেড়া থেকে দূরত্ব (সেণ্টিমিটার)			
		0-54	<u>\</u> (-\(১৫- ৩৫	<u>5&-8¢</u>	
\$5	0-23	৩২	৩১	<u>کې</u>	>	
	20-20	8	8	2	\$	
	২0−©0	2	ì	e.	-	
	008 0			_	- 1	
1	35- 6 0					
1 65	0 \$0	23	29	22	22	
	20- \$0	22	20	Ե	હ	
	S0-C0	÷.	÷.	2	¢.	
	20- 80	\$	2	2	2	
	80-30			_		
4%	0-10	5	20	<u></u> ``	10	
1	\$0-50	٦	۹	۹	Ċ	
	\$5 20	\$	3	\$	8	
	SU 80	2	2	\$	5	
	80-40	-	2	<u>}</u>		
تاني	0-10	વ	72	2p.	72	
	10 20	8	٦	¢	ا لا	
i	\$0 5 0	\$	٢	ບ	đ	
	20-S0	5	১	৩	ల	
!	80-00	<u>}</u>	2	4	8	

ষখন উদ্ভিদের মধ্যে পারস্পরিক দূরত্ব কম, তখন পার্শ্ববর্তী উদ্ভিদের মুলের বৃদ্ধি বাঁধাগ্রন্থ হয়। এবং যা দু'রকমের যে কোনো একটি অবস্থা হয়। কখনো কখনো একটি উদ্ভিদের মূল পার্শ্ববর্তী উদ্ভিদের মূলের বৃদ্ধি ব্যাহত করে। এর জন্য মূল অব্দ আয়তনের মৃত্তিকা থেকে আয়ন পরিশোষণ করে এবং মৃত্তিকায় যেসব আয়ন অপেক্ষাকৃত অচল ভাদের পরিশোষণ কম হয়। অন্য ক্ষেত্র মূলতন্ত্রগুলো পরস্পরের সাথে মিশ্রিত হয়, যদিও মৃত্তিকায় মূলের চূড়ান্ত ঘনত্ব বেশি হতে পারে, তথাপিও যে কোনো একটি উদ্ভিদের মূলতন্ত্র ফুদ্র হবে ও মূলের প্রন্থীয় বৃদ্ধির পরিবেজন হবে। উপরস্তু, যখন আন্তপ্রেজাতি প্রতিযোগিতা হয়, প্রতিযোগী উদ্ভিদের মূল মৃত্তিকার যে গভীরতা থেকে আয়ন পরিশোষণ করে তারও পরিবর্তন হয়।

মূলতন্ত্রের প্রতিযোগিতা কেবল মূলের মোট পরিমাণ অথবা মূলের বিস্তারকে হ্রাস করে না, মূলতন্ত্রের আকারেরও পরিবর্তন হয়, যেমন– ফুদ্রাকার পুরু মূলের সৃষ্টি হয়। এই প্রভাব কিভাবে কাজ করে তা এখনও স্পষ্ট নয়। কিছু উদ্ভিদের মূল বিষাক্ত পদার্থ নিঃসরণ করে এবং এটি পার্শ্বকী উদ্ভিদের মূলের বৃদ্ধি ব্যাহত করে। অন্যান্য ক্ষেত্রে এটি পানি ও পুষ্টি উপাদানের সরবরাহ হ্রাসের সরাসরি প্রতিক্রিয়ার জন্যও হয়।

আয়নের মধ্যে জটিল পারস্পরিক ক্রিয়ার ফলে একটি আয়নের পরিশোষণে অন্যান্য আয়ন ও পানি সরবরাহ প্রভাবিত করে। একটি পরীক্ষার ফলাফল নির্দেশ করে যে, পুষ্টি এবণের (medium) পানির পটেনশিয়াল –০.২ মেগাপ্যসকেলের কম হলে ফসফরাস পরিশোষণ হ্লাস পয় এবং –২.০ মেগাপ্যাসকেলে পরিশোষণ সম্পূর্ণ বন্ধ হয়ে যয়ে। মুলের পৃষ্ঠে মন্তিকার প্রধনের ম্যাস প্রবাহের উপর অসমোটক পটেনশিয়ালের সুস্পর্ট প্রভাব আছে এবং আয়নের রোপনের উপর মৃত্তিকার পানির পরোক্ষ প্রভাব আছে। মৃত্তিকার কোনো নির্দিষ্ট অংশ, যেমন- পৃষ্ঠ প্রর (surface layer) গুকিয়ে গেলে উদ্ভিদের অন্য অংশ ফ্রতিপুরণমূলক বৃদ্ধি হয়, কিন্তু এর ফলেও মৃত্তিকার পৃষ্ঠি স্তর থেকে আয়ন পরিশোষণ হ্লাস পায়। থেহেডু এই অঞ্চলে সংধারণত সর্বোচ্চ পরিমেণে মূল ও থনিজ উপদোন থাকে, এর ফলাফল খুব খারাপ হয় এবং নীয় মূলের সংখ্যা কম হলে শস্যের পর্যাপ্ত পানি ও থনিজ উপদ্যানের সরবরাহ হয় না। এমন কি যখন ওব্দ পৃষ্ঠ স্তরে পাযাস্ত পৃষ্টি উপাদান থাকে, এব ফলাফল খুব খারাপ হয় এবং নীয় মূলের সংখ্যা কম হলে শস্যের পর্যাপ্ত পানি এবং উদ্ভিদ গতীর স্তর থেকে পর্যাপ্ত পরিমাণে পানি পরিশোষণ করে, তথনও এরকম ঘটে। পানি সরবরাহ স্টিন্ত হলে এবং বেশি পরিমাণে সার প্রয়োগ করলে পাত্যর পরিমাণ অনেক বেড়ে যায়, এর জন্য বেশি পানি ব্যবহাত হয় এবং পরিমেণে ফলন কমে যায়।

উদ্ভিদে পুষ্টি উপাদানের প্রতিক্রিয়া (Plant Nutrient Response)

ধৃদ্ধি চলাকালে যদিও সালোকসংশ্লেষণের মাধ্যমেই অধিকাংশ ওক্ষ পদার্থ তৈরি হয়, তথাপিও থনিজ মৌল সরবরাহের উপর মোট ফলন নির্ভরশীল। খনিজ মৌল অবশ্য শুক্ষ ওজনের খুব সামন্য আংশ : নাইট্রোজন, ফসফরাস এবং পটাশিয়াম সাধারণত যথাক্রমে প্রায় শতকরা ১৫, ০.২ এবং ১.০ ভাগ এবং ফুদ্রতর পৃষ্টি উপাদানের পরিমাণ আরও কম। যেমন মলিবডেনামের পরিমাণ শতকরা ১০⁻¹⁰ ভাগ। পানি বড়ীত, সকল পরিবেশীয় প্রকারজের মদ্যে সম্ভবত খনিজ মৌল সবচেয়ে দ্বৃত এবং দিপুণতার সাথে শস্য উৎপাদনকারীর স্বিধার উদ্ধেশ্যে উপযোগী করা যায়। তবে চায়াবাদের জন্য ধ্যেক্ত মৃষ্টিকায় সাধারণত মেণ্ড উপ্রাধী করা যায়। তবে চায়াবাদের জন্য ধ্যেগ্র কদাচিৎ এই মাত্রা এমন পর্যায়ে পৌডায় যাতে করে স্বোচ প্রথিনিতিক ফলন পাওয়া যায়। পরিবেশীয়, সকল প্রকার সম্পূর্ণরাপে ব্যবহার করার জন্য এগ্রেন্ট অপযান্ত হওয়ায় স্বোচ্য ফলন পাওয়া যায় না। যদি বহিংস্থ গ্রষণে পর্যাপ্ত পরিমাণে আয়ন থাকে, তাহলে আয়ন ব্যবহারের তুলনায় পরিশোষণের হরে বেশি হবে এবং উদ্ভিদে আয়ন সঞ্চিত হবে। অন্তঃস্থ আয়নের মাত্রা বেশি হলে (বিশেষ করে নাইট্টোজেন) নতুন মেরিস্টেমের বর্ষন বেশি হবে এবং এর জন্য আবার আয়নের চার্চিদ বৃদ্ধি পাবে। এটি আংশিক পূরণ হয় মূলতন্ত্রের বৃদ্ধির জন্য মৃত্তিকার নতুন অঞ্চলে মূল প্রশোষ হলে, কিন্তু পুরাতন মূলের চারদিকে আয়নের ঘনমাত্রা হাস পায়। মূল কর্তৃক আয়ন পরিশোষণ এবং মৃত্তিকরে এচলীকরণ (immobilization) বিক্রিয়ার তুলনায় জৈব পদার্থ ও মৃত্তিকার কলন্ডের থেকে আয়ন সরবরাহ কম হয়, এবং নির্টাপের বৃদ্ধির তুলনায় জৈব পদার্থ ও মৃত্তিকার কলন্ডের থেকে আয়ন সরবরাহ কম হয়, এবং নির্টাপের বৃদ্ধির তুলনায় মূলের বৃদ্ধি হাস পায়, এর ওন্য হারনের পরিশোষণের তুলনায় সালোকসংশ্লেষণে উৎপাদিত বস্তু দ্বুত জমা হয়। মৃত্তরং খনিজ মোলের ঘনমাত্রা প্রেতি একক শুক্ষ ওজনে মৌলের পরিমাণ) চারাগ্যাছে বেশি ও এর পর সামান্য পরিবেচন হতে পারে, কিন্তু পরিশেয়ে এটি হাস পায়।

ধ্রধিকাংশ শসে এমন একটি পহাঁয় আসে ধখন খনিজ মৌলের সরধরাহের তুলনায় নতুন বধনশীল অঞ্চলে চাহিদ্য বেশি ; একে 'অন্তাপ্থ উপৰাস' (internal starvation) বলে। প্রকৃতপক্ষে, খনিজ মৌলের চাহিদ্য ও সরধ্যাহের মধ্যে একটি সমতার চিদ্র থেকে পাওয়া যায়। সবচেয়ে দক্ষ ধ্যবস্থা এমন যাতে উদ্ভিদকে কেবল অন্তাপ্থ উপরাসের শুরুতে রাখা যায়। সবচেয়ে দক্ষ ধ্যবস্থা এমন যাতে উদ্ভিদকে কেবল অন্তাপ্থ উপরাসের শুরুতে রাখা যায়। সবচেয়ে দক্ষ ধ্যবস্থা এমন যাতে উদ্ভিদকে কেবল অন্তাপ্থ উপরাসের শুরুতে রাখা যায়। সবচেয়ে দক্ষ ধ্যবস্থা এমন যাতে উদ্ভিদকে কেবল অন্তাপ্থ উপরাসের শুরুতে রাখা যায়। সবচেয়ে দক্ষ ধ্যবস্থা এমন যাতে উদ্ভিদকে কেবল অন্তাপ্থ উপরাসের শুরুতে রাখা যায়। কিন্ত যখন সম্পর্ণ উদ্ভিদকে বিবেচনা করা হয়, তখন এর গৃরুত্ব কিছুটা হাস পায়, কারণ পরিণত পাতা থেকে খনিজ মৌল কণ্ডি পাতায় গৌছায়। উদ্ভিদ বর্তমানে বুদ্ধির জন্য পরিশোষণকৃত এবং পুরাতন কলা থেকে স্থানান্ডরিও উত্তয় প্রকার আয়েন ব্যবহার করে, এই দুই প্রক্রিয়ার আপেফিক গুরুত্ব লিন্ডর করে বৃদ্ধির হার এবং মুন্তিকয়া পুষ্টি উপাদানের লভাতার উপর। এর জন্য অবশ্য পাতার ধার্ধকা প্রেণ্ডি নৃত হয়, এবং এই পাতাগুলো যদি নবীন পাতায় ঢাকা পড়ে সৌরবিকিরণ কম পায়, তাহলে এদের সালোকসংক্লেখনের হারও বেশ কম হয়, এবং উদ্ভিদের বৃদ্ধিতে এদের প্রধান অবদান হলে: এরা অন্যন্য পোতায় আয়ন সরবরাহ করে। তাই আন্তাক্ষে জিয়ে কিছুটা ঘাটতি হলেও উদ্ভিদের বৃদ্ধি কিংলা চলন খুব থ্রাস পায় না।

উদ্ভিদের বৃদ্ধি ও বিপরিণতির জন্য প্রয়োজনীয় মৌল (Elements Required for Plant Growth and Development)

উদ্ভিদের বৃদ্ধি ও বিপরিণতির জন্য খনিজ মৌলের প্রয়োজন। শস্য উৎপাদনকারী প্রয়োজনমতো বিভিন্ন প্রকার সার জমিতে প্রয়োগ করে শসেরে ফলন এবং গুণগত মান বৃদ্ধি করতে পারেন। তাই শস্যের পুষ্টির বিভিন্ন কলা কৌশল সম্পর্কে জ্ঞান শস্য উৎপাদনের একটি গুরুত্বপূর্ণ অংশ।

শসের বৃদ্ধি ও বিপরিগতি নিয়ন্ত্রণে নাইট্রেডেন, ফসফরাস ও পটাশিয়াম এই তিনটি মৌলের গুরুত্ব খুব বেশি। অন্যান্য বৃহত্তর অণু পৃষ্টি মৌল (macroelements) (মেমন- ক্যালসিয়াম, ম্যাগ্যনেশিয়াম, লেহো, সোতিয়াম, সালফার এবং ক্লোরিন উদ্ভিদের জন্য প্রয়োজন, কিন্তু এগুলো ব্যাপকভাবে সার হিসেবে জমিতে প্রয়োগ করা হয় না।

আরও কতক ওলে: মৌল খুব অলপ পরিমাণে প্রয়োজন হয়, এদেরকে ফুন্নতর পুষ্টি উপাদন minor or trace elements) বলে। এওলে: হলে ম্যাঙ্গনিজ (Mn), দণ্ডা (Zn), তাম (Cu), বেরন (B), মলিবডেনাম (Mo) এবং কোবাল্ট (Co)। এই মৌল উপাদানের অভাব হলে বৃদ্ধি ও দিপরিঘৃতি অস্বাতার্বিক হয় এবং এক বা একার্বিক মৌল অভাবগস্ত উদ্ভিদ বা উদ্ভিদের অংশ ব্যোদ্ধিপঙকে ধ্যওয়ালে এসব জস্তুর স্বাস্তাগত সমস্য দেখা দেয়া।

তিনার প্রধান মৌলের মধ্যে আবরে বৃদ্ধি নিয়ন্ত্বণে নাইট্রোজেনের প্রভাব সধচেয়ে বেশি। নাহট্যেনেন হলে: আমেইনো আগন্ড, প্রেটিন ও নিউক্লিক এসিডের উপাদান এবং শসেরে শারীরতত্বের একটি গুরুত্বপূর্ণ ভূমিকা পালন করে। পূবেই উল্লেখ করা ২য়েছে যে, মৃক্তিকা থেকে আ্যামোনিয়াম এবং নাইট্রেট আক্যরে নাইট্রোজেন পরিশেষিত হয় এবং পরবতীকালে অন্যান্য নাইট্রেজেনঘটিত যৌগে পরিণত হয়। বিশেষ করে পাতার বৃদ্ধি নাইট্যেজেন দ্বারা নিয়ন্ত্রিত। মৃত্তিকায় নাইট্রোজেনের পরিমাণ বৃদ্ধি করে পাতার ক্যানোপির আকার এবং প্রায়িদ্বকাল বৃদ্ধি করা যায় এবং এজন্যই নাইট্রোজেন প্রয়োগে অধিকাংশ শস্যের ফলন বৃদ্ধি পায়। নাইট্রোজেন পাতার ব্রোয়োফিলের পরিমাণ বৃদ্ধি করে এবং নাইট্রোজেন ঘটটি উদ্ভিদ ধ্বর স্বৃত্তি অথবা হলুদ হয়। উচ্চ মাত্রায় প্রয়োগক প্রভাবিত করে এবং নাইট্রোজেন ঘটটি উদ্ভিদ ধ্বের স্বৃত্তি অথবা হলুদ হয়। উচ্চ মাত্রায় প্রযোগকত নাইট্রোজেন উদ্ভিদের কোনো বিশেষ প্রক্ষের, যেমন- গম অথবা যবের দনোর প্র্যোচিনের পরিমাণ বৃদ্ধি করে গুণগত মনেকে প্রভাবিত করে।

শসে নাইটোজন সরবরাহ কতকগুলো নিয়ামকের উপর নিউরশীল। এটি মৃত্তিকায় জৈব ও অজৈব অধস্থায় থাকে এবং মৃত্তিকার ব্যাকটেরিয়ার ক্রিয়াকলাপে নাইট্রোজন চক্র সথসময়ই একটি পরিবর্তনশীল অবস্থায় থাকে। কিছু নাইট্রোজন গ্যাসীয় অবস্থায় বায়্মগুলে কিরে যায় এবং কিছু চোয়ানোর জন্য নষ্ট হয়। মূলের অবুর্দে Rhizobium ব্যাকটেরিয়ানের জন্য বায়ুমগুলের নাইট্রোজন সংবন্ধনের কারণে লেগ্যুমজাতীয় উদ্ভিদের জন্য অবস্থা আরও জটিল হয়। এই অবুদের আফ্রঞ্জল সংক্ষিপ্ত এবং পরিশেষে বিশ্লেষিও হয়ে মৃত্তিকায় নাইট্রোজেন মুক্ত করে। এসব কারণেই উদ্ভিদের জন্য লন্ড নাইট্রোজেন কি পরিমাণে মৃত্তিকায় নাইট্রোজেন মুক্ত করে। এসব কারণেই উদ্ভিদের জন্য লত্য নাইট্রোজেন কি পরিমাণে মৃত্তিকায় গাইট্রোজেন মুক্ত করে। এসব কারণেই উদ্ভিদের জন্য লত্য নাইট্রোজেন কি পরিমাণে মৃত্তিকায় থাকে তা নির্ণয় করা কঠিন। শস্যের অনেক ফসফোরাইলৈশনের উপর নির্ভরশীল এনজাইমঘটিত বিক্রিয়ায় ফসফরাসের গুরুত্বপূর্ণ ভূমিকা আছে। এটি নিউক্লিয়াসের একটি উপাদান ও কোয় বিভাজনের জন্য প্রথ্যোজনীয় মৌল। এজনা ভাজক কলার বর্ধনে ফসফরাসে অংশগৃহণ করে এবং বিশোষ করে উদ্ভিদের প্রাথমিক দ্রুত বর্ধনশীল পর্যায়ে এর গুরুত্ব বেশি। চারাগ্যধ্যের মূলের বৃদ্ধিতে ফসফরাসের অংশগ্রহণ করে, তাই অধিকাণে শস্যের বীজতলায় প্র্যাপ্ত ফসফরাস থাটতি মৃত্তিকায় মুলীয় শিলেরে বৃদ্ধি রাহেত হয়। প্রথানিজ প্রান্ডিলো ব্যাহত হয়। ফসফরাস থাটতি মৃত্তিকায় মুলীয় শান্যের বৃদ্ধি রাহেত হয়ের প্রধানত মিন্তাশ্বিন আকরে মৃত্তিকা থেকে উদ্ভিদ্ধি ফলফরাসে গরিশোষণ করে।

পটাশিয়াম শস্য উদ্ভিদের কোনো গাঠনিক বস্তুর উপাদনে ময়, কিন্তু অ্যামোনিয়াম আয়ন থেকে অ্যামাইনো এসিড এবং প্রোটিন সংশ্লেষণে এর প্রয়োজন আছে। কাগকর সালোকসংশ্লেষণের জন্য পর্যাপ্ত পরিমাণ পটাশিয়াম দরকার, কোষ প্রাটীরের ভিতর দিয়ে অন্যান্য মৌলের চলাচলে পটাশিয়াম অংশগ্রহণ করে। অনেকক্ষেত্রেই উদ্ভিদের স্বাভাবিক বৃদ্ধির জন্য পর্যাপ্ত পরিমাণে পটাশিয়াম মৃত্তিকায় থাকে, কিন্তু যেখানে অধিক পরিমাণে নাইটোজেন এবং ফসফরাসঘটিত সার ব্যবহার করা হয়, সেক্ষেত্রে বৃদ্ধির জন্য পটাশিয়াম একটি সীমায়িত প্রভাবিক হতে পারে। পটাশিয়াম মাটতির জন্য পাতার কিনারায় ক্লোরোসিম এবং নেজ্যোদিম হয় এবং ফল ও বীজ ছোট ইয়া।

মেরিস্টেমের স্বাভাবিক বৃদ্ধির জন্য ব্যালসিয়ামের প্রয়োজন এবং এটি ব্যালসিয়াম পেকটেট হিসেবে কোম প্র্যাচীরের প্রধান উপাদান। তাই স্বাভাবিক বৃদ্ধির জন্য ক্যালসিয়াম প্রয়োজন। শিম-জ্রাতীয় শস্যের অবুর্দ তৈরি এবং মৃত্তিকা দ্রবণে লৌহ, অ্যালুমিনিয়াম এবং ম্যান্সনিজের বিদ্যাক্তত নই করে দিয়ে উদ্ভিদের স্বাভাবিক বৃদ্ধিতে ব্যালসিয়াম সাহায্য করে।

অধিকাংশ মৃত্তিকায় পর্যাপ্ত পরিমাণে ক্যালসিয়াম থাকে, কিন্তু দীর্ঘদিন ধরে চোয়ানোর জন্য এবং উদ্ভিদ কর্তৃক ব্যবহারের জন্য এর ঘটতি হয়।

অত্যাবশ্যকীয় খনিজ মৌল ছাড়াও, ক্যালসিয়াম মৃত্তিকার একটি প্রধান ক্যারক এবং মৃত্তিকার বিক্রিয়া নিরপেক্ষ রাখতে সাহায্য করে। যেখানে চোয়ানোর জন্য অধিক পরিমাণে ক্যালসিয়াম নষ্ট হয়, সেখ্যনে ধণাত্রক আধান বিশিষ্ট হাইদ্যোজেন আয়ন এর স্থান দখল করে এবং মৃত্তিকা অম্লীয়

শস্য শারীরবিজ্ঞান

হয়, অর্থাৎ pH কমে যায়। নিয়ু pH শস্যের বৃদ্ধি দ্যক্রণভাবে ব্যাহত হয় এবং যখন এটি হ্রাস পেয়ে ় হয়, ওখন অধিকাংশ আবাদি শসেরে ধৃদ্ধি খুব কম হয় কিংবা একেবারে বন্ধ হয়ে যায়। গোল অঞ্চ এবং জই থলে। সবচেয়ে বেশি নিমু pH সহনশীল শসা।

 pH কমে গেলে চূন প্রয়োগের মাধ্যমে এটি বৃদ্ধি করে ৬ এবং ৭ এর মধ্যে হয়, এই pH অধিকংগণ উদ্ভিদেৱ বৃদ্ধি ভাল হয়। তবে চুন প্রয়োগ যেন খুব বেশি না হয়, কারণ উচ্চ pH কতকগুলো ম্যূলতর পুষ্টি মৌল অলত্য হয়। বিভিন্ন প্রকার রস্যিয়নিক অবস্থায় চুন পাওয়া যায়, তবে সাধারণত চূণকৃত চুনপ্রাথর থেকে প্রাপ্য ক্যালসিয়াম কার্বোনেট বেশি ব্যবহৃত হয়।

সেয়ান্যের মধ্যমে কণ্ডলসিয়াম হারান্যে ছাড়াও, কর্দম কলয়েড এবং জৈব পদার্থের পৃষ্ঠ থেকে আনে।নিয়াম যার কলেসিয়াম অপসারণ করে। তাই মৃষ্টিকার pH কমে যেতে পারে, এজন্য মৃত্তিব্যার নির্ণয় এবং চুলের প্রয়োজনীয়াতা নিরুপণের জন্য মাঝে মাঝে মৃত্তিকা পরীক্ষা করা দরকার। স্গরেষিট এবং হব মৃত্তিকার অমৃতায় সবচেয়ে বেশি সংবেদনশীল শস্য।

একটি গুরুত্বপূর্ণ উপাদান ও এর অভাবে পাতা হলুদ হয়ে যীয় এবং সালেকিসংশ্লেষণের দক্ষতা হসে পংয়। আদী অঞ্চলে হান্ধ্য বুনটের মৃত্তিকায় ম্যাগনৈশিয়াম ঘাটতি অধিক পরিমাণে দেখা যায়। গোল আলু, সুগারধিট এবং সরিষ্ঠা বিশেষভাবে ম্যাগনেশিয়াম ঘটেতিতে সংবেদনশীল।

শস্যের উচ্চ ফলনের জন্য সোডিয়াম একটি অত্যাবশ্যকীয় মৌল বলে প্রতীয়মান হয় না। তবে সে(ডিয়াম সরবরাহ পর্যাপ্ত হলে কতকগুলো শস্যের ফলন ভাল হয়। এরকম একটি শস্য হলো সুগার্রাটা - এর প্রকৃত কারণ হলো যে, সুগার্রাইট লবণ–সহনশীল উদ্ভিদ (halophyte) এবং সমূদ্র উপকৃলে, যেখানে পর্যাপ্ত সেডিয়াম থাকে, এর উৎপত্তি হয়েছে।

শসং উদ্ধিদের অনেক গুরুত্বপূর্ণ প্রোটিনের উপাদান হলে: সালফার এবং বীজ তেল সংশ্বেষণে- ও এটি অংশস্থথ করে। কোনো কোনো এলাকায় সালফার ঘটিতি থাকতে পারে, তবে সংধরণভাবে । শস্যের ফলন সীমায়িত করতে সালফার গুরুত্বপূর্ণ প্রভাবক নয়। বৃষ্টির পানির মাধ্যমে বায়ুমণ্ডল থেকে সালফার মৃত্তিকায় জমা হয় এবং সাধারণত অধিকাংশ শস্যের প্রয়োজনের জন্য এই উৎস পর্যাপ্ত :

কোষরসে অসমেটিক চাপ এবং আয়নের সমত্য নিয়ন্ত্রণে ক্রোরিন অংশগ্রহণ করে। সাধারণত পর্যাপ্ত পরিমাণে ক্লোরিন মৃত্তিকায় থাকে এবং প্রতি বছর প্রতি হেষ্টর ৫০ কেজি পর্যন্ত ক্লোরিন বৃষ্ঠির মাধ্যমে মৃত্তিকায় জমা হয়।

এখানে শদেৱে বৃদ্ধি ও বিপরিগতিতে অংশগ্রহণকারী কয়েকটি গুরুত্বপূর্ণ মৌল সম্পর্কে অনেন্দ্রনা করা হলেন এটি সুস্পন্থ যে, এদের অভাবে শস্যের বৃদ্ধি ও ফলন ভাল হয় না। তাই যে সমন্ত মৃত্তিকায় এদের দাটতি থাকে, সেখানে সার প্রয়োগ করে এই ঘটতি পূরণ করা হয়।

ক্ষুদ্রতর অণু পুষ্টি উপাদানের গুরুত্ব (Importance of Trace Elements)

শস্য উৎপাদনে বৃহাওর অণু পুষ্ঠি উপাদানের গ্রুকণ্ণ ছাড়াও, ফুল্লতর অণু পুষ্ঠি উপাদানের গুরুরও কম নয় বুদ্ধতার পৃষ্টি উপাদনের অভাবজনিত সমস্যা কোনো কোনো মৃল্টিকা এবং কিছু শীস্যির মধেহে সীহাবন্ধ। এদের অভাব হলে বৃহত্তর অণু পুষ্টি উপাদানের (নাইট্রোস্কেন, ফসফরাস, পর্ট(শিয়াম) কার্যকর্ত্তিব্রাও ভালভাবে প্রকাশ পায় নার্

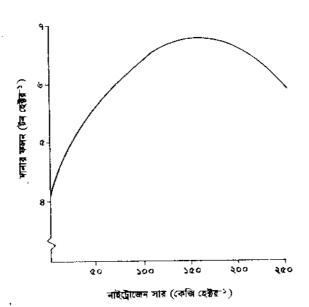
বোরনের অভাবে স্গারবিটের "হাট রট" এবং সুইড এবং টার্নিপের "রাউন হাট" হয়। কলেসিয়াম বোরেট এবং বিরোঞ্জ ব্যবহার করে বোরনের ঘাটভি পূরণ করা যায়। অভিরিক্ত চুন ব্যবহার করনে ধেরনের ঘটেতি প্রকট হয়।

108

পীট মৃত্তিকা এবং হান্ধা বেলে মৃত্তিকায় সাধারণত তাম্যর থাচার্চ হয় এবং দাসাশসন ও সুগারবিটকে প্রভাবিত করে। তামার অতিরিক্ত ঘটিতি হলে শস্যের শীষ এবর হয় না, ভাই ফলন সম্পূর্ণ নষ্ট হয়ে যায়। তামার অভাবে সুগারবিটে কোনো দৃশ্যমান লক্ষণ ক্রমণ যায় না, ভাবে কপার সালফেট প্রয়োগ করলে এর ফলন বাড়ে। বিভিন্ন প্রকার তামার লবন লতেয় জিয়ি (Johan spray) এই ঘটিতি পুরণ করা যায়।

পীট মৃত্তিকা এবং অতিরিক্ত ক্ষারীয় বেলে মৃত্তিকায় ম্যাঙ্গানিজ ঘাচাত আধক পারলাফত হয়। এর অভাবে দানাশস্য ও সুগারবিটের পাতা হলুদ হয়ে যায় এবং ফলন হ্রাস পায়। মান্র আবর ফলের অভ্যন্তরে বীজে ফুটফুটে ধূসর দাগের সৃষ্টি হয় এবং এর বাজার মূলং কমে যায়। মান্র ভারজ চুন প্রয়োগে ম্যাঙ্গানিজ ঘাটতি বৃদ্ধি পায় এবং ম্যাঙ্গানিজ সালফেট প্রয়োগ করে ম্যাজ্যানিজ ঘাচাত পূরণ করা যায়।

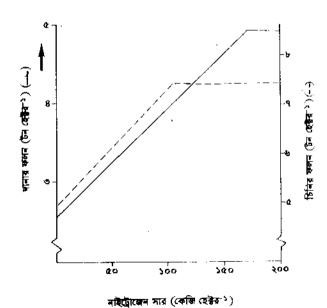
মলিবডেনামের অভাবে ফুলকপির পাতার অস্বাভাবিক বৃদ্ধি ২৪ কোচে চেচ্চ এবং এই মৌলের একটি অস্বাভাবিক বৈশিষ্ট্য হলো যে, উচ্চ মাত্রার pH-এ এর লাখতো বৃদ্ধি পায়। য সে অতিরিক্ত মলিবডেনাম থাকলে গব্যদিপশুর তাম্য শোষণে বিঘ্ন ঘটে, তাই এদের গুয়া ঘটেছির লক্ষণ দেখা যায়।

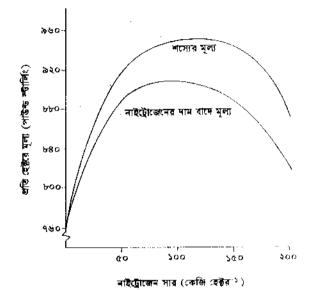

শস্যের পুষ্টির বিষয় বিবেচনা করতে ক্ষুদ্রতর অণু পুষ্টি উপায়নের হাজর সম্পাকে মচে তনর প্রয়োজন আছে। এদের অভাব হলে শস্যের ফলন এবং গুণগুত মণ্ণ উভয়েষ হ্রাস প্রায়। তাই এদের ঘাট**তি পরিলক্ষিত হলেই এই ঘাটতি পুরণের যথাযথ ব্যবস্থা** গৃহণ অত্যন্ত জন্ধার

প্রধান প্রধান মৌলের প্রতি শস্যের প্রতিক্রিয়া (Crop Responses to the Major Elements)

বিভিন্ন মাত্রার সারের সাথে বিভিন্ন শস্যের ফলনের সম্পক জানা দরকার। কারণ ৬ থেকে ৫৬ শস্যের জন্য সারের উপযুক্ত মাত্রা নির্ধারণ করা সম্ভব। বিভিন্ন শস্যের উপর এ জাতীয় গবেষণা বহু বছর ধরে পরিচালিত হয়েছে এবং প্রতিক্রিয়ার প্রকৃতি সম্পর্কে ভালভাবে জানা মণ্ডব হয়েছে। তবে এসমস্ত পরীক্ষার ফলাফল ব্যবহারের আগে একটি বিষয় বিবেচনা করতে হবে, ডা হলে মৃত্তিকা এবং স্থানীয় আবহাওয়ার তারতম্য যা সারের মাত্রার বৃদ্ধির সাথে ফলন ব্রাদ্ধর সম্পককে প্রভাবিত করতে পারে।

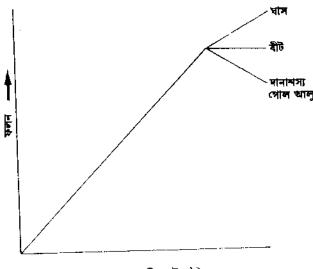
সকল সারের মধ্যে সবচেয়ে বেশি ব্যবহৃত ২৫৬ নাইট্রোজেন সার এবং শাসেরে প্রাতীগ্রন্থ দেখানোর জন্য একে একটি সুন্দর উদাহরণ হিসেবে উপস্থাপন করা হয়। নাইট্রোজেন সারের মাত্রার বৃদ্ধির সাথে দানাশস্যের ফলনের প্রতিক্রিয়ার একটি আদর্শ কান্ড (৫.৫ নানচেত্র) দেখানো হয়েছে। এই কার্ভের আকৃতি প্যারাবোলিক (parabolic)। নিমু মাত্রার সারের পরিসরে ফলনের বৃদ্ধি অপেক্ষাকৃত বেশি। কিন্তু যখন নাইট্রোজেনের মাত্রা প্রতি হেক্টরে ১০০ কেজির বেশি হয়, তখন প্রতি কেজি প্রদেয় নাইট্রোজেনে ফলন বৃদ্ধি অপেক্ষাকৃত কম। এই উদাহরণে সর্বোচ্চ মাত্রায় গেছে, প্রতি হেক্টরে প্রায় ১৫০ কেজি নাইট্রোজেন প্রয়োগে এবং নাইট্রোজেনের উচ্চ মাত্রায় ফলন হাস পেয়েছে। অনেক শস্যেই এরকম সম্পর্ক পাওয়া গেছে এবং এ থেকে সুপারিশ করার জন, সর্বোন্ডম মাত্রার নাইট্রোজেনের পরিমাণ জানা সম্ভব হয়েছে। সুনিন্চিান্ডভাবে সুপারিশের জন অনেক পরীক্ষা–নিরীক্ষার পর্যাপ্ত উপান্ত প্রয়োজন।


নাইট্রোজেন সারের মাত্রার বৃদ্ধির সাথে সাথে ফলনের বৃদ্ধি একই অনুপাতে না হওয়ান্য। নাইট্রোজেন সার প্রয়োগের অর্থনৈতিক দিকটাও দেখা দরকার : বিভিন্ন মাত্রার নাইট্রোজ্যে ক্রিনিয় শুগারবিট শস্যের মূল রেখাচিত্রের সাহায্যে ৫.৬ নং চিত্রে দেখানো হয়েছে। শস্যের মার্লুলের ক্ষেত্রে প্রতিক্রিয়া কার্ড আবার প্যারাবোলিক এবং সর্বোচ্চ মূল্য মন পাওয়া যায় প্রতি হেক্টরে প্রায় ১২৫ কেন্দ্রি নাইট্রোজন প্রয়োগ করে।


চিত্র ৫.৫ : বিভিন্ন মাত্রার নাইটোজেন সার প্রয়োগে দানাশস্যের ফলনের প্যারাবোলিক প্রতিক্রিয়া।

- এবে মনি শস্যের মেট মূল্য থেকে সারের খরচ বাদ দেয়া যায়, তাহলে প্রতি হেক্টরে ৮০ কেন্দ্রি নাইট্রোজেনের পর লভে কমে যায়। এক্ষেত্রে উচ্চ মাত্রের নাইট্রোজেনের জন্য পাতার অতিরিন্ধ বৃদ্ধি হয়, কিন্তু মূলের চিনির উপর প্রভাব খুব সামান্য। সুগারবিট শস্যের সর্বোচ্চ মেটি মূল্য পাওয়া যায় প্রতি হেক্টরে ১২৫ কেন্দ্রি মাত্রায়, কিন্তু লাভের কথা চিস্তা করলে সব্যেত্রম মাত্রা আপেক্ষাকৃত কম। তাই, শস্যের জন্য উপযুক্ত মাত্রার সার নির্ধারণে অর্থনৈতিক দিকটাও বিবেচনা করা উচিৎ।

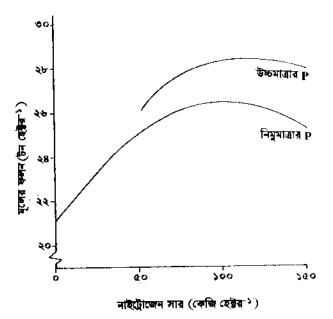
নাইট্রেজেন সারের মাত্রার সাথে শসেরে ফলনের প্যারাবোলিক প্রতিক্রিয়া ব্যাপকভাবে সম্মথিত হয়েছে। এই প্রতিক্রিয়া কার্ভ নয়, সেটা ধরে নিয়ে এই উপাত্তের ভিন্নভাবে ব্যাখ্যা করা ধায়। কান্ডের তুলনায় একটি ক্রমাবনতি বিন্দুর উভয় পালে সরলরৈথিক সম্পর্ক মাঠের পরীক্ষার ফলাফনকে ভালভাবে প্রকাশ করে (চিত্র ৫.৭)। চিনির ফলন সর্বোচ্চ হয় প্রতি হেক্টরে ১০০ কেজি মাইট্রোজেন প্রয়োগে এবং এর পর আর কোনো অতিরিক্ত বৃদ্ধি পরিলক্ষিত হয় না এবং দুটি সরল রেখা উপাত্তকে ক্ষুদ্ধরভাগে বর্ণনা করে। দানাশসোর ক্ষেত্রে সরলরৈথিকভাবে ফলন বৃদ্ধির পরিসর অপেক্ষাকৃত প্রশস্ত এবং শীতকালীন গমে সর্বোচ্চ ফলন পাওয়া যায় প্রতি হেক্টরে ১০০ কেজি মাইট্রোজেন প্রয়োগ করে। এর চেয়ে বেশি নাইট্রোজেন প্রয়োগে ফলন খুব সামান্যই বাড়ে এবং প্রকৃতপক্ষে কমে যেতে পারে।



চিত্র ৫,৬ : বিভিন্ন মাত্রার নাইট্রোজেন সার প্রয়োগের সাথে সুগারবিটের গুলোর সম্পন্ধ।

শস্য উদ্ভিদের খনিজ পুষ্টি

ানমু মাত্রার ন্যইট্রোজেনে অধিকাংশ শস্যের সরলরৈখিক প্রতিক্রিয়া প্রায় একই রকম (যদিও স্কেলের পরিবর্তন হবে) এবং ক্রমাবনতি বিন্দুর পরে শস্যের প্রতিক্রিয়ার ভিন্নতা হয় (চিত্র ৫.৮)। গবাদিপশুর খাদ্য হিসেবে ব্যবহৃত মাসের, যা নাইট্রোজেনে খুব বেশি সংবেদনশীল, ফলন এই বিন্দুর পরেও বাড়তে থাকে। এই বিন্দুর তুলনায় বেশি নাইট্রোজেন প্রয়োগে সুগারবিটের ফলন বাড়ে না। গোল আলু এবং কোনো কোনো দানাশস্যের ফলন উচ্চ মাত্রার নাইট্রোজেনের জন্য ব্যাপকভাবে কমে যায়। শেয়োক্ত ফেত্রে গরুত্বপূর্ণ বিষয় হলো থতটা সম্ভব সঠিকভাবে এই বিন্দু, যার বেশি হলে ফলন কমে যায়, সন্যক্ত করা দরকার।


নাইট্রোজেন সার (কেজি হেন্টর ১)

চিত্র ৫.৮ : প্রদেয় সারের সাথে বিভিন্ন শস্যের প্রতিক্রিয়া সম্পর্ক

ফসফরাস এবং পটাশিয়ামঘটিত সারের সাথে শস্যের প্রতিক্রিয়। এও সুন্দরভাবে নির্জাগত হয়নি। যে মৃত্তিকায় লভা অবস্থায় এই মৌল দুটির ঘাটতি আছে, সেক্ষেত্রে অন্সপ পরিসরে সার প্রয়োগ করেই একটি সরলরৈখিক সম্পর্ক পাওয়া যায়। তাই নাইট্রোজেনঘটিত সংরর তুলনায় রুম্প মাত্রায় ফসফরাস এবং পটাশিয়ামঘটিত সার মৃত্তিকায় প্রয়োগ করা হয়। বিভিন্ন শাসের জন্য ফসফরাস এবং পটাশিয়ামের প্রয়োজনীয় মাত্রা বিভিন্ন। অন্যান্য শসেরে হুলনায় স্বসফরাস এবং পটাশিয়ামের প্রয়োজনীয় মাত্রা বিভিন্ন। অন্যান শসেরে সুলারার্থটো পটাশিয়ামের চাহিদা এবং গোল আলুর ফসফরাসের চাহিদা বেশি। তাই প্রতিটি শসেরে সারের প্রয়োজনগীয়তা সতর্কাতার সাথে নির্ণয় করা উচিৎ। লেগ্যুমজাতীয় শস্যের নাইট্রেজেনের প্রয়োজনীয় ত্ব খুব কম বা নেই বললেই চলে, কিন্তু এদের ফসফরাস এবং পটাশিয়ামের প্রয়োজনীয়তা অপেক্ষাকত বেশি।

সারের মৌলের পারস্পরিক ক্রিয়া (Interaction of Fertilizer Elements)

শস্যের জন্য তিনটি প্রধান মৌল এবং সম্ভবত আরো মৌলের প্রয়োজন। এই পৃষ্টি উপাদনেশ্বলোর মধ্যে পারস্পরিক ক্রিয়া গুরুত্বপূর্ণ। সুগারবিটের নাইট্রোজেন এবং ফসফরাসের পারস্পরিক ক্রিয়া ৫,৯ নং চিত্রে দেখানো হয়েছে নিমু মাত্রার ফসফরাস প্রয়োগ মূলের ফলন স্বাভাগিক গারুবোলির প্রতিক্রিয়া অনুসরণ করে। উচ্চ মাত্রার ফসফরাস প্রয়োগে নাইট্রোজেনের মাত্রার গম্পুণ পরিসরে, ৫০ থেকে ১৫০ কেজি নাইট্রোজেন প্রতি হেস্টরে, ফলন ক্রমাগতা বাড়ভো থাকে। এটি নিদেশ করে যে, উচ্চ মাত্রার নাইট্রোজেনে প্রতি হেস্টরে, ফলন ক্রমাগতা বাড়ভো থাকে। এটি নিদেশ করে যে, উচ্চ মাত্রার নাইট্রোজেনের প্রতিক্রিয়া নিমু মাত্রার ফসফরাসের জন্য ভাবে ৷ এটি নিদেশ করে যে, উচ্চ মাত্রার নাইট্রোজেনের প্রতিক্রিয়া নিমু মাত্রার ফসফরাসেরে জন্য হাসে পায়। যেখানে শস্য উৎপাদনের জন্য উচ্চ মাত্রায় সার ব্যবহার করা হয়, সেখানে এই ধরনের প্রতির্জয়া পের গুরুত্বপূর্ণ। গোল আলুর ফেত্রেও এরকম প্রতিক্রিয়া দেখা যায় ৷ উচ্চ মাত্রায় ফসফরাস প্রে পটাশিয়মে প্রযোগের জন্য উচ্চ মাত্রার নাইট্রোজেনের প্রভাব হায় দেখা মাত্রা সিন্দ্র পড়ে। চায়ির ঘ্রের্ট উল্লেখ করা প্রয়োজন যে অন্যান্য মৌলের (যেমন- ম্যাগনেন্দিয়াম অংবা মাজানিজ) জনাড প্রায় প্রধান মৌলের প্রতিক্রিয়া সীমায়িত হতে পারে।

চিত্র ৫,৯ <mark>: সুগারবিটে নাইট্রোজেন এবং ফস</mark>ফরাস সারের পারস্পেরিক আউজিলা।

সারের প্রতিক্রিয়ার উপর প্রভাবকসমূহ (Factors Affectiong the Respose to Fertilizers)

সারের সর্বোন্তম পরিমাণ নিধারণের জন্য সারের মাত্রার সংখে শসের প্রতিত্রিন্যার যে সম্পর্কের বিষয় পূর্বে আলোচনা করা হয়েছে তা সাবধানতার সাথে নির্বেচনা করা জিল্।

নিদেমপক্ষে, কোনো নির্দিষ্ট পরিবেশের (মৃত্তিকা এবং বায়বীয়) জন্য এটি একটি ঘছ মায়া। বিভিন্ন জমি ও পরিবেশে এই সর্বোত্তম মাত্রার পরিবতন ২য়। অনেকগুলো প্রভাবক এই সম্পর্কের উপর ক্রিয়াশীল ; সংক্ষেপে তা আলোচনা করা হলো। সারের প্রতিক্রিয়ার উপর মৃষ্টিকার বৈশিষ্টেরে গুরুত্বপূর্ণ ভূমিকা আছে। মৃষ্টিকায় লডা P2O5, K2O এবং ম্যাগনেশিয়ামের পরিমাণ নির্ণয়ের জন্য মৃষ্টিকার রাসায়নিক বিশ্লেষণ কর যায়। এজাতীয় বিশ্লেষণের মূল্য সীমায়িত হলেও মৃষ্টিকায় সঞ্চিত মৌলের পরিমাণ এবং জমিতে প্রদন্ত সারের প্রতিক্রিয়ার নির্দেশক হিসেবে এটি প্রয়োজনীয়। মৃষ্টিকা বিশ্লেষণ উপস্থিত লভা মৌলের পরিমাণ পরিমাপ করে, এবং এটি মৃষ্টিকা সূচক হিসেবে প্রকাশ করা যায়। বিভিন্ন দেশে এই সূচকের মান বিভিন্ন রকম, তবে ব্রিটিশ পদ্ধতিতে এর পরসির O (ঘাটতি) থেকে ৯ (অতিরিক্ত) পর্যন্ত। প্রত্বতপক্ষে, এই স্কেলের প্রথম ৪ অথবা ৫ পয়েন্ট আবাদি মৃত্তিকার জন্য প্রাসঞ্চিক (সারণি ৫.৩)।

সারণি ৫.০ : নির্বাচিত কয়েকটি শসেরে সুপারিশকৃত মাত্রার P2O5 এবং K2O এর উপর লভ্য পুষ্টি উপাদনের মৃত্তিকা সূচকের প্রভাব

मूहक 	ালে আলু (কেন্ডি) P2O5 প্রতি হেক্টরে	সুগরেরিট (K20 প্রতি হেক্টরে	কেন্দ্রি) P2O5 প্রতি গুরুরে	দানাশসা (K2O প্রাও	(কেজি) [P ₂ O5 প্রতি হেক্টরে	К <u>р</u> О міть сейся
	 500		. <u> </u>	\$60	૧૯	90
	900 900	300	<u>50</u>	200	S_U	80
1.2		200	¢ο	વલ	80	- So - !
5	\$00	200	\$3	ବ୍ଦ	80	0
°	\$00 No0	200	U U	7.0	a	0 I
, C	<u>200</u>					

বিভিন্ন শস্যের সুপারিশকৃত P2O5 এবং K2O মাত্রান্ন উপর মৃত্তিকা সূচকের প্রভাব বা চানায় সারণিতে দেখানো হয়েছে। সকল মৃত্তিকা সূচকের মান বড়োর সাথে সাথে সুপারিশকত পুষ্টি উপাদানের পরিমাণ কমে যায়। উপরস্থু, এই সারণি থেকে এটি সুস্পষ্ট যে, এই দুটি নোল উপাদানের প্রয়োজন বিভিন্ন শস্যে বিভিন্ন রকম। মৃত্তিকায় সঞ্চিত মৌলের পরিমাণ জানা থাকলে দক্ষতার সাথে যার ধ্যবহার করা যায়। মৃত্তিকায় নাইট্টোজেন গতিশীল (dynamic) প্রকৃতির জন্দ লন্ড- নাইট্টোজেনের পরিমাণ নির্ণয়ে মৃত্তিকা বিশ্লেষণ একটি গুরুত্বপূর্ণ পদ্ধতি নয়।

সারের মুপারিশকৃত মাত্রার উপর মন্তিকার বুনটের প্রভাব আছে এবং নাইটেংজনের কেনে এটি বিশেষভাবে প্রযোজ্ঞা। জৈব পীট মৃত্তিকার তুলনায় খনিজ মৃত্তিকায় অধিক পরিমাণে নাইটেজেন সারের প্রযোজ্ঞা। অন্যান্য বুনটের মৃত্তিকার তুলনায় চকময় (chalky)মৃত্তিকায় আধিক পটাশিয়ামের প্রয়োজন এবং সাধারণত ব্যলিতে ফসফরাস কম থাকে। মৃত্তিকায় পৃথব তী শনেও অবশেধ (residue) সারের প্রতিক্রিয়াকে প্রভাবিত করে। নাইটোজেনের জন্য এটি গুরুত্বপূর্ণ এবং এই মৌলের মৃত্তিকা স্চক নির্ধারণের ভিন্তি মৃত্তিকা বিশ্লেষণ নয়, পূর্বব তী শনেও অবশেধ (residue) সারের প্রতিক্রিয়াকে প্রভাবিত করে। নাইটোজেনের জন্য এটি গুরুত্বপূর্ণ এবং এই মৌলের মৃত্তিকা স্চক নির্ধারণের ভিন্তি মৃত্তিকা বিশ্লেষণ নয়, পূর্বব তী শসোর প্রকৃতি। এর জন্য যে স্কেল ব্যবহার করা হয় তার পরিসর ৫–২। যেখানে পূর্বব তী শসোর প্রকৃতি। এর জন্য যে স্কেল ব্যবহার করা হয় তার পরিসর ৫–২। যেখানে পূর্বব তী সময়ে দানাশস্য জন্যনে, হয়েছিল অথবা গবাদিপান্ডর খাদাশস্য (forage) কেটে সরিয়ে ফেলা হয়েছে, যেখানে ঘারিওনান নাইটোজেন সূচক শূন্য। গোল আলু, মটর. তেল উৎপাদনকারী রেপ অথবা চারণকৃত খদ্যশেশ থাকে, যথেষ্ট পরিমাণে নাইটোজেন অবর্ণেয় মৃত্তিকায় থেকে যায় এবং এই সূচক ১ হয়। যাদ মৃত্তিকায় প্রচুর পরিমাণে খামারজাত নগর (farmyard manure) প্রযোগ করা হয় অথবা পূব্ব তী শস্য ধন্দি নুসারনি (lacerne) হয়, তাহলে মৃত্তিকায় প্রহাণ প্রমাণে নাইটোজেন থাকে, তখন এই

282

শস্য উদ্ভিদের খনিজ পুষ্টি

সূচক ২ ধয়। নাইটোজেন সারের মাত্রন্ধ সুপারিশের উপর মৃত্তিকার নাইটোজেন সূচকের প্রভাব এর নং সারশিতে দেখানে; ধ্যোছে।

পূর্ববতী শস্যের উপর ভিন্তি করে P₂O₅এবং K₂O-এর সুপারিশকৃত মাত্রার পরিবর্তন হয়। তবে নাইট্রোজেনের তুলনাত্র এদের পরিবর্তন কম।

সরেণি এও : খনিজ মৃদ্ধিকার নাইটোজেন সারের মাত্রার (কেন্সি **হেক্ট**র) সু**থারিশের উপর মৃত্তিকার** বিভিন্ন নাইটোজেন সৃংকের প্রভাগে ।

নাইন্যোজন সূচক	T চোল আলু	সূগ্যরবিট	শতকালীন গম
0	220	· \$00	2002
	1 280	વહ	200
\$	500	0	<u> </u>

আবহাওয়াগত পরিণ উদের জনেওে সারের, বিশেষ করে নাইট্রোজেনের, প্রতিক্রিয়া পরিবর্তিত হয়। নাইট্রোজেন লভ অগস্থায় পানিতে দ্রবর্ণিয়, তাই বর্যাকালে চোয়ানের মাধ্যমে প্রচুব পরিমাণে নাইট্রোজেন সার নষ্ট হয়। তাই এরপর নাইট্রোজেন সারের মাত্রা হেক্টর প্রতি প্রায় ২৫ কেজি বাড়ানো দরকার। চোয়ানোর জন্য P2O5 এবং K2O ফতি কম হয়, তাই বৃষ্টিপাতের জন্য এই সারের সুপারিশকৃত মাত্রার কোনো পরিবর্তন হয় না। যেখানে জৈব সার প্রয়োগ করা হয়, সেখনে অজৈব সারের মাত্রার সমন্ত্র সাধনের প্রয়োগ আছে (সারণি ৫.৫.)। শুব্দ এলাকায় গুল্দ শৌসুমে সার ব্যবহারের দক্ষতা হাস প্রায়। তাই পানি সেচের ব্যবস্থা না থাকলে সারের মাত্রাও কমাতে হয়।

সারের প্রকার (Types of Pertilizers) সারকে প্রধানত চিনভাগে ভাগ করা হয়েছে। যেমন –

> (জব সার (Organic manuros) : আঁজের সার (Inorganic fertifizers) বা রাস্যায়নিক সার ; অণুজীব সার (Biofertifizers) !

জৈন সার : উদ্ভিদ ও প্রাণীর মৃত দেহাবশেষ থেকে যে সার তৈরি হয়, তাকে জৈব সার বলে। সাধ্যরণত এদের আয়তন বেশি, কিন্তু পুষ্টি উপাদ্যনের পরিমাণ অজৈব সারের তুলনায় কম। আয়তনের উপর ভিদ্তি পরে জেব সারকে আবার দু'ভাগে ভাগ করা হয়েছে — বৃহদাকার জৈব সার (balky organic manure) এবং ধনীভূত বা গাঢ় সার (concentrated organic manure)।

বৃহদাকার জৈব সার

১ খামারজত সার (Farm-yard manure or F.Y.M)

খমোরে তৈরি সারকে খামারস্কান্ড সার বলে। গবাদি পশু এবং হাস–মুরগির মলমূত্র, গো-শালার আবর্জনা এবং খামারের অনগন্য পরিত্যাজ্য বস্তুর খামার প্রাঙ্গনে পচনের ফলে খামারজাত সার তৈরি হয়। মৃত্রে উদ্ভিদের প্রয়োজনীয় পুষ্টি উপাদনে দ্রবণীয় অবস্থায় থাকে, তাই উদ্ভিদ দ্রুত এগুলো পরিশোষণ করতে পারে। কি ৪ গোবরে পুষ্টি উপাদনে অন্রবণীয় অবস্থায় থাকে বলে মাঠে প্রয়োগের এব্যহিত পরেই শাস্য উদ্ভিদ গহন করতে পারে না। মৃত্রে শতকরা ৫০ তাগেরও বেশি নাইটোজেন আছে। তথে চোয়ানোর স্তন্য মৃত্রের মৌল উপাদনে অপ্রক্যাক্ত বেশি নষ্ট হয়। জীবজন্তুর প্রকার-ডেদ, বয়স, প্রকৃতি ও খাদেরে ভিয়াতা এবং উদ্ভিদের পরিত্যোজ্য আংশের গুনাবলীর পার্থক্যের

শস্য শারীরবিজ্ঞান

এবং এর সংরক্ষণের জন্য থামারজতে সারের পুষ্টি উপাদানের ভিন্নতা হয়। এই সারে অপেক্ষাকৃত বেশি পটাশিয়াম থাকে, কারণ গবাদিপগু সামান্য পরিমাণ পটাশিয়াম শোষণ করে, অধিকাংশ অংশ মলমুত্র আকারে দেখ থেকে বের করে দেয়।

২. আবর্জনা পচা সার বা কম্পোস্ট (Compost) : গবাদিপশুর উচ্ছিষ্ট খড়কুটো, শস্যের অবন্দিষ্টাংশ, শুকনো আগাড়া, কুচরিপানা প্রভৃতি পচিয়ে খামার প্রাঙ্গনে যে সার তৈরি হয়, তাকে বলে কম্পোস্ট। খামারজাত সারের তুলনায় এর পুষ্টিমান কম।

৩, সবুজ সার (Green manure) : সণুজ উদ্ভিদ ও তার পাডা সবুজ অবস্থায় চাষ করে মৃত্তিকার সাথে মিশিয়ে ফেলে যে সার প্রস্তুত করা হয়, ডাব্রু বলে সবুজ সার। সাধারণত যেসব উদ্ভিদ দ্রুত পচনশীল, সেগুলো সবুজ সারের জন্য উন্তেম। সবুজ সারের জন্য ধইঞ্চা, শন, বরবটি, সয়াবিন, মুগ, মাশকলাই প্রভৃতি লেগ্যুমজাতীয় উদ্ভিদ ব্যবহার করা হয়। সবুজ সারের জন্য ব্যবহারের উপযোগী উদ্ভিদের যেসব গুণাবলী থাকা দরকার তা হলো কত বর্ধনশীল, কাণ্ড ও পাতার কোমলতা, পাতার প্রান্ডুয়, অনুর্বর মৃত্তিকায় জন্মানোর ফমতা এবং নাইটোজেন সংবন্ধনের ক্ষমতা।

ঘনীভূত বা গাঢ় জৈব সার

১. খৈল (Oil cake): তেলবীজ থেকে তেল নিশ্বন্দেশের পর যে অংশ অবশিষ্ট থাকে, তাকে খৈল বলে। সরিয়া, তিল, চিনায়াদাম, তিসি, রেড়ি, নিম, তুলাবীজ, সন্নাবিন ইত্যাদি যিভিন্ন প্রকার থৈল খাররূপে ব্যবহৃত হতে পারে। খামারজাত সার এবং আবর্জনা সারের তুলনায় থৈলের মান উন্নত। কারণ এতে আধিক মাত্রায় নাইটোজেন, ফসফরাস ও পটাশিয়াম আছে, এটি খুব তাড়াতাড়ি, এমনকি অজৈব সারের মতো দ্রুত কার্যক্রম ও এর পুষ্টি উপাদানের শতকরা ৭০ থেকে ৮০ ভাগই মুস্তিকায় প্রয়োগ্রের প্রথম বছরেই শস্য গহন করতে পারে।

সারণি ৫.৫ : খামারজ্যত সার এবং স্রুগরর পুষ্টি উপাদানের পরিমাণ (গড় মান)

 সারের নাম		পুষ্টি উপাদন		
	N	P2O5	K ₂ O	Mg
গরুর খামারজাও সার (কেজি/টন)	5.0	\$_0	8,0	0.6
গরুর স্নারি (কেন্ডি/খনমিটার)	2.3	1.0	8.0	0.5
শৃকরের স্লারি (কেন্ডি/খনমিটার)	8.0	\$_0	5.9	0.8
মোরগ–ম্রগ্রি স্লারি (কেন্ডি/খনমিটার)	0.0	1 0,0	<u>8 (</u> 8	7.0

২. হাড়ের গুঁড়া (Bone meal) : বিভিন্ন প্রকার প্রাণীর হাড় সিন্ধ করে চবিজ্ঞাতীয় পদার্থ দূর করার পর চূণ করে এই সার তৈরি করা ২য়। এই সারে শতকরা ২৮ থেকে ৩২ ভাগ P2O5 ও ৩ থেকে ৩.৫ ভাগ নাইটোজেন থাকে। যে মন্তিকায় ফস্ফরাস ও ক্যালসিয়ামের অভাব আছে, সে মৃত্তিকায় হাড়ের গুঁড়া খুব কার্যকরী। অশ্লীয় ও এটেল মৃত্তিকায় এই সার ব্যবহারে উপকার পাওয়া যায়।

৩, মাছের গুঁড়া (Fishmeal) : মাহ শুকিয়ে গুঁড়া করে যে সার তৈরি করা হয় তাকে বলে মাছের গুঁড়া সার। সামুদ্রিক মাছ এবং মাছের বর্জা অংশ থেকে প্রধানত এটি তৈরি করা হয়। এতে শতকরা ৬ ভাগ নাইটোজেন এবং শতকরা ৭ ভাগ P2O5 আছে, তবে মাছের প্রকৃতি অনুসারে এই মান

788

িন্ধ হয়। এই সারে প্রচুর পরিমাণে তেল থাকে যা মৃত্তিকার ব্যাকটেরিয়া কর্তৃক দ্রুত ব্যবহৃত হয়ে সারের অন্যান্য উপাদানকে মুক্ত করে।

8, গোয়ানো (Guano) : সমুদ্র সৈকন্ডে পানির বিষ্ঠা (exereta) এবং মৃতদেহের মিলিত অংশ হতে যে সায় পাওয়া যায়, তাকে গোয়ানো বলে। প্রশান্ত মহাসাগরে এবং আফ্রিকার উপকূলে কতকগুলো জনদানৎখন নির্জন দ্বীপে বছরেরকোন নির্দিষ্ট সময়ে অনেক পাখি জমা হয় ও এদের বিষ্ঠা এবং মৃতদেহ জমা হয়ে গোয়ানো তৈরি হয়। গোয়ানো সারে নাইটোজেন এবং ফসফরাস দুটোহ আছে:

৫, চামড়া কারখানার বর্জ্য (Tannery refuse) : বর্জ্য পদার্থসহ চামড়ার সাথে লেগে থাকা পশম ও লোন মিলে এটি গঠিত। এতে শতকরা ৮ থেকে ১২ ভাগ নাইটোজেন এবং চামড়া পাকা করার কান্ডে ব্যবহৃত বিভিন্ন মাত্রার চর্ণ থাকে। এটি খুব ধীর গতিতে ক্রিয়াশীল, তাই সাধারণ শস্যের এটি তেমন উপকারে আসে না।

৬, কসাইখানার বর্জ্য (Słaughter house reluse): এটি বিভিন্ন প্রকার বস্তু, যেমন– পরিত্যক্ত মংস, রক্ত, হাড়, চামড়ার অংশ ইত্যাদির মিশ্রণ। এতে শতকরা ৮ থেকে ৯ ভাগ নাইটোজ্জন ও শতকরা ৭ ভাগ P₂O5 আছে।

৭. ছাই (Ash) : গাছপালা পোড়ানোর জ্বন্য ছাই তৈরি হয়। এটি একটি পটাশসমৃদ্ধ সার ও একটি পটাশসমৃদ্ধ সার এবং এতে শতকরা ৩ থেকে ১০ ভাগ পর্যন্ত পটাশিয়াম এবং শতকরা ২ ভাগের মতো ফসফরাস থাকে, কিন্তু কোনো নাইটোজেন থাকে না।

৮, প্রাণীর রক্ত (Blood meal) , রক্ত শুকান্যের পর গুঁড়া করে এটি তৈরি করা হয়। তবে জননের জৈব সারের তুলনায় এটি ব্যয়বহুল। এতে প্রায় শতকরা ১০ থেকে ১২ ভাগ নাইটোজেন আছে।

অজৈব সার

শস্য উৎপাদনে অজৈব বা রাসায়নিক সারের ব্যবহার অপেক্ষাকৃত নতুন। এগুলো প্রধানত শিল্প– কারখানায় কৃত্রিমন্ডানে তৈরি করা হয়। অজৈব সার দুম্প্রকারের হতে পারে। যথা সরল বা একক সার, এতে কেবল একটি পুষ্টি উপাদান থাকে এবং যৌগিক সারে, দুটি অথবা তিনটি উপাদান রাসায়নিকভাবে একত্রিত থাকে। পূর্বে বিভিন্ন পুষ্টি উপাদানের একক সারকে মিশিয়ে ব্যবহার করা হতে, কিন্তু বতমানে ব্যাণজ্যিকভাবে যৌগিক সার তৈরি হচ্ছে।

আগকাংশ সার কঠিন অবস্থায় (স্ফটিকাকার অথবা দানাদার) বাজারে বিক্রয় হয়। দানাদার সার জমিতে প্রয়োগ করা অপেক্ষাকৃত সহজ। তরল সারও তৈরি হচ্ছে, তবে এটি খুব বেশি জনপ্রিয়তা গ্রন্তন করোন কত মাত্রায় কোন কোন মৌল উপাদান সারে আছে তা সারের ব্যাগের উপার লেখা থাকে। কি পরিমণে সার জমিতে ব্যবহার করতে হবে তা এটি থেকে নির্ণয় করা যায়। এছ পরিমণে বিভিন্নভাবে লেখা থাকে। ধরা যাক, একটি যৌগিক সারের ব্যাগে লেখা আছে ২০৪১০৪১০। এটি নির্দেশ করে যে, এই সারে শতকরা ২০ ভাগ নাইটোজেন, ১০ ভাগ P2O5 এবং ২০ ভাগ K2O আছে। অনেকক্ষেত্রে ৫০ কেজির ব্যাগে সার সরববাহ করা হয়। তাহলে প্রতি ব্যাগে আড ২০ কেজি নাইটোজেন, ৫ কেজি P2O5 এবং ৫ কেজি K2O।

অজেব সাৱকে নিমুলিখিতভাবে তাগ করা যায়–

১, নাইট্রোজেন জাতীয় সার : অন্যান্য সারের তুলনায় নাইট্রোজেনজাতীয় সার অধিক ধ্যবহাত সার, কারণ মৃষ্টিকায় নাইট্রোজেন ঘটেতি বেশি এবং শস্যে নাইট্রোজেনের প্রতিক্রিয়া অন্যান্য সারের তুলনায় বেশি। নাইট্রোজেনজাতীয় সার কয়েক রকমের হয়।

শস্য শারীরবিজ্ঞান

(ক) আমোনিয়াম সালফেট [(NH4)2 SO4] : নাইটোজেন সারের মধ্যে অ্যামোনিয়াম সালফেট প্রথিবীব্যপৌ এক বিশেষ স্থান দখল করে আছে : এটি ধুগর সাদা রঙের স্ফটিকার পদার্থ এবং এতে শতবদ্ধা ২০.৬ তাগ নাইটোজেন আছে। এটি পানিতে সম্পূর্ণ **দ্রবনীয় এবং মৃন্তিকায়** নাইট্রিফাইং ব্যাকটোরয়া কাইক দ্রুত নাইটেটে পরিণত হয়। তাই প্রযোগের পর প**রই নাইটোজেন** লভ্য হয়। আমে^টনয়াম সলেফেটের জন্য মৃত্তিকায় কাল্যাসয়ামের পরিমাণ **কমে যায় এবং মৃত্তিকার** হামতা বৃদ্ধি প?ে

(খা) সোভিয়াম নাইট্রেট (NaNO3): এর প্রধান, উৎস হলে। সন্ধিণ আমেরিকার চিলির প্রাকৃতিক ভাঞ্জার। এজন্য এটি লিলিয়ান নাইটেট নামেও পরিচিত। এ**তে শতকরা ১৫.৬ ভাগ** নাইটোজেন আছে। এটি পানিতে সম্পূণ দ্রবণীয় এবং শস্য এটি দ্রুত পরিশোষণ করতে পারে। ওবে মন্ত্রিকায় নাইড়েট জন্ম থাকে না, বৃষ্টির পান্দির সাথে চুইয়ে দূরে চলে যায়। এ**ই সার ব্যবহারে** মৃত্ত্বিকায় অমুকের সৃষ্টি ২য় না এবং অন্ন থাকলে দূরীভূত হয়। সোডিয়াম নাইটেটের নাইটেট উদ্ভিদ পরিশোষণ করে, কিন্তু সোডিয়াম মৃত্তিকায় থেকে যায়। বছরের পর বছর **প্রচুর পরিমাণে সোডিয়াম** নাইটেট ব্যবহারের ফলে সোডিয়াম জন্ম হয় এবং এটি মৃত্তিকার গঠনকে **প্রভাবিত করে**।

(গ) ইউরিয়া (CO(NH2)2) : নাইট্রোজেনজাতীয় সকল সারের মধ্যে ইউরিয়াতে সবচেয়ে বেশি নাইটোজেন (শতকরা ৪৫° ভাগ) আছেন এটি সাদা এবং দানাদার ও পানিতে দ্রুত দ্রবীভূত হয়। বায়ুমণ্ডল থেকে এটি জলীয় বান্প শোষণ করে, তাই জলীয় বান্স প্রবেশ করতে পারে না এমন পাত্রে একে রাখতে হবে। এটি মৃদ্রিকায় প্রত অ্যামোনিকণ্ণল এবং নাইটেটে প**রিণত হয়। একই** জমিতে ক্রমাগত ইউরিয়া ধ্যবহরে করলে অন্ত্রজের সৃষ্টি হয়, তবে তা অ্যামোনিয়াম সালফেটের মতো এত প্রকট নয়। উচ্চ চাপ এবং তাপে আম্যোনিয়া ও কার্বন ডাই-অ**ক্সাইডের মিলন ঘটিয়ে** কারখানায় ইউরিয়া প্রস্তুত করা ২য়

(খ) অ্যামোনিয়াম নাইট্রেট (NH4N03) : নংগটোজেনের পরিমাণ অনুযায়ী নাইটোন্ডেনজা জীয় সায়ের মধ্যে এর স্থান দিতীয়। এতে শতকরা ৩৫ ভাগ নাইটোজেন আছে **এবং** পানিতে সহজেই দ্বীভূত হয়। এর ব্যবহারের সবচেয়ে অসুবিধা **হলে৷ এটি সহজেই বিস্ফোরিত** হতে পারে।

খননান্য নাগনোজনজন্ত্রীয় সারের মধ্যে ক্যালসিয়াম সায়ানামাইড (এটি না**ইট্রোলিম নামেও** পরিচিত), কালসিয়াম নাইটেট, আমোনিয়াম সালফেট নাইটেট এবং পটাশিয়াম নাইটেট উল্লেখযেগ্রনে কংলসিয়াম সায়ানামাইডে শতকরা ২০,৬ ভাগ নাইট্রোজেন আছে। **এটি ক্যালসিয়াম** ঘটেতি মৃত্তিকার জনঃ উপযোগী। এ থেকে অধ্যমোনিয়া তৈরি হয় এবং **এটি সহজেই উড়ে যায়, তাই** এই সার মৃত্তিকার গভীরে স্থাপন করতে হয়।

২। ফসফরাসজাতীয় সার

(ক) পাথুরে ফসফেট (Rock phosphate) : এটি খনি থেকে পাথুরে অবস্থায় আহরিত হয়। আগপাটাইট, ফসফোরাইট এবং কাপ্রেলাইট হলে: প্রধান পাথুরে খনিজ প**দার্থ যাতে প্রচুর পরিমাণে** ফসফেট থ্যকে। এদের ফসফোরিক এসিডের পরিমাণের ভিন্নতা আছে **এবং এতে শতকরা ৮**০ ভাগ পর্যান্ত, ক্যালাসিয়াম ফসফেট থাকতে পারে।

(খ) সুপার ফসফেট।CaH4 (PO4)2। এই সারটি মনো-ক্যালসিয়াম ফসফেট এবং ভিপসামের সমন্ত্র গঠিত। এটি পানিতে সহজে দুবুণীয়, কিন্তু মৃত্তিকাস্থ লোহা, ক্যালসিয়াম এবং হুয়নুমিনিয়ামের সাথে ভিয়া করে এক প্রকার জটিল অদ্রবণীয় **পদার্থের সৃষ্টি হয়, তখন আর** শস্যের নিকট সহজ্ঞলাজ হয় নয়। ফস্ফোরিক এসিডের (P2O5) পরিমাণ অনুযা<mark>য়ী একে তিনটি</mark> গ্রেডে ভাগ করা যায়। যথা, সিঙ্গল সুপার ফসফেট — প্রায় শতকরা ১৮ ভাগ P₂O₅ আছে, উবল সুপার ফসফেট — প্রায় শতকরা ৩২ ভাগ P₂O₅ আছে এবং টিপল সুপার ফসফেট — প্রায় শতকরা ৪৮ ভাগ P₂O₅ আছে। টিপল সুপার ফসফেট [3CaH4(PO4)2] বা সংক্ষেপে টি.এস.পি. একটি বহুল ব্যবহৃত সার। এটি পানিতে দ্রবণীয়, কিন্তু সুপার ফসফেটের মতো লৌহ, ক্যালসিয়াম এবং অ্যালুমিনিয়ামের সাথে রাসায়নিক ক্রিয়ার ফলে মৃত্তিকার অলভ্য অবস্থার থাকে। পরে অবশ্য মৃত্তিকার রাসায়নিক পরিবর্তনের মাধ্যমে এই সার গ্রহণোপযোগী হয়।

(গ) অ্যামোনিয়াম ফসফেট (Ammonium phosphate) : এই সার প্রধানত P2O5 সরবরাহ করলেও, নাইটোজেন সারও সরবরাহ করে। এটি আবার দুই প্রকারের। যথা, মনো– আমোনিয়াম ফসফেট (NH4PO4) --- এতে প্রায় শতকরা ৬০ ভাগ P2O5 ও ১২ ভাগ নাইটোজেন আছে, এবং ডাইখ্যামোনিয়াম ফসফেট (NH4)2PO41 -- এতে প্রায় শতকরা ৫০ ভাগ P2O5 এবং শতকরা ১১ ভাগ নাইটোজেন থাকে। ইউরিয়া ও টিএসপি সারের পরিবর্তে এটি ব্যবহারযোগ্য।

(গ) অ্যামোফস (Amophos) : এটি জটিল সার এবং এতে শতকরা ১৬ ভাগ নাইটোজেন এবং শতকরা ২০ ভাগ P_{2O5} আছে। এটি পানিতে খুব দ্রবণীয়, তাই অতি সহজেই শস্য পরিশোষণ করতে পারে।

(ঙ) ক্ষারীয় স্ল্যাগ (Basic slag) : ইস্পাত তৈরির সময় উপজাত বস্তু হিসেবে এটি পাওয়া যায়। ফরেধর্মী হওয়ার অম্ল্রীয় মৃত্তিকায় ব্যবহারের জন্য এটি উপযোগী।

৩। পটাশজাতীয় সার

(ক) মিউরেট অব পটাশ (KCL) : এর রাসায়নিক নাম পটাসিয়াম ক্লোরাইড। এর রঙ সামান্য লালচে এবং এতে শকতরা ৫০ থেকে ৫২ ভাগ K2O আছে।

(খা) পটাশিয়াম সালফেট (K₂SO₄) : সাদা রঙ্কের এই সারে শতকরা ৪৩ থেকে ৪৪ ভাগ K₂O থাকে। এওে সালফার থাকায়, সালফার ঘাটতি মৃত্তিকায় এই সার খুব উপযোগী।

(গ) পটাশিয়াম নাইট্রেট (KNO3) : এতে শতকরা ৩৭ ভাগ K2O এবং শতকরা ১০ ভাগ নাইট্রোজন আছে।

(ম) পটাশিয়াম ম্যাগনেশিয়াম সালফেট (KSO4. MgSO4) : এতে শতকরা ২২ ভাগ K₂O, ১৮ ভাগ ম্যাগনেশিয়াম অক্সাইড (MgO) এবং ১৮ ভাগ সালফার থাকে। যে মৃত্তিকায় ম্যাগনেশিয়াম এবং সালফারের ঘাটতি আছে, সেখানে এই সারের ব্যবহার খুব উপযোগী।

(ঙ) পটাশিয়াম মেটাফসফেট (KPO3) : এতে শতকরা ৪০ ভাগ K2O এবং ৬০ ভাগ ফসফেট আছে। এই সার পানিতে খুব দ্রবণীয় না হলেও, এর পুষ্টি উপদোন ধীরে ধীরে শস্যের জন্য লত্য ২য়

(চ) কেইনিট (Kainit): এটি পটাশিয়াম ও সোডিয়াম লবণের মিশ্রণ এবং এতে শতকরা ১৪ থেকে ৩০ ভাগ K₂O আছে। কোনো কোনো কেইনিট সারে পর্যাপ্ত পরিমাণে ম্যাগনেশিয়াম থাকে।

এ পর্যন্ত তিনটি প্রধান মৌল উপাদান সরবরাহকরী সার সম্পর্কেই আলোচনা করা হয়েছে। তবে বর্তমানে মৃত্তিকায় অন্যানা কিছু কিছু মৌল উপাদানের ঘাটতি পরিলক্ষিত্ত হচ্ছে। তাই এই ঘাটতি পূরণের উপযোগী সার ব্যবহার করা উচিৎ। নিচে এরকম কয়েকটি রাসায়নিক সারের বর্ণনা দেয়া হলো। সালফারজাতীয় সার: আয়োনিয়াম বাই সালফাইট (৩২,৬% সালফার), অ্যামোনিয়াম থায়োসালফেট (৪০.০০ সালফার), আগমোনিয়াম সালফেট (২৪.২/ সালফার) এবং সালফেট অব পটাশ (১৭.৬% সালফারী)।

দস্তাজাতীয় সার : জিঙ্ক সলক্ষেত্র (৬০০ দস্তা) এবং জিঙ্ক অ্যাথোনিয়াম ফসফেট (৩০.৫% দস্তা)। ম্যাগনেশিয়।মজাতীয় সার : ইপ্রসম লবণ (১.৬% Mg), ম্যাগনেশিয়। (৫৫% Mg) এবং পটানিয়াম ম্যাগনেশিয়েন সালফেট (১৯০ Me) (

লোহাজাতীয় সার : ফেরাস স্থলফেট (EeSO4, 7H2O) [†]

আয়জাতীয় সার : কপ্রার সঙ্গফের্ট ($\mathrm{CuSO}_4,\,\mathrm{7H}_2\mathrm{O}$) (২০.৫% Cu) [

বোরজাতীয় সার : এর্ডান্স (Nup BaO7, 10HpO) (২০.৬% B) এবং ক্যালসিয়াম বোরেট (Ca2B6O: 5H2O).

ম্যাংগানিজজাতীয় সার : মাগ্র্যনাইট [MnO(OH)]!

মলিবডেনামজাতীয় সার: এইনেটেয়াম মলিবডেট, সের্টডেয়াম মলিবডেট এবং মলিবডেনাম টাই অঞ্চাইড ।

অণুজীব সার (Bioternitzers)

বায়ুমণ্ডলে প্রচুর পরিমাণে নাহটোজেন থাকলেও (১৯.৫×১০টা মেটিক টন) উচ্চ **শ্রেণীর উদ্ভিদ এটি** গ্রহণ করতে পারে নান কেবল কণ্ডিপয় আণুন্সীর এই নাইটোজেন সংবন্ধন করে নিজেদের কাজে লাগায় এবং পরব হীকালে। উচ্চাশেণীয় উদ্ভিদ তা গ্রহণ করতে পা**রে। এই অণুজীবগুলো হয়** মুক্তভাবে নাইটোজেন সংবন্ধন করে, না হয় অন্য উদ্ভিদের সাথে সিমায়োটিকভাবে সংবন্ধন করে।

১। সিম্বায়োটিক নাইট্রান্ডেন সংবন্ধন সিস্টেম

(ক) Rhizobium লেগ্যুম সিম্বায়োসিস : লেগু(মজাতীয় উদ্ভিদের মূলে অর্বুদে Rhizobium নামক ব্যাকটেরিয়াম নাইটোজেন সংবদ্ধা করে। উদ্ভিদের মূলে ভালভাবে অবুর্দ হলে বছরে হেক্টর প্রতি 🚈 থেকে ১২০ কেজি নাইট্রোজেন মৃত্তিকায় জমা হতে পারে। বিভিন্ন প্রকার লেগ্যুমের জন্য Rhizobrum –এর স্ট্রেইন ভিন্ন। আনেকসময় মৃত্তিকায় কোনো নি**দিষ্ট স্ট্রেইনে**র Rhizobium এর পার্টা 5 পাকে, তখন কৃত্রিমভাবে তৈরি ইন্যেন্ডুলাম মৃত্তিকায় যোগ করা হয়।

(খ) Acalla-anabaena সিম্বায়োসিস : ধানের ক্ষেত্তে এই সিম্বায়োসিপ অধিক কার্যকর। এখনে Anabache বলক নীলা-সঁবুত শৈগাল Acolla বামক পানি-ফার্নের পাতার অভ্যস্তরে নাইটোজেন সংক্ষা করে, গুন্ধ ওজনের ভিন্তিতে Acolla তে শতকরা ৮৫ থেকে ১৪ ভাগ পানি, ৬ থেকে ৪ ভাস অহাটয়ালন, এবা থেকে ২৮ ভাগ ফসফরাস, ২ **থেকে ৪ ভাগ পটাশিয়াম,** ০,৪৫ - হাগ মনচাইনীশনাম, ১০০০ পেকে ৬,৯০ - হাগ কালেসিয়াম এবং ০,**১১ থেকে ০,১৬ ভাগ** ম্যাঙ্গন্দিও থাকে -

২। মুক্তজীৱী নাইট্রোওেন সংবন্ধন সিস্টেম

মৃত্তিকান্ত ৬ চকস্তলো বয়ুজাৰী ন্যাকটেরিয়া, যেমন Acotobacter, Klebsiella, অবায়ুজীৰী ব্যাকটোরিয়া, যোনন Clostradium ও কতকগুলো নীল সবুজ শৈবাল, যেমন-Nostoc বায়ু থেকে সরাসরি নাইটোজেন এবল করে এদের দেবের মধ্যে নাইটোজিন যোগে পরিণত করে। এদের মৃত্যুর পর দেহস্টিত নাইটোকেন খাঁন মন্ত্রিকায় জমা হয়, তখন শস্য উদ্ভিদ তা গৃহণ করতে পারে।

সাৱের প্রকার, পরিমাণ এবং প্রয়োগের সময় নির্বাচন (The Choice of Type, Amount and Timing of Fertilizer Application)

পৃথিবাঁর অনেক দেশে নাইটোজেন সরে হিসেবে অ্যামোনিয়াম নাইটেট, ফসফরাস সার হিসেবে আমোনিয়াম ফসফেট এবং পটাশিয়াম সার হিসেবে মিউরেট অব পটাশ ব্যবহৃত হয়। বাংলাদেশে ইউরিয়া, টিপল সুগার ফসফেট এবং মিউরেট অব পটাশ খুবই জনপ্রিয়। সারের প্রকার নির্বাচনে সারের মূল্য গুরুত্বপূর্ণ ভূমিকা পালন করে। এছাড়া সার প্রয়োগের পদ্ধতির সুবিধা অসুবিধাও বিবেচ্য বিষয়। দানাদার সার হাত দিয়ে প্রয়োগ করা যায়, যম্ভ্রপাতি না হলেও চলে, তাই অনেকে দলকো সার পালদ করেন। অ্যানহাইড়াস এবং জলীয় অ্যামোনিয়ার জন্য বিশেষ ধরনের যন্ত্রপাতি এবং হারল পালে পাল্ডের জন্য স্থিন্ধ (spray) যন্ত্রের প্রয়োজন, তাই সারে প্রয়োগ বরচ বেড়ে যায়।

ক চক ওলো সার অতি দ্রুত শস্য উদ্ভিদের লভ্য হয়। যেমন আামোনিয়াম নাইটেট দ্রুত লভা, কিন্তু ইউরিয়া এবং কতিপয় অ্যামোনিয়াম সার লভ্য হতে সময় লাগে, কারণ এগুলোকে মুভিকয়ে লভা অবস্থায় রূপান্তরিত হতে হয়। একইভাবে যিভিন্ন প্রকার ফসফরাস সারের প্রতিদ্রিয়াও ভিনতর হয়। পাথুরে ফসফেট চূর্ণের প্রতিক্রিয়া মন্থর, কিন্তু নাইটোফসফেটের, এতে ৫৮ মারাত্র পানিত এবনীয় P2O5 আছে, প্রতিক্রিয়া অতি দ্রুত।

শস্যের প্রকার ও সার নির্বাচনকে প্রভাবিত করে। অধিকাংশ শস্যের তিনটি প্রধান মৌল ভপাননই প্রয়োজন, তাই এদের জন্য যৌগিক সার সুবিধাজনক। বিভিন্ন শস্যের জন্য এই অনুপাত ভিন্ন হলে। যেনন বসন্তকালীন দানাশস্যের এই অনুপাত ২ (N) ৪১ (P2O5) ৪১ (K2O), কিন্তু গ্রোল আলুর ক্ষেত্র ১৪২,৫৪২,৫। লেগ্যুমজ্ঞাতীয় শস্যের জন্য নাইট্রোজেনের প্রয়োজন হয় না, তাই এদের অনুপাত হবে ০৫৯১।

সারের পরিমাণ নির্ণয়ের জন্য মৃত্ত্বিকা বিশ্লেষণ, মৃত্তিকার প্রকার, পূর্ববর্তী শস্য, শস্যের অকার এবং আবহাওয়া বিবেচনা করা হয়। তাই কোনো শস্যের জন্য এক এলাকার সুপারিশকৃত মাত্র অন্য এলাকার জন্য প্রযোজ্য নয়।

কি পর্যিমাণ সার জমিতে প্রয়োগ করা হবে তা নির্ধারণের জন্য আরেকটি বিষয় বিবেচনা করা ২২, ৩। ২লে সম্ভাব্য ফলন কি রকম হবে। আবহাওয়াগত ও মৃত্তিকাগত কারণে কোনো এলাকায় যাদ ডাচ ফলনের সম্ভাবনা কম থ্যকে, সেখানে বেশি পরিমাণে সার প্রয়োগ করে উৎপাদন খরচ না বাড়ালেই আধিকতর যুক্তিসংগত।

শসঃ উৎপাদনে সরে প্রয়োগর সময় একটি গুরুত্বপূর্ণ বিষয়। ফসফরাস এবং পটাশিয়াম বুব এগ্রাটা চলনশীল (mobile) নয় বলে চেয়ানোর মাধ্যমে এদের ক্ষতি কম হয়। তাই, এই জাতীয় সার কেনের সময় মৃত্তিকায় প্রয়োগ করা হয় এবং এদের কোনো টপ ডেসিং (top dressing) করা হয় না। চবে নাইটোজেন সারের প্রয়োগের সময় ভিন্নতর হয়। যে সমস্ত শস্যের, যেমন, উচ্চফলনশীল ধন ও গম, অধিক পরিমাণে নাইটোজেন সার প্রয়োগের দরকার হয়, সেক্ষেত্রে নাইটোজেন সারের এটে পরিমাণের কিছু অংশ বীজ বপনের পূর্বে এবং বাকি অংশ কিছুদিন পর পর একন র বা দুই—তিন বারে প্রয়োগ করা হয়। যেমন- দার্বাজের পূর্বে এবং বাকি অংশ কিছুদিন পর পর একন র বা দুই—তিন বারে প্রয়োগ করা হয়। যেমন- দারালস্যের ক্ষেত্রে কুশি উৎপন্ন (tillering), পুন্থায়ন (flowering) এবং দানা ভর্তির সময় নাইটোজেন সার প্রয়োগ করা হয়। আয়ের মধ্যবর্তী দার্ভ প্রায়ে নাইটোজেন এবং পটাশিয়ামজাতীয় সার ব্যবহার করলে ভাল ফল পাওয়া যায়। প্রভাবে নাইচোজেন সার ব্যবহার করার উদ্দেশ্য হলো শস্য উদ্ধিদ যেন ব্যবহাত সারের সম্পূর্ণটাই লাব লাহ চে সোটাস্টির হলে নাইটোজেন সার প্রয়োগে বিশেষ উপকার পাওয়া যায়। এভাবে নাইচোজেন সার ব্যবহার করার উদ্দেশ্য হলো শস্য উদ্ধিদ যেন ব্যবহাত সারের সম্পূর্ণটাই লাবংগ্যন করেও পারে। সরে ব্যবহারের সময় আরেকটা বিষয় বিবেচনা করা হয়, তা হলো মৃত্তিকায় উপযুক্ত স্থানে সার প্রয়োগ। অনেক সময় সরে সারা মাঠে ছিটিয়ে দেয়া হয়। এতে অধিক পরিমাণে সারের প্রয়োজন হয় এবং সারের বেশ কিছু অংশ শস্যেয় কোন কাজে আসে না। এজন্য কোনো কোনো শস্যের, যেমন- গোল আলু এবং দানাশস্যের বীজ বপনের সময় P2O5 এবং K2O বীজের সন্নিকটে প্রদান করা হয়। শস্যের বীজ সারিতে বপনের জন্য যে বপনমন্ত্র (seed drill) ব্যবহার করা হয়, তার মাধ্যমেই বীজের সাথে সার ট্রিল করা হয়। সারের সংস্পর্শে এলে কোনো কোনো বীজের ফ্রি হওয়ার সন্তরনা থাকে, তাদেরকে আলাদাভাবে দ্রিল করা হয়। এর জন্য চারাগ্যছের বন্ধি ভাল হয় এবং ফলনও বেশি হয়।

যে মৃত্তিকায় P_2O_5 এবং K_2O ঘাটতি থাকে, সে মৃত্তিকায় এভাবে সার স্থাপন খুব কার্যকরী ফলাফল পাওয়া যায়। গোল আলুর ফেব্রে এরকম ফলাফল পাওয়া গেছে। গোল আলুর কদের সন্নিকটে, কিন্তু সংস্পর্শে নয়, সার প্রয়োগের জন্য ফলন অনেক বেড়ে যায়। তবে কন্দের খুব কাছে সার দিলে কচি চারাগাছের ফন্তি হওয়ার সম্ভাবনা থাকে। কন্দের পাশে ৫ সেটিমিটার এবং নি5 ২.৫ সেটিমিটার দূরে P_2O_5 এবং K_2O প্রয়োগ করলে সবচেয়ে ভাল ফলন পাওয়া যায়।

বেশি দূরত্বের ব্যবধানে সারিবদ্ধভাবে যেসব শস্যের চায করা হয়, সেক্ষেত্রে ব্যান্ড পদ্ধতিতে সার প্রয়োগ করা হয়। সুগারবিটের দুটি সারির মাঝে ব্যান্ড পদ্ধতিতে সার প্রয়োগের জন্য কচি চারাগ্রন্থের ফতি কম হয়।

উপরোক্ত পদ্ধতি ছাড়াও, বর্তমানে আরেকটি পদ্ধতিতে সার প্রয়োগ করা হয়। এই পদ্ধতিতে মৃত্তিকায় সার প্রয়োগ না করে শস্যের পাতায় সারের দ্রবণ ছিটিয়ে দেয়া হয়। একে পত্রীয় পুষ্টি (Foliar nutrition) বলে। এই পদ্ধতি উদ্যান শস্যের ক্ষেত্রে মূলত প্রয়োগ করা হলেও, মাঠ শস্যের ক্ষেত্রেও বর্তমান ব্যবহৃত হচ্ছে।

থেসব সার মৃত্তিকায় প্রয়োগে জটিলতার সৃষ্টি হয়, সেসধ ক্ষেত্রে পত্রীয় পুষ্টি পদ্ধতি খুব উপযোগী। পাতা এই সার দ্রুত শোষণ করে এবং এর জন্য সারের পরিমাণও কম লাগে। কখনো কখনো এটি সম্পূরক পদ্ধতি হিসেবেও কাজ করে। কোনো শস্যের সংকটকালীন বৃদ্ধি পর্যায়ে যদি মৃত্তিকায় সার প্রয়োগ করা সম্ভব না হয়, সেক্ষেত্রে সার পাতায় প্রয়োগ করা হয়।

সার নীতি প্রণয়ন (Formulation of a fertilizer Policy)

উপরোগ্ড আলোচনা থেকে এটি সুস্পষ্ট যে, সার প্রয়োগের সাথে শস্যের প্রতিক্রিয়ার উপর অনেকগুলো জটিল প্রকরণ ক্রিয়াশীল। তবে শস্য উৎপাদনকারীকে একটি সিদ্ধান্তে পৌছতে হবে যে, কি পরিমান সার ব্যবহার করবেন। এ ব্যাপারে সিদ্ধান্ত নেয়ার সময় নিমুলিখিত বিষয়গুলি বিবেচনা করা উচিৎ

- (১) শস্যের ধরন এবং এর জন্য কতুটুক সার দরকার,
- (২) শস্যের ফলনের প্রতিক্রিয়া,
- (৩) মৃত্তিকার রাগায়নিক বিশ্লেষণ,
- (৪) মৃত্তিকার প্রকার এবং বুনট,
- (৫) পূর্ববর্তী শস্য এবং তার অবশেষ,

(৬) বৃষ্টিপাতের ধরন;

(৭) পানি সেচের প্রভাব,

- (৮) বিভিন্ন পুষ্টি উপাদ্যনের মধ্যে পারস্পরিক ক্রিয়া,
- (৯) প্রয়োগকৃত সারের পরিমাণ নির্ধারণ,
- (১০) কি ধরনের সার ব্যবহার করা হবে তা নির্বাচন করা,
- (১১) সার প্রয়োগের পদ্ধতি নির্ধারণ,
- (১২) সার প্রয়োগের সময় নির্বাচন এবং
- (১৩) সারের মূল্য বিবেচনা।

উপরোক্ত বিষয়গুলো বিবেচনা করে একটি সার নীতি প্রণয়ন করলে সারের দক্ষ ব্যবহার এবং ফলনের উন্নতি হবে।

সুপারিশকৃত সারের উপাদান সাধারণত প্রতি হেক্টরে কেন্দ্রি হিসেবে প্রকাশ করা হয়। কোন শস্যের কি পরিমাণ স্যরের দরকার তা নির্ণয়ের ক্ষেত্রে এটি জটিলতার সৃষ্টি করতে পারে। নিমুলিখিত উদাহরণ থেকে সারে পরিমাণ নির্ণয় করা যাবে।

ধরা যাক, ২৭ **হে**ক্টর যবের জমিতে সার প্রয়োগ করা হবে এবং প্রতি হেক্টরে সারের সুপারিশকৃত মাত্রা হলো ১০০ কেন্জি N. ৫০ কেজি P₂O₅ এবং ৫০ কেজি K₂O।

প্রথমে, একটি যৌগিক সার পছন্দ করা হলো যার পুষ্টি উপাদানের অনুপাত ২৪১৪১, যেমন ২০৪১০৪১০। এর পর প্রতি ৫০ কেন্দ্রি সারের ব্যাগে কি পরিমাণ পুষ্টি উপাদান আছে তা নির্ণয় করা হলো। যেমন ১০ কেন্দ্রি N, ৫ কেন্দ্রি P2O2 এবং ৫ কেন্দ্রি K2O। তারপর প্রতি হেক্টরে কি পরিমাণ সার লাগবে তা নিমুলিখিতভাবে নির্ণয় করতে হবে : অর্থাৎ ১০০÷১০ নাইটোন্ডেনের জন্য =১০ ব্যাগ=৫০০ কেন্দ্রি সার। সম্পূর্ণ জমির (২৭ হেক্টর) জন্য প্রয়োজন হবে ২৭×৫০০=১০, ৫০০ কেন্দ্রি =১৩.৫টন ২০৫১০৪০ সার।

সার এবং শস্যের গুণগত মান (Fertilizer and Crop Quality)

এপর্যন্ত শুধু শস্যের ফলনের উপর সারের প্রভাব সম্পর্কে আলোচনা করা ২য়েছে। অর্থনৈতিক ফলন (economic yield) হিসেবে শস্যের যে অংশ সংগৃহীত হয়, তার গুণগত মানের উপর সারের প্রভাব থাকতে পারে এবং সারের নীতি নির্ধারণে এটিও বিবেচনা করা দরকার। এ বিযয়ে একটি সনাতন সুন্দর উদাহরণ হলো মল্ট (mault) প্রস্তুতের জন্য ব্যবহৃত যবের উপর জীবনকালের শেষের দিকে প্রয়োগকৃত নাইটোজেন সারের প্রভাব। এসময় উচ্চমাত্রায় নাইটোজেন সার প্রয়োগে দানায় নাইটোজেনের পরিমাণ বেড়ে যায়, তাই মন্টিং এর জন্য অনুপোযুক্ত হয়ে পড়ে। এই সমস্যা এড়ানোর জন্য মল্ট তৈরির জন্য ব্যবহৃত যব বপনের সময় নাইটোজেন সার প্রয়োগ করা উচিৎ। অপরপক্ষে, রুটি তৈরি জন্য ব্যবহৃত গমের দানায় অতিরিক্ত নাইটোজেন উপকারী, সেজন্য এই গমে দেরিতে নাইটোজেন সার প্রযোগ করতে হবে। গমের ফ্র্যাগ পাত্রা (flag leaf) বের হওয়ার পর নাইটোজেন সার প্রযোগ করলে ভাল ফল পাওয়া যায়। উচ্চ মাত্রার নাইটোজেন সারের জন্য তেল উৎপাদনকারী রেপ (rape)-এর বীজে তেলের পরিমণ হাস পায়। দেরিতে প্রয়োগকৃত নাইটোজেন সারের জন্য শসেরে পাতার স্থায়িত্বকাল বেড়ে যায়, ফলে শস্য পরিপঞ্চ হতে বেশি সময় লাগে। এর ফলে শস্য সংগ্রহের সময় খারাপ আবহাওয়ার কারণে সংগৃহীত দ্রব্যের গুণগত মান হাস পায়। লজিং (lodging) সৃষ্টি করে নাইটোজেন সার পরোক্ষভাবে দানানশ্যের দানার গুণগত মান হাস করে।

অতি মাত্রার নাইট্রোজেন সারের জন্য গোল আলুর কন্দের গুল্প পদার্থের পরিমাণ হ্রাঙ্গ পায় এবং এর জন্য আলু দিয়ে কতকগুলো দ্রব্য প্রস্তুত করতে সমস্যার সৃষ্টি হয়। সারের প্রভাবে গোল আলুর আকারও বৃদ্ধি পায়।

িউচ্চ মাত্রার নাইটোজেন, পটাশিয়াম এবং সোডিয়াম সার প্রয়োগে সুগারবিটের মূলে এই মৌলগুলোর মাত্রা বৃদ্ধি পায় এবং এর জন্য সুক্রোজ নিম্ফাশনের দক্ষতা হ্রাস পায়।

উপরোক্ত কতিপয় উদাহরণ থেকে এটি সুস্পষ্ট যে, সারের প্রভাবে শস্যের গুণগত মানের পরিবর্তন হয়। অনেক ক্ষেত্রে এই প্রভাব এও প্রকট যে, সার ব্যবহারের নীতি নির্ধারণে এ বিষয়টি গুরুত্বের সাথে বিধেচনা করা হয়।

যণ্ঠ অধ্যায়

পরিবেশগত পীড়ন

প্রাকৃতিক পরিবেশে শস্য উদ্ভিদ নানা প্রকার পরিবেশগত পীড়নের সম্মুখীন হয়। পানি, ত্যপমাত্রা ও খনিজ মৌলের তারতম্যের জন্য পীড়নের সৃষ্টি ২য় এবং প্রাণরাসায়নিক ও শর্রৌরতাত্ত্বিক সমন্বয় সাধনের (adjustment) মাধ্যমে উদ্ভিদে এসব পীড়নের প্রতিক্রিয়া পরিলফিত হয়। অস্বাভাবিক পরিবেশে শস্য উদ্ভিদকে টিকে থাকার জন্য এরকম সমন্বয় সাধনের প্রয়োজন। বর্তমানে পরিবেশে গাস্য উদ্ভিদকে টিকে থাকার জন্য এরকম সমন্বয় সাধনের প্রয়োজন। বর্তমানে পরিবেশে তাল ফলনের জন্য শস্য উদ্ভিদের কি ধরনের পরিবর্তন সাধিত হয় এবং এরকম পরিবেশে তাল ফলনের জন্য শস্য উদ্ভিদের কি ধরনের অভিযোজন হয় তা উদ্ঘাটনের উপর শস্য শারীরবিজ্ঞানীগণ অধিক মনোযোগ দিয়েছেন। শারীরবিজ্ঞানী এবং প্রজননবিদের যৌথ গবেষণায় যরা, উচ্চতাপমাত্রা, নিমুতাপমাত্রা ও লবণাক্ততা সহিস্থু শস্য উদ্ভিদের জাত উদ্ভাবনের কাজ চলছে।

পীড়নের প্রভাব (Effects of Stress)

যে কোনো পীড়নে উদ্ভিদের প্রতিক্রিয়া ইলাম্টিক (elastic) অথবা প্লাম্টিক (plastic) হতে পারে। প্রথম ক্ষেত্রে প্রতিক্রিয়া সাময়িক এবং উদ্ভিদ তার পূর্বের অবস্থায় ফিরে আসে। দ্বিতীয় ক্ষেত্রে উদ্ভিদের শ্বায়ী পরিবর্তন ২য় এবং এই পরিবর্তনগুলো অপরিবর্তনশীল। উদ্ভিদে পীড়নের প্রভাব খুব তাড়াতাড়ি ২তে পারে অথবা পীড়ন অবস্থায় উদ্ভিদ প্রতিরোম্বী হতে পারে। এ তাবস্থাকে বলে হারডেনিং (hardening)। কখনো কখনো এই প্রভাব পরবর্তী বংশে স্থানান্তরিও হতে পারে। যেমন নিমু তাপমাত্রায় জন্মানো মটর অঞ্চনা বিন উদ্ভিদ খর্বাকার হয় এবং এই প্রভাব ধুবে তারে হয়ে হতে পারে। বর্তমানে প্রতিরোধী জাত বংশগতিও পরীক্ষা করা হচ্ছে।

প্রজননবিদরা এমন বংশগতীয় লাইন উদ্ভাবনের চেষ্টা করছেন যা ধীরে ধীরে বিভিন্ন পরিবেশে খাপখাইয়ে নিতে পারবে। পীড়ন পরিবেশে উদ্ভিদের প্রতিক্রিয়া খুব ক্রটিল এবং কতকগুলো শারীরতাঞ্চিক উদ্দীপনার মাধ্যমে তা প্রকাশ পায়।

পীড়নের প্রকার (Types of Stress)

ভৌত পীড়ন (Physical Stress) (Levitt, 1972) পরিমাপ করা হয় প্রতি একক ক্ষেত্রফলে বলের হিসেবে (প্রতি একক ক্ষেত্রফলে চাপ বা চোযণ) এবং এর ফলে সৃষ্ট স্টেইনকে মাপা হয় আকারগত পরিবর্তনের মাধ্যমে (আকৃতি, আয়তন ইত্যাদি)। কমপক্ষে দুটি গুরুত্বপূর্ণ কারণে ভৌত পীড়ন থেকে জৈধিক (biolgical) পীড়নের পার্থক্য আছে। প্রথমত, পরিবেশগত পীড়নের জন্য উদ্ভিদ প্রতিবন্ধকতা সৃষ্টি করতে পারে। যেমন- খুব শুক্ষ পরিবেশে (পীড়ন) উদ্ভিদ পত্রবন্ধ বন্ধ করে (প্রতিবন্ধকতা) সৃষ্টি করতে পারে। যেমন- খুব শুক্ষ পরিবেশে (পীড়ন) উদ্ভিদ পত্রবন্ধ বন্ধ করে (প্রতিবন্ধকতা) পানি হারানো কমাতে পারে। এই সিস্টেমে উদ্ভিদ বিজ্ঞানীর আগ্রহ পানির উপর। সাধারণত পানির উপর পীড়নের পরিমাপ করা হয় শক্তি হিসেবে, ভৌত সিম্টেমের মতো প্রতি একক ক্ষেত্রেফলে বল হিসেবে নয়। দ্বিতীয়ত, কখনো কখনো পীড়ন উদ্ভিদে স্থায়ী ক্ষতি করে। এর জন্য সংলোকসংশ্রেষণের ক্ষমতা কমে যায় (রাসায়নিক), সাইটোপ্লাজমের চলন (streaming) হয় রাসায়নিক ও ভৌত) অথধা কোষ প্রাচীরের পৃঢ়তা বৃদ্ধি করে কেয়ের প্রসারণে বাধ্য প্রদান করে (ভৌত)। পীড়নের রাসায়নিক ও ভৌত উপাদান পৃথক করা কঠিন এবং এটি দিয়্যবদ্ধও নয়।

শ্যন উদ্ভিদ প্রধান প্রধান যেসব প্রীড়নের সম্মুখীন হয় তা হলো পানি ঘটিতি বা শুক্ষতা, অতিরিক্ত পানি বা জল্লবন্ধ চা, শৈতা (নিমু তাপমাত্রা), উচ্চ তাপমাত্রা, খনিস্ক মৌল বা আয়নিক ইফাক্রতা এবং বাসমূহত

সাধানগভাবে দুখকমের পীড়ন প্রতিরোধ আছে – একটি পীড়ন পরিহার এবং অপরটি পীড়ন সহিষ্ণু ৫০ প্রথমক্ষেত্রে উদ্ভিদ এমন একটি অন্তঃস্থ পরিবেশ সৃষ্টি করে যাতে কোযগুলোতে পীড়নের উদ্ভব হয় না। যেমন পাতায় প্রম্বেদন হওয়ায় পাতা শীতল হয়, যদিও পারিপাশ্বিক ওপমাত্রা খুব বেশি থাকে। দিতীয়ফেত্রে উদ্ভিদের পীড়ন সহ্য করার ক্ষমতা আছে। কওকগুলো প্রজাতিংও উদ্ভয় কৌশলই কার্যকর। শারীরবিজ্ঞানীদের প্রধান লক্ষা হলো এমন শারীরতাত্বিক প্রতিয়া উদ্ভাবন করা যা উদ্ভিদকে পীড়ন সহ্য করতে সাহায্য করে।

পীভনের পরেম্পরিক প্রতিক্রিয়া (Stress Interactions)

কেনে। কোনো প্রীড়ন যেমন খনিজ মৌল বা লবণ, একটি নির্দিষ্ট এলাকায় সীমাবদ্ধ, কিন্তু পানি ও তাপমায়ার তারতমা সাবজনীম আন্দার কোনো প্রীড়ন প্রাকৃতিক পরিবেশে উদ্ভিদকে এককভাবে প্রভাবেও করে না তাপমায়ার প্রাভাব ছাড়া পানি ঘটিতি কদাচিৎ ঘটে অর্থাৎ মাঠের পানি ঘটতি এবং উচ্চ তাপমায়া একসন্দে প্রকৃতিতে থাকে।

এক ইভাবে 'হমক্ষ ওপেমান্ডার ফলে কোষের পানি বিয়োজন (desication) হয়। গ্রন্থ শসং উৎপাদনে, তাপমাত্রা এবং পানির পারস্পরিক প্রতিক্রিয়ার গ্রুত্বপূর্ণ ভূমিকা আছে।

সঞ্চারণত খারমিসটর (thermistor), থামৌকাপল (thermocouple) এবং অবলোহিত infrared) থামেন্মিউরের সহায়ে তপেমত্রা পরিমাপ করা হয়। উদ্ভিদ ও মুদ্রিকার পানির পরিমাণ নির্ণায়ের তুলনায় তাপমাঞার পরিমাপ অপোক্ষাকৃত সহজতর। পানির পরিমাপের বর্তমানে দুটি হতল বর্গ্বহাত পদ্দাত হলো আপেন্দিক পানির পরিমাণ (Relative Water Content বা RWC) এবং প্রানির পরিমাপ হলো মেপেনিক প্রমিয়ান নমুনা সংগ্রহের সময় (sampling)। উদ্ভিদে কি প্রারমাণ পানি আডে তার পরিমাপ হলো RWC। (পূর্বে ব্যবহৃত আপেন্দিক রসম্ফর্টাত যা প্রথম ব্যবহার করেন Weatherly ১৯৫০ সালে)।

 $RWC = \frac{(wf-wd)}{(wf-wd)} < 500$

এখানে জা হলে সজীব ওজন (নম্না সংগ্রহে সময়), জা হলো গুন্দ ওজন এবং জা হলো কলাকে 'হেমন প'তা') পানিতে রেখে রসম্ফীতি ওজন। এই পদ্ধতির অবশ্য কিছু অসুবিধা আছে। হেমন প্রানি শোহালর সময় কোষের বৃদ্ধি হতে প্রার, শ্বসনের জন্য ওজন হ্রাস পেতে প্রারে এবং কাটা অংশ ও কোষাবকাশে (inter cellular space)। পানি প্রবেশ করতে পারে।

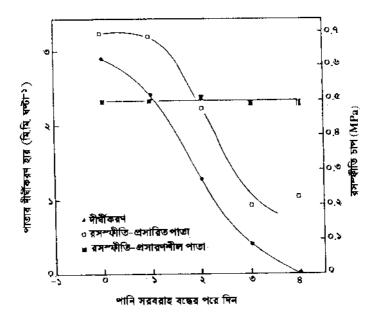
র র্তমানে উদ্ভিদে প্রানি পরিমাপের সপচেয়ে জনপ্রিয় পদ্ধতি সম্ভবত পানির পটেনশিয়াল। উদ্ভিদে প্রানির পার্টনশিয়াল সম্পর্কে 5 হুর্থ অধ্যায়ে বিস্তারিত আলোচনা করা হয়েছে।

পানি স্বন্সতাজনিত পীড়ন (Water Stress)

শুবুনাও শুক্ষ (arid) এবং অধ- ওব্ব (semi-arid) অঞ্চলেই নয়, পানি স্বন্ধপতার কারণে সরে পৃথিবীতেই শক্ষেবে ফলন হাস পাচ্ছে। যেসর এলাকায় শস্য উৎপাদন মৌসুমে, বৃষ্টিপাতের পরিমাণের তুলনায় বান্দীভবনের চাহিদা বেশি সেম্ব এলাকায় মৃত্তিকায় পানি ঘাটতি হয়। এখন পানি স্বন্ধপতার কারণে শস্য উদ্ভিদের যেসব প্রতিক্রিয়া হয়, সে বিষয়ে আলোচনা করা হবে। উদ্ভিদ প্রস্কাতি, মৃত্তিকার প্রকার, পুষ্টি উপাদান ও জ্ঞাবহাওয়াগত কারণে উদ্ভিদে যে শারীরতাস্থিক প্রতিক্রিয়া পরিলক্ষিত হয় এবং শস্য উৎপাদনে এদের আপেক্ষিক গুরুত্বের তারতম্য হয়, তা সত্তেও পানি স্বন্ধপতার জন্য উদ্ভিদের কতকগুলো সাধারণ বৈশিষ্ট্য সনাগু করা সণ্ডব হয়েছে।

পানি স্বন্দপতা, মৃত্তিকায় পানি প্রদান না করা প্রভৃতি কারণে শসেরে ভৌত পরিবেশের সরাগরি পরিবর্তন হয় এবং এই পরিবর্তন পরবর্তীকালে শস্যের শারীরত্ত থকে প্রভাবিত করে। মৃত্তিকা শুকানোর সাথে সাথে মৃত্তিকার পানির পটেনশিয়াল এবং হাইড্রোলিক পরিবহেকতা কমতে থাকে। ফলে উদ্ভিদের পক্ষে পানি পরিশোষণ কঠিন হয়ে পড়ে (Gardner, 1960))। এর জন্য উদ্ভিদের পানির পটেনশিয়াল কমে যায় এবং কতকগুলো শারীরতাগ্রিক প্রক্রিয়া সরাসরি প্রভাবিত হয়। যেমন ক্যেয়ের রম্ফ্রীতি চাপ কমে যায় এবং পাতার প্রসারণে রসম্ফ্রীতি চাপের অবদান আছে (Hsiao এবং Acevedo, 1974)। রসম্ফ্রীতিক্ব হারানোর ফলে পাতা মিইয়ে পড়ে, এতে করে আলো গ্রহণ (interception) এবং সালোকসংশ্রেষণের হারে কমে যায়। তবে এমতাবন্ধায় মিইয়ে পড়ার চেয়ে পত্রিন্দ্র বন্ধ হওয়ার প্রভাব সালোকসংশ্রেষণের হারের উপর বেশি।

উদ্ভিদে পানির পটেনশিয়াল কমে যাওয়ার আরও প্রতাক্ষ প্রভাব আছে, কিন্তু পএরদ্ধ প্রভাবের গুরুত্বও কম নয়। পাতার প্রসারণ হ্রাস হওয়া ও পত্ররন্ধ বন্ধের উভয়েরই প্রভাব আছে সালোকসংশ্রেষণের উপর এবং আন্তীকারী দ্রব্যের (assimilate) সরবরাহ কম হওয়ায় পরিস্ফ্রণ (differention) ও নতুন কলা তৈরিসহ অনেক শারীরবৃত্তীয় প্রক্রিয়াকে হ্রাস করে। মূলে আদ্বীকারী দ্রব্যের স্বন্ধাতা মূলের বৃদ্ধিকে ব্যাহত করে এবং এই হ্রাসকৃত বৃদ্ধির ফলে মন্তিকায় সঞ্চিত সবটুকু পানি মূল ব্যবহার করতে পারে না। পানির পটেনশিয়ালের হ্রাসের কারণে হরমোনের মাধ্যমে উদ্ভিদে অন্যানা পরোক্ষ প্রভাব ঘটতে পারে।


এসকন প্রভাব ছাড়াও, মৃত্তিকা গুল্ফ ২ওয়ার জনা খনিজ মৌলের গতিশীলতা এবং সেই সাথে মূলের কততকগুলো মৌলের পরিশোষণ ক্ষমতাও হ্রাস পায়। খনিজ মৌলের পরিশোষণ কম হলে উদ্ভিদের বিভিন্ন প্রকার শারীরতাত্ত্বিক প্রক্রিয়া ব্যাহত ২য়। এ প্রসঙ্গে ফসফরাসের বিষয়টি বিশেষভাবে উল্লেখযোগ্য। অধিকাংশ ফসফেট মৃত্তিকার উপরের স্তার থাকে এবং পান্দি স্বন্পতা হলে এই স্তর প্রথম গুকিয়ে যায় ফলে ফসফরাসের লভাতো কমে যায় (Dunham এবং Nye, 1976)।

শারীরতাত্ত্বিক ও অঙ্গসংস্থানিক প্রতিক্রিয়া (Physiological and Morphological Responses)

শস্য উৎপাদনের কেত্রে সম্পূর্ণ উদ্ভিদের অথব্য কিছু অংশের জন্য গুল্ফ পদার্থ ভৈরি অত্থাৎ কার্বন সঞ্চয় এবং উদ্ভিদের বিভিন্ন অঙ্গে এর বিভাজন (partition) মূল বিষয়। সংধারণভাবে, কার্বন সঞ্চয় নির্ভর করে পাতার ফেত্রফল, প্রতি একক পাতার ফেত্রফলে সালোকসংশ্লেষণের হার এবং শ্বসনের হারের উপর। পাতার উদ্ভব, পাত্যর প্রসারণের হার ও স্থায়িত্বকাল (duration) এবং পাতার বাধক্য প্রান্তির (senescence) উপর নির্ভর করে ক্যানোজি সালোকসংশ্লেষণে

পাতার প্রসারণ (Leaf expansion) -

প্রথম দিককার গবেষণার ফলাফল থেকে জানা যায় যে, পানি ঘাটতিতে পাতরে প্রসারণ খুবই সংবেদনশীল। একটি নিয়ন্ত্রিত পরীক্ষার ফলাফল নির্দেশ করে যে, ভুট্টার পাতার পানির পটেনশিয়াল ০.২ মেগপ্যাসকেলের নিচে নেমে গেলে পাতার প্রমারণ দ্রুত হাস পায় এবং –০.৭ থেকে -০.৯ মেগাপ্যাসকেলে সম্পূর্ণ বন্ধ হয়ে যায়। তবে বর্তমানের গবেষণা থেকে যে তথ্য মংগৃহীত হয়েছে ডা নির্দেশ করে যে মাঠ পর্যায়ে পানি ঘাটতিতে পাতার প্রসারণ কম সংবেদনশীল। বর্তমানে এটিও জানা গেছে যে, পাতার বৃদ্ধির সাথে রসস্ফীতি চাপের সম্পর্ক নাই। Meyer এবং Boyer (1972) এর উপাত্ত থেকে জানা যায় যে, মৃত্তিকার পানি ঘটটিত বৃদ্ধির জন্য সয়াবিনের হাইপোকটাইল-এর বৃদ্ধি ১.৬ থেকে তানা যায় যে, মৃত্তিকার পানি ঘটটিত বৃদ্ধির জন্য সয়াবিনের হাইপোকটাইলে-এর বৃদ্ধি ১.৬ থেকে ০.২ মিলিমিটার/ঘন্টা হয়, কিন্তু হাইপোকটাইলের রসস্ফীতি চাপের কোনো পরিবর্তন হয়নি। একইভাবে Michelena এবং Boyer (1982) এবং Van Volken-burgh এবং Boyer (1985) লক্ষ্য করেন যে, মৃত্তিকার পানি ঘাটতির জন্য ভূট্টার পাতার প্রসারণ উল্লেখযোগ্য মাত্রায় কমে গেলেও, বর্ধিয়ু অঞ্চলের কোযের রসস্ফীতি চাপ অপরিবর্তিত ছিল (চিত্র ৬.১)।

চিত্র ২.১ : পানি প্রয়োগ বন্ধ করার পর ভুট্টার প্রসারণশীল (+) এবং পূর্ণ প্রসারিত () পাতার রসম্ফীতি চাপে (+,) এবং পাতার প্রসারণের হারের পরিবর্তন।

রসশ্কীতি চাপ ও কোয়ের প্রসারণের মধ্যে সম্পর্কহীনতার কারণ ব্যাখ্যা করতে কয়েকটি প্রস্তাব করা হয়েছে। প্রানি মাচতির সাথে থ্রেশহোল্ড রসম্ফীতি চাপ অথবা কেষে প্রাচীরের প্রসারণতার পরিবর্তনকে সন্তাব্য কারণ হিস্থেনে মনে করা হয় (Hsiao *et al.*, 1976)। Van volkenburgh এবং Boyer (1985) প্রনি ঘাটাওর সাথে ভুট্টার পাতার পরিসংখ্যানগতে ত্রাংপর্যপূর্ণ পরিবর্তন দেখাতে ব্যর্থ হন, কিন্তু Boyer এবং তার সহকর্মীরা (1985) মন্তব্য করেন যে, আংশিক হলেও কোম প্রাচীরের প্রসারণতা সয়াবিনের কাণ্ডের বৃদ্ধিকে সীমায়িত করেছিল। বিকল্পরূপে, বর্ধনশীল কলার রসম্ফীতি চাণের পরিমাপ সন্তবত সঠিক নায়। Mayer এবং Boyer (1972) এবং Michelena ও Boyer (1982) বর্ধনশীল পাতা ও হাইপোকটাইলের আমির পটেনশিয়াল এবং অসমোটিক পটেনশিয়াল পরিমাপ করেছিলেন থার্মোকাপল মাইক্রেমিটারে রক্ষিত কর্তিত কলা থেকে। কোম প্রাচীরের শিথিলতার জন্য প্রানি সরবরাহ বন্ধ হওয়ায় বর্ধনশীল কোষের রসস্ফীতি চাপ ও্রেশখেল্ড রসস্ফীতি চাপে নেমে আসে (Boyer *et al.*, 1985)। এজন্যই Michelena এবং Boyer (1985) এর পরীক্ষায় (চিত্র ৬.১) পানি ঘাটতির সাথে সাথে ভূট্টার প্রসারণশীল পাতার ধেশখেল্ড রসস্ফীতি চাপের পরিবর্তন হয়নি। এতদসত্বেও, প্রেসার চেমারের সাহায্যে পাতার ধেশবোল্ড রস্ফেটি চাপের পরিবর্তন হয়নি। এতদসত্বেও, প্রেসার চেমারের সাহায্যে পাতার পানির পর্টেনশিয়াল পরিমাপ করেও রসস্ফীতি এবং পাতার বৃদ্ধির সথে সম্পর্ক পাওয়া যায়েনি। এটি নির্দেশ করে যে, অন্য কোনো প্রভাবক কাজ করে। একটি বিকল্প ব্যাখ্যা হলো যে, পাতার বৃদ্ধি নিয়ন্ত্রণে উদ্ভিদ হরমোন অংশগ্রহণ করতে পারে। হরমোনের প্রভাব সর্য্যারি ২তে পারে অথবা কোম ঝিল্লীর হাইড্রোলিক পরিবাহকতা এবং/ অথবা কোম প্রাচীর শিথিল করে পরোক্ষভাবেও হরমোন কাজ করতে পারে।

Termaat এবং তাঁর সহকর্মীরা (1985) এবং Munns এবং Termaat (1986)–এর পরীক্ষার ফলাফল থেকে জানা যায় যে, পাতার বৃদ্ধি প্রভাবিত হয় মূলের অসমোটিক চাপ দ্বারা, পাতার রসস্ফীতি চাপ দ্বারা নয়।

পাতার প্রসারণ ছাড়াও, পানি ঘাটতির জন্য বৃদ্ধির সকল পর্যায়েই পাতার বার্ধকাপ্রান্তি এবং মৃত্যু জরাদ্ধিত হতে পারে। পাতার পানির পটেনশিয়াল - ১.৫ মেগাপ্যাসকেলের কম হলে মৃত পাতার শতকরা হার বেড়ে যায় এবং – ১০.০ মেগাপ্যাসকেলে সকল পাতাই মরে যায়। সাধারণত ক্যানোপির নিচের অংশের পুরাতন পাতার প্রথমে মৃত্যু ঘটে এবং ধীরে ধীরে ক্যানোপির উপরের অংশ আক্রান্ত হয়। পানি ঘাটতির জন্য কুশির সংখ্যা কমে যায়, এবং মৃত্যুর হার বেড়ে যায় ফলে ক্যানোপির পাতার ক্ষেত্রফল হ্রাস পায়।

নিট সালোকসংশ্রেষণ : পানি ঘাটতির ফলে প্রতি একক পাতার ফেত্রফনে সালোকসংশ্লেষণের হার কমে যায়। ধারণা করা ২তো যে, পানি ঘাটতির জন্য পত্ররঞ্জ বন্ধ হওয়ার জন্য পাতায় কার্বন-ডাই-অক্সাইড প্রবেশ বিধু ঘটায় সালোকসংশ্লেষণ কমে যায়। বর্তমানে যেসব ওথ্য সংগ্রুঠিত হয়েছে তাতে দেখা যায় পাতার পানির পটেনশিয়াল একটি সংকটকালীন অবস্থা ব থ্রেশহোল্ড না পৌছানে: পর্যন্ত পাতার পানির পটেনশিয়াল কমার জন্য পত্ররক্ষীয় রোধকের খুব সামান্য পরিবর্তন হয়। তবে প্রেশহোল্ড পাটেনশিয়াল কমার জন্য পত্ররক্ষীয় রোধকের খুব সামান্য পরিবর্তন হয়। তবে প্রেশহোল্ড পাটেনশিয়ালের নিচে পত্রবন্ত্রীয় রোধকে ব্যাপকভাবে বৃদ্ধি পায়। যে সংকটকালীন পটেনশিয়ালের নিচে পত্রবন্ত্রায়ীয় রোধকে ব্যাপকভাবে বৃদ্ধি পায়। যে সংকটকালীন পটেনশিয়ালে পত্রবন্ধ বন্ধ হয় তা বিভিন্ন প্রজাতিতে বিভিন্ন এবং একই প্রজাতির বিভিন্ন জাতের মধ্যেও ভিন্নতা দেখা যায়। কোনো একটি প্রজাতি কিংবা ভ্যারইটির পত্রেরঞ্জের কোনো অনন্য সংকটকালীন মান নেই। পাতার যে পানির পটেনশিয়ালে পত্রবন্ধ্ব কে বে ভাবে ব্রুদ্ধ বন্ধ হয় তা নির্ভর করে ক্যানোপিতে পাতার অবন্ধান, পাতার বয়স, পরিবেশীয় অবস্থা এবং পীড়নের মাত্রার উপর।

কার্বন ডাই- অন্সাইড গ্রেডিয়েন্ট (বহিঃস্থ কার্বন ডাই এর্য্রাইড খনমাত্রা—অন্তঃস্থ কার্বন ডাই-অন্সাইড খনমাত্রা) এবং পাতার কোষের কার্বন ডাই-অক্সাইড আঞ্জীকরণেরক্ষমতা-উভয়ের দ্বারাই কার্বন ডাই- অক্সাইড আল্টীকরণের হার নিয়ন্ত্রিও হয়। কার্বন ডাই-অন্সাইডের ব্যাপন্দের বাউন্ডারি কার্বন ডাই- অক্সাইড আল্টীকরণের হার নিয়ন্ত্রিও হয়। কার্বন ডাই-অন্সাইডের ব্যাপন্দের বাউন্ডারি স্তর রোধকের উপর পার্নি ঘাটভির প্রভাব নেই, কিন্তু পত্রবন্ধ্রীয় ও মেসোফিল রোধকের উপর কোনো প্রভাব আছে। পান্দি ঘাটভির প্রভাব নেই, কিন্তু পত্রবন্ধ্রীয় ও মেসোফিল রোধকের উপর কোনো প্রভাব আছে। পান্দি ঘাটভির জন্য সালোকসংশ্রেখণের উপর কোনো রোধকের অবদান কউটুক্ তা এখনও স্পষ্ট নয়। পীড়নের সময় পত্রবন্ধ্রীর এবং অপত্রবন্ধ্রীর (non stomatal) বা মেসোফিল রোধকের পরিবর্তনের কোনো সামঞ্জস্পূর্ণ প্যাট্রার্ন পরিলক্ষিত হয় না, বিভিন্ন উন্ডিদে বিভিন্ন রক্ষম প্যাটান হয়। তবে অনেক উদ্ভিদে দেখা গেছে যে, পত্রবন্ধ্রা বন্ধ করতে যে পানির পর্টেন্নিয়াল প্রয়োজন, তার চেয়ে অনেক কম না হলে অ–পত্রবন্তীয় রোধক প্রভাবিত হয় না। তবে কতকগুলো প্রজাতিতে, যেমন– সূর্যমুখী, পার্নি ঘটেতির জন্য পত্রবন্তীয় ও অ–পত্রবন্তীয় প্রভাব একই পানির পটেনশিয়ালে হয়।

পানি ঘাটতির জন্য সালোকসংশ্লেষণের আলোক বিক্রিয়া, চক্রীয় এবং অচক্রীয় উভয় ফসফোরাইলেশন বাঁধাণ্রস্ত হয়। পানি ঘাটতির জন্য সালোকসংশ্লেষণের অন্ধকার পর্যায়ও প্রভাবিত হয়। ক্লোরোপ্লাস্টে এনজাইনের মাত্রা কিংবা কার্যকারিতা কমে যাওয়ায় অন্ধকার বিক্রিয়া বিদ্বিত হয়।

পর্যাংগ্র পান্ধি ঘাটতি যা পত্রবন্ধকৈ বন্ধ এবং সালোকসংশ্লেষণকে হ্রাস করে তা অন্ধকার মসনের হারকেও কমিয়ে দেয়। তবে একই পানির পটেনশিয়ালে অন্ধকার শ্বসনের তুলনায় সালোকসংশ্লেষণের হার বেশি কমে থায়ে। উদাহরণস্বরূপ, সূর্যমুখীর পাতার পানির পটেনশিয়াল – সালোকসংশ্লেষণের হার বেশি কমে থায়ে। উদাহরণস্বরূপ, সূর্যমুখীর পাতার পানির পটেনশিয়াল – ১৪ থেকে — ১৮ মেগাপ্যাসকেলে হ্রাস পাওয়ায় পাতার সালোকসংশ্লেষণের হার কমে শতকরা ৭০ ডাগ, কিন্তু অন্ধকার শ্বসনের হার কমে শতকরা ৩৩ ডাগ। সূর্যমুখী, সয়াবিন এবং ভূট্টার বিটপের অন্ধকার শ্বসন, সালোকসংশ্লেষণের মতো হাস পায়, এটি নির্দেশ করে যে, পানি ঘটিতির জন্য পাতার কলার তুলনায় কাণ্ড ও ভাজক কলারে অন্ধকার শ্বসনের হার বেশি।

বিভিন্ন পরীক্ষার ফলাফল থেকে জানা গেছে যে, স্বল্পকালীন পানি ঘাটতির জন্য শস্য বিভিন্ন পরীক্ষার ফলাফল থেকে জানা গেছে যে, স্বল্পকালীন পানি ঘাটতির জন্য শস্য উদ্ভিদের আলোকশ্বসনের কোনো পরিবর্তন হয় না, কিন্তু পরিশেষে আলোকশ্বসনের সাবস্টেট কমে যাওয়ায় আলোকশ্বসনের হার কমে যায়। পানি ঘাটতি না থাকলে আলোর উপস্থিতিতে C3 কমে যাওয়ায় আলোকশ্বসনের হার কমে যায়। পানি ঘাটতি না থাকলে আলোক উপস্থিতিতে C3 কমে যাওয়ায় আলোকশ্বসনের হার কমে যায়। পানি ঘাটতি না থাকলে আলোক উপস্থিতিতে C3 কমে যাওয়ায় আলোকশ্বসনের হার কমে যায়। পানি ঘাটতি না থাকলে আলোক উপস্থিতিতে C3 কমে যাওয়ায় আলোকশ্বসনের হার কমে যায়। পানি ঘাটতি না থাকলে আলোক–বাধকের (photo-inhibition) উদ্ভিদকে কার্বন ডাই-অক্সাইড থেকে বঞ্চিত করলে, আলোক–বাধকের (photo-inhibition) জন্য স্যালোকসংশ্লেষণ কমে যায়, অপরপক্ষে আলোকশ্বসনের জন্য কার্বন ডাই–অক্সাইড জন্য স্যালোকসংশ্লেষণ কমে যায়, অপরপক্ষে আলোকশ্বসনের জন্য কার্বন ডাই–অক্সাইড জন্য স্থালোকসংশ্লেষণ কমে যায়, অপরপক্ষে আলোকশ্বসনের জন্য কার্বন ডাই–অক্সাইড কমে গিয়ে পত্রেরে বন্ধ হলে আলোক–বাধকের কার্যকারিতা কমে যায়। পাতার পানির পটেনশিয়াল খুব কমে গিয়ে পত্রেরে বন্ধ হলে আলোক–বাধকের কোর্যকারিতা হাসের একটি কৌশল হলো আলোকশ্বসনের জন্য কার্বন ডাই–অক্সাইড রিসাইক্রিং হওয়া।

নাইটোজেন বিপাক : পানি ঘটতির জন্য নাইটেট রিভাকটেজ এনজাইমের কার্যকারিতা কমে যায়। পানি ঘটতিতে প্রোটিন সংশ্রেষণও সংবেদনশীল। পানি ঘাটতির জন্য সিম্বায়োটিক নাইট্টোজেন সংবহন কম হয় (Huang *ct.al.*, 1975)/

ষ্ণুদ্র অণু সঞ্চয় (Accumulation of Small molecules) : পানি ঘটিডির জন্য উদ্ভিদ কোষে মেটাবোলাইটের পরিমাণ বেড়ে যায়, অবশ্য সব মেটাবোলাইটের যে অতিরিক্ত অভিযোজনীয় তাৎপর্য আছে, এমন নয়। যদি এই সঞ্চয় অভিযোজনীয় হয়, তাহলে পীড়নের সময় অথবা পীড়ন পেযে উদ্ভিদ এই এব্য ব্যবহার করে। যেমন অসমোটিকাম হিসেবে ব্যবহৃত হতে পারে, এনজাইম/কোষ কিল্লীর রক্ষাকারী হিসেবে, ক্ষতিকারক নয় এমন নাইটোজেনের উৎস অথবা বিজারক হিসেবে কাজ করতে পারে।

পাতায় প্রোলিন সঞ্জয় (Proline accumulation in leaves) : মধ্যম অথব্য প্রকট পানি গার্টান্ডর জন্য অনেক উদ্ভিদের পাতায় ১০ থেকে ১০০ গুণ মুক্ত প্রোলিন জন্ম হতে পারে। সাধারণত মুক্ত আমোইনো এসিডের মধ্যে প্রোলিন সবচেয়ে বেশি সঞ্চয় হয়। কার্বোহাইডেটের পারিমণে এবং আলো বেশি হলে (গ্রালোর প্রয়োজনীয়তা বাধ্যতামূলক নয়) প্রোলিন সঞ্চয়ের অনুকুল পরিবেশ সৃষ্টি হয়। সাধারণত পানি ঘাটতির জন্য প্রোলিনে মজ্যে হয়। পুরাতন উদ্ভিদের ২০০ মাইজেমোলের বেশি হয় না। কচি গাড়ের পাতায় প্রোলিন সঞ্চয় হয়। পুরাতন উদ্ভিদের

€b.

পরিবেশগত পীড়ন

পূর্ণাঙ্গ পাতায়, যা মাঠে অথবা বড় পটে অনেকদিন ধরে পানি ঘাটতি অবস্থায় জন্দে, প্রেলিন সঞ্জয় হয়। পানি ঘাটতি শেষ হলে নতুন বৃদ্ধির জন্য নাইটোজেনের উৎস হিসেবে প্রেলিন কাজ করে।

পাতায় বিটেইন সঞ্চয় (Betaine accumulation in leaves)

কতকগুলো উদ্ভিদ প্রজাতির অঙ্গজ কলায় গৌণ (secondary) বিপান্টার কোয়াটারনারি অ্যামোনিয়াম যৌগ বিটেইন (গ্লাইসিন বিটেইন) প্রচুর পরিমাণে (প্রতি গ্রাম শুক্ষ পদার্থে ৫ মাইক্রোমোলের বেশ্যি) জমা হয়। Chiropodiaceae গোত্রের প্রায় সকল উদ্ভিদে এবং Gramineae গোত্রের কোনো কোনো ট্রাইবে (যেমন- হরডি, Hordeae) বিটেইন থাকে। বিটেইন সংশ্লেষণ এবং সঞ্চয় লবণাক্ত পরিবেশে জমানো উদ্ভিদের একটি অভিযোজন, যদিও সকল বিটেইন সঞ্চয়কারী উদ্ভিদ লবণাক্ততা সহিষ্ণু (halophyte) উদ্ভিদ নয়।

বিউপ এবং মূল উভয়েতেই বিটিইন থাকে; মূলের মাত্রা সাধারণত বিটপের তুলনায় কম অথবা সমান। গমের পরাগধানী এবং পুংরেণুতে প্রচুর পরিমাণে বিটেইনের এবং এর অগ্নবর্তী পদাথ কোলাইন থাকে। গবেষণাগারে এবং মাঠে লবণাক্ততা বৃদ্ধি করলে বিহেনের পরিমাণ কয়েক গুণ বেড়ে যায়। একইভাবে পানি ঘাটতির জন্য নিয়স্তিত পরিবেশে ঘাস এবং চিনোপডের পাতার বিটেইন পাঁচ গুণ পর্যন্ত বেড়ে যায়। মাঠ পর্যায়ে সেচবিহীন যবের উপরের পাতশ্য বিটেইন জমা হয়। দানাশস্য ও চিনোপডে বিটেইন সংশ্লেষণের জন্য আলোর প্রয়োজন নেই।

অসমোটিক সমনুয় সাধন (Osmotic adjustment) : পানি ঘটেতির সময় কোষ থেকে পানি বের হয়ে গেলে, কোষের এবের ঘনমাত্রা বেড়ে যায়, ফলে অসমোটিক পটেনশিয়াল কমে যায়। যদি কোষ সম্পূর্ণ অসমোমিটারের মতো আচরণ করে, তাহলে নিম্নলিখিতভাবে দ্ররে ঘনমাত্রার জন্য অসমোটিক পটেনশিয়ালের (ψ_π) পরিবর্তন হবে :

 $\psi_{\pi} = \frac{\psi_{\pi}^{*} V^{2}}{V}, \qquad (\mathfrak{G}, \mathfrak{G})$

এখানে V হলো কোষের অসমোটিক আয়তন এবং ψ_π ঁ এবং V[°] হলো যথাক্রমে একটি রেফারেন্দ মানের, যেমন পূর্ণ রসম্ফীতি অথবং শূন্য রসম্ফীতি, অসমোটিক পটেনন্যিয়াল এবং অসমোটিক আয়তন। ৬.১ নং সমীকরণকে নির্মানিখিতভাবে প্রকাশ করা যেতে পারে :

 $\psi_{\pi} = \frac{\psi^{*} \pi R W C^{0}}{R W C} \qquad (\mathfrak{G}, \mathfrak{P})$

এখানে RWC এবং RWC⁰ হলে: আপেঞ্চিক পানির পরিমাণ যথাক্রমে যে অবস্থায় কোষের _{খ/π} পরিমাপ করা হয় এবং রেফারেন্স রসম্ফীতি অবস্থায়।

এটি প্রতীয়মান হয় যে, পানির পটেনশিয়াল ধেশি হলে, যে কোষের অসমোটিক পটেনশিয়াল কম তার রসস্ফীতি পটেনশিয়াল বেশি হবে এবং কোষের অন্যান্য বৈশিষ্ট্যের পরিবর্তন না হলে এবং আপেক্ষিক পানির পরিমাণ কম হলে, রসস্ফীতি পটেনশিয়াল শূন্য হবে। সুতরাং কোযে পানির পরিমাণ কম হলে, নিমু অসমোটিক পটেনশিয়ালের জন্য ধনাত্মক রসস্ফীতি বজায় থাকে এবং কতকগুলো প্রজাতিতে গুষ্ণতা সহ্য করার (drought tolerance) এটিই ভিত্তি।

পানি পরবরাহ কম হলে কোনো কোনো উদ্ভিদ ওাদের কোযের অসমেটিক পটেনশিধাল নিয়ন্ত্রণ করতে পারে। একে অসমোটিক সমন্বয় সাধন বা অসমো–নিয়ন্ত্রণ (osmo-regulation) অথবা রসম্ফীতি নিয়ন্ত্রণ (urgor regulation) বলে। যদিও থনিজ মৌলের পীড়ন থেকে রক্ষা পাওয়ার জন্য উদ্ভিদের অসমোটিক পটেনশিয়াল কমানের ক্ষমতা সম্পর্কে অনেকলিন আগেই জানা গেছে, পানি ঘাটতির জন্য উদ্ভিদের অসমোটিক পটেনশিয়াল কমানের ক্ষমতা সম্পর্কে তথ্য অপেক্ষাকৃত নতুন। সকল প্রজাতি কিংবা জতের অসমোটিক সমন্বয় সাধন হয় না, এর মাত্রার ভিন্নতা হয় এবং এটি দ্রুত পরিবতনশীল, কিন্তু শুব্দতা সহিয়্বৃতায় এর গুরুত্ব সুষ্পষ্ট। পাতার পানির নিম্ন পটেনশিয়ালেও ধনাত্রক রসম্ফীতি বজায় রাখতে নিম্ন অসমোটিক পটেনশিয়াল সক্ষম । সুতরাং দ্রব জন্য হওয়ার জন্য নিন্ন পানির পটেনশিয়ালেও ধনাত্রক রসম্ফীতি বজায় থ্যকে। প্রজাতি এবং পানি ঘটেতির মাত্রা অনুযায়ী অসমোটিক সমন্বয়ের জন্য আংশিক অথবা পূর্ণ রসম্ফীতি বজায় থ্যকে।

অনেকগুলো যৌগ অসমেটিক সমন্বয়সাধনে অংশগ্রহণ করে ; বিভিন্ন প্রজাতিতে এর বিভিন্নতা দেখা যায়। শস্য উদ্ভিদে এরকম প্রধনে প্রধান যৌগ হলো দ্রবণীয় চিনি, কার্বোক্সিলিক এসিড, পটাশিয়াম, ক্লোরিন, অ্যামইনো এসিড, বিশেষ করে প্রোলিন। গম উদ্ভিদের শীর্ষে এবং প্রসারণশীল পাতায় চিনি, পটাশিয়াম ও জ্যামাইন্যে এসিড শতকরা ৬০ থেকে ১০০ তাগ মসমোটিক সমন্বয় সাধন ঘটায় ও সরগাম এবং সূর্যমুখীর পাতায় শতকরা ৫০ থেকে ১০০ তাগ অসমোটিক সমন্বয় সাধন ঘটায় চিনি, পটাশিয়াম, ক্যালসিয়াম, ম্যাগনেশিয়াম, অ্যামাইনো এসিড, ক্রোরিন, নাইটোট এবং কার্বোক্সিকৈ এসি৬।

হরমোনের ভূমিকা (Role of Phytohormones)

উদ্ভিদে পানি ঘটিতি হলে কতকগুলো হরমোনের মাত্রার পরিবর্তন হয় (Hsiao, 1973 ; Davies et al., 1986); তবে পানি ঘাটতি হলে অন্তঃস্থ অ্যাবসিসিক এসিডের (ABA) মাত্রা কয়েক গুণ বেড়ে খায় (Wright and Hiron, 1969) এবং অ্যাবসিসিক এসিড পত্রবন্ধ বন্ধ করে এবং প্রবেদন হ্রাস করে (Raschke, 1975 ; Mans field, 1976)। এটি জানার পর পীড়ন ধরমোন হিসেবে আবসিসিক এসিডের উপর অনেক গবেষণা হয়েছে। Zabadal (1974), Beardsell এবং Cohen (1975). Pierce এবং Raschke (1980) বেখিয়েছেন যে, পাতার পানির পটেনশিয়াল একটি গ্রেশহোল্ড মাত্রায় না গৌছানো পর্যন্ত পাতার অ্যাবসিসিক এসিডের পরিমাণ অপরিবর্তিও ছিল, বিভিন্ন প্রজ্ঞাতিতে এই শ্বেসহোল্ড মাত্রা বিভিন্ন এবং এর পর পানির পটেনশিয়াল আর কমে গেলে অ্যাবসিসিক এস্টিভের পরিমাণ অনেক বেড়ে গিয়েছিল। যে পানির পটেনশিয়ালে আবসিসিক এসিডের পরিমাণ বৃদ্ধি পায় তা হলো শূন্য রস্বস্ফীতি চাপ। অন্যান্য পরীক্ষায় ফলাফল থেকে জানা গেছে যে, রসস্কীতিও হ্রাসের সাথে সাথে অ্যাবসিসিক এসিড সরলরৈথিকভাবে বৃদ্ধি পায় (Henson, 1983 : 1985) । এসব ফলাফল নির্দেশ করে যে, অ্যাবসিসিক এসিডের পরিমাণের সাথে পদ্রবন্ধের পরিবাহকতার সম্পর্ক আছে। তবে Raschke (1983) উল্লেখ করেছেন যে, পত্রবন্ধ করতে প্রতি বর্গমিলিমিটার পাত্তার ক্ষেত্রফলে ১×১০^{-১৫} মোলের চেয়ে ও কম অ্যাবসিসিক এসিডের প্রয়োজন যা কোষের অগুস্থ মাত্রার চেয়েও কম। এটি ধারণা করা হয় যে, পাতার মেসে:ফিল কলায় প্রধানত আবসিসিঞ্চ এসিড সংশ্লেষণ হয় এবং ক্লোরোপ্লাস্টের অন্ত্রকরণের জন্য জ্যাবসিসিক এসিড মুক্ত হয় এবং অ্যাপোপ্লাস্টের মাধ্যমে এপিডামিসে পৌঁছায়। Hartung et al. (1983) দেখিয়াছেন থি, রসস্ফীতি নয়, আয়তনের পরিবর্তনের জন্য অ্যাবসিসিক এসিড মুক্ত হুওয়া প্ররোচিত হয়েছিল, কিন্তু Ackerson এবং Radin (1983) মত প্রকাশ করেন যে, কোযীয় সংকোচন এবং প্রসারণ অ্যাবসিসিক এসিডের সঞ্চয়কে উদ্ধীপিত করে।

ইন্ডোল–৩–অ্যাসিটিক এসিড এবং সাইটোকাইনিনের মাত্রার জন্য পত্রবন্ধের উপর অ্যাবসিসিকি এসিডের ক্রিয়ার পরিবর্তন হয় Snaith এবং Mansfield (1982) এবং Blackman

পরিবেশগত পীড়ন

এবং Davies (1984) দেখিয়েছেন যে, অ্যাবসিদিক এসিড প্ররোচিত বন্ধ পত্ররন্ধ IAA এবং সাইটোকাইনিন (কাইনেটিন এবং জিয়াটিন) খুলে দেয়। উপরস্থ, অ্যাবসিমিক এসিড ও কাইনেটিনের পারস্পরিক ঞ্রিয়াকে পাতার নাইট্যোন্ডেন এবং ফসফরাসের মাত্রা প্রভাবিত করে (Radin *et al.*, 1982; Rain, 1984)।

পানি থাটতির জন্য পাতার উর্ধ্বপৃষ্ঠ (adaxial) এবং নিমুপণ্ঠের (abaxial) পত্রবন্ধের প্রতিক্রিয়ার পার্থক্য (Pemadasa, 1982 ; Turner and Singh, 1984), পত্রবন্ধীয় পরিবাহকতা এবং পত্রবন্ধের রন্ধ্র যে সবসময় সরলভাবে পাতার অ্যাবসিসিক এসিডের মাত্রার সাথে সম্পর্কিত নয় তা ব্যাখ্যা করতে বিভিন্ন উদ্ভিদ হরমোন এবং পাতার আয়নের মাত্রার মধ্যে পারস্পরিক ক্রিয়া সাহায্য করে।

অ্যাবসিসিক এসিড পাতার বৃদ্ধি ও কোযের আকার ২্র্যাস করে (Quarrie and Jones. 1977 ; Hall and Mewha, 1981 : Van Volkenburgh and Davies, 1983), যদিও Hall এবং Mewha (1981) লক্ষ্য করেন যে, গমের পাতার মোট ক্ষেত্রফলের উপর এর প্রভাব নেই, কারণ এর জন্য পাতার সংখ্যা বেড়ে যায় এবং ক্ষুদ্র পাতার বার্ধক্যপ্রাপ্তি বিলমিত ২য় : প্রকৃতপক্ষে, Morgan (1984) প্রস্তাব করেছেন যে, পূর্ণ প্রসারিত কলা থেকে, যা রসম্ফীতি হারায়, ভাজক অঞ্চলে অ্যাবসিসিক এসিড স্থানাস্তরের জন্য রসস্ফীতি না হারানো সন্থেও) বর্ধন্দীল পাতার প্রসারণের হার এবং রসস্ফীতির মধ্যে সম্পর্কহীনতা ঘটতে পারে। পূর্ণ প্রসারিত কলার রসম্ফীতি এবং বর্ধনশীল কলার প্রসারণের হারের মধ্যে সম্পর্কহীনতা ঘটতে পারে। পূর্ণ প্রসারিত কলার রসম্ফীতি এবং বর্ধনশীল কলার প্রসারণের হারের মধ্যে সুন্দর সম্পর্ক এর জন্য হতে পরে (চিত্র ৬.১)। নিম্মেক্ত পরীক্ষার ফলাফল থেকে এই প্রকল্পের সমর্থন পাওয়া যায়। পানি ঘটতির জন্য রসস্ফীতি হারিয়ে পাতায় যে অ্যাবসিসিক এসিড উানিড তৈরি তা পুষ্ণায়নের সময় গমের মঞ্জরীতে (head) জনা হয় বরু মঞ্জরী রসম্ফীতি না হারালেও এর জন্য পুথরেণু বন্ধ্যা এবং বীজ উৎপাদন কমে যায় (Morgan and king, 1984)। অ্যাবসিসিক এসিড সালোকসংশ্লেযণের হারকে কমিয়ে দেয় (Raschke and Hedrich, 1985), মূলে পানির ফ্লাক্স বৃদ্ধি করে এবং দানাশস্যের মন্ধ্ররীর উদ্ভব এবং পুন্সায়নকে অরয়ন্ধিত করে (Hall and Mewha, 1981)।

পাতার মেসোফিল কলা ছাড়াও, মূলে অ্যাবসিদিক এসিড সংশ্লেষিত ২য়। এটি যদি প্রশ্নেদন প্রবাহের সাথে ১লাচল করে, তাহলে মূল এবং বিটপের মধ্যে আদান-প্রদানকরী হিসেবে ক'জ করে। এ বাপারে এখনো কোন স্থির সিন্ধান্তে পৌছানে! যায়নি। Davies এবং তাঁর সহক্রমীরা (1986) দেখিয়েছেন যে, ভুট্টার মূলতস্ত্রের কিছু অংশে পানি ঘাটতি হলে (একটি উদ্ভিদের মূলতস্ত্রকে দুভাগ করে দুটি পটে জন্মানে! হয়, একটি পটে পানি ঘাটতি হলে (একটি উদ্ভিদের মূলতস্ত্রকে দুভাগ করে দুটি পটে জন্মানে! হয়, একটি পটে পানি দিয়া হয় এবং অপর পটে শানি দেয়া হয় না), পাতার রসস্ফীর্তি এবং অ্যাবসিসিক এসিডের মাত্রা না ক্রমেও পত্রবন্ত্রের প্রতির্ধন্ধকতা হাস পায়। তবে, বাইরে থেকে সাইটোকাইনিন প্রয়োগ করলে পত্রব্রদ্র খুলে যায়। এরা মন্ত্রধ্য করেন যে, অন্তর্বসিক এসিডের ক্রিয়ার পত্রবন্ধ যাতে বন্ধ না হয় সেজন্য মূলে সাইটোকাইনিন তৈরি বন্ধ হয়ে যায়। তখন পত্রবন্ধীয় পরিবাহকতার উপর দুর্টি হারমোনের অসম প্রভাবের জন্য পত্রের্দ্ধ বন্ধ হয়। উপবস্থ Hubick এবং তাঁর সহক্রমীরা (1985) লক্ষা করেছেন থে, পানি ঘাটতি হলে সূর্যমুখীর মূল ও বিটপে উভয়েতেই অ্যাবসিসিক এসিড বঙ্গায় ব্যান্ধ ব্যান্ধ নি, মুলে সাইটোকাইনিনের মাত্রা কমে যায়, মূলে সাইটোকাইনিন তৈরি হাস পাওয়ায় এটি ঘটে না, মূলে শংযুক্ত (bound) সাইটোকাইনিন বেড়ে যাওয়ায় এটি ঘটে। এই ফলাফল এটিই নির্দেশ করে যে, মুত্তিক্যয় পানি ঘাটতি হলে মূল ও পাতার সাইটোকাইনিন এবং অ্যাবসিসিক এসিড ব্যার্থ্র পার্বল্ব প্রের্দ্ধা জিরা হার্ট্র তির্দ্ধ বেয়ে আর ক্রিয়া উদ্ভিদে গ্যস্থি বন্ধান বেড়ে যাওয়ার এটি ঘটে। এই ফলাফল এটিই নির্দেশ করে যে, মুন্তিক্যয় পানি ঘাটতি হলে মূল ও পাতার সাইটোকাইনিন এরং আ্রাবসিসিক এসিডের পারন্দ্রপারক ক্রিয়া উদ্ভিদে গাস বিনিময় এবং পত্রেরন্ধ্রের আচরণ্ড বের আহরের বেরেরের আঞ্জিকারী দ্রব্য বিস্তার (Distribution of assimilates) : যে সমস্ত শস্যের অর্থনৈতিক ফলন হলো মোট ফলনের কিছু অংশ, তাদের ক্ষেত্রে আন্তীকারী দ্রব্য বিস্তারের উপর, অর্থাৎ ফলন– তেরিকারী (yield Producing) অঙ্গে আন্তীকারী দ্রব্য স্থানান্তর, পানি ঘাটতির গুরুত্বপূর্ণ প্রভাব আছে। বর্তমানে এটি জানা গেছে যে, আন্তীকারী দ্রব্য স্থানান্তরে পথ, ফ্রোয়েম, পানি ঘাটতিতে যুব প্রতিরোধী। গম এবং Lolium temelentum এর আন্তীকারী দ্রব্য চলাচলের হার পানি ঘাটতি – ৩.০ মেগাপ্যাসকেল হলেও অপরিবর্তিত থাকে।

তা সঞ্জেও, সাধারণভাবে আন্টীকারী দ্রব্য স্থানান্তর পানি ঘাটতির জন্য প্রভাবিত হয়, কারণ পানি গাটতির জন্য সালেকসংশ্রেমণের হার, সালোকসংশ্লেষণে উৎপাদিত দ্রব্যের ব্যবহারের হার অথবা ফ্লোয়েমের বোঝাইকরণ এবং খালাসকরণ (loading and unloading) প্রভাবিত হয়। যেমন গোল আলু এবং গমের দানা ভর্তির সময়, উৎস-পাতার সালোকসংশ্লেমণ হ্রাসের জন্য আন্টীকারী দ্রব্য পরিবহণ হ্রাস পায়।

শস্য উদ্ভিদের বিভিন্ন অঙ্গে আন্তীকারী দ্রব্য প্রকৃত বিস্তারের উপর পানি ধাটতির প্রভাব নির্ভর করে উদ্ভিদের বৃদ্ধির পর্যায়, পীর্ডনের মাত্রা। বিভিন্ন অঙ্গের পানি পীড়নে সংবেদনশীলতার মাত্রার উপর। যেমন– গমের দানা ভতির সময়, দানার বৃদ্ধির চেয়ে পাতার সালোকসংশ্লেষণ পানি ঘাটতিতে বেশি সংবেদনশীল এবং আস্তীকারী দ্রব্য অগ্রাধিকার ভিন্তিতে ক্যানোগির নিচের পাতা, কান্ড, মূল ও ক্রাউন থেকে মঞ্জরীতে স্থানান্তরিত হয়।

অঙ্গজ অবস্থায় মূল পাতা ও কাণ্ডে সঞ্চিত আত্তীকারী দ্রব্য, পরবর্তী বৃদ্ধির জন্য আত্তীকারী দ্রব্য গুরুত্বপূণ উৎস হিসেবে কাজ করতে পারে। পর্যাপ্ত পানি থাকলে, সালোকসংশ্লেষণের মাধ্যমে নব্য তেরি আত্তীকারী দ্রব্য জনন বৃদ্ধিতে ব্যবহাই হয়, কিন্তু পানি ঘাটতির জন্য নব্য তৈরি আত্তীকারী দ্রব্য কম হওয়ায় সঞ্চিত আন্টীকারী দ্রব্য স্থানান্তর দানায় বেশি হয়। একটি পরীক্ষার ফলাফল থেকে জানা গেছে যে, প্রকট পানি ঘাটতি অবস্থায় যব এবং গমের দানার কার্বোহাইডেটের দুই-তৃতীয়াংশ এসেছে দানা ভর্তির আগে তৈরি সঞ্চিত আন্টীকারী দ্রব্য থেকে।

পানি ব্যবহারে দক্ষতা (Water use efficiency)

পানি ব্যবহারে দক্ষতা(W)। বলতে বোঝায়, যে দক্ষতায় পানি ব্যবহার করে শুষ্ণ পদার্থ (D) তৈরি হয়,

অর্থাৎ $W=D/Tp\ldots$. (৬.৩) এফেরে, Tp হলো প্রস্বেদনের হার (

শদ্যের কান্যোপির পাতায় সালেকেসংশ্লেষণের জন্য বায়ুমণ্ডল থেকে কার্বন ভাই অপ্সাইড প্রবেশের সময় প্রস্কেননের মাধ্যমে শস্য পানিও হারায়, করেণ যে পথে কার্বন ডাই-অক্সাইড প্রবেশ করে সে পথেই জলীয় বান্স থের হয় (পত্রবন্ধের মাধ্যমে)। কার্বন ডাই-অক্সাইড গ্রহণ এবং পানি ত্যাগের প্রকৃত হার নির্ভির করে পাতার অভ্যন্তরে এবং বায়ুমণ্ডলে কার্বন ডাই-অক্সাইড এবং জলীয় রান্সের গ্রেডিয়েন্ট এবং ব্যাপন রোধকের উপর।

প্ তরাং, Tp = $\frac{\Delta c}{r_a + r_s}$ (১.৪) এবং সালোকসংশ্রেষণের হার (Pn) থলো,

P_n = Δe[´] P_n = Γ_a + r_s + r_m এবং পতোর অভ্যন্তরে যথ্যক্রমে জলীয় বান্স এবং কার্বণ ডাই অক্সাইডের ধনমাঞ্রার গ্রেডিয়েন্ট, r_aএবং r_s হলো জলীয় বান্সের ব্যাপনের বাট্রডারি স্তর এবং পত্রবন্ত্রীয় রোধক এবং r_a, r_s হলো অনুরাপ রার্বন ডাই-অক্সাইড ব্যাপনের রোধক এবং r_m হলো মেস্রোফিল রোধক, যাতে আন্তঃকোষীয় বায়ুপ্রকোষ্ঠ এবং ক্লোরোপ্লাস্টের মধ্যে কার্বন ডাই অক্সাইডের ব্যাপনের সকল রোধক অন্তর্ভুক্ত আছে। r_a = ১.৬ r_a এবং r_s = ১.৬r_s, কার্বন ডাই–অক্সাইড এবং জলীয় বাপের ব্যাপনের পার্থক্যের জন্য এটি হয়।

তাই একক পাতার জন্য, $W = \frac{\Delta c(r_a + r_s)}{\Delta c \ (r_a + r_s + r_m)}$ (৬.৬)

একক পাতার ক্ষেত্রে এই বিশ্লেষণ উপযোগী, কারণ পানি ব্যবহারে দক্ষতার উপর পরিবেশ এবং উদ্ভিদের বৈশিষ্ট্য উভয়েরই গুরুত্ব বিবেচনা করা হয়।

শস্য পর্যায়ে পানি ব্যবহারে দক্ষতা হলো, প্রতি একক ব্যবহৃত পানির সংথ মোট গুল্চ পদার্থ অথবা অথনৈতিক ফলনের অনুপাত। মাঠ পর্যায়ে মূল সংগ্রহ করা সম্ভব ২য় না বলে ভূ–পৃষ্ঠের উপরের শুক্ষ পদার্থের ভিন্তিতেই পানি ব্যবহার দক্ষতা নিরাপণ করা হয়। অপর একটি সমস্যা হলো মৃত্তিকা থেকে বাষ্পীভবনের জন্যও কিছু পানি নষ্ট এবং মাঠ পর্যায়ে মৃত্তিকার বাষ্পীভবন নির্ণয় খুব কঠিন। তাই প্রতি একক প্রস্কেদনে যে শুক্ষ পদার্থ তৈরি হয়, তাকে প্রস্কেদনীয় দক্ষত: (transpirational efficiency) এবং প্রতি একক বাষ্পীয় প্রস্কেদনের জন্য যে শুক্ষ পদার্থ তৈরি হয়, তাকে বলে পানি ব্যবহারে দক্ষতা।

পাতা পর্যায়ে কতকগুলো পরিবেশীয় এবং উদ্ভিদ প্রকরণ প্রস্বেদনীয় দক্ষতাকে প্রভাবিত করে। প্রধান পরিবেশীয় প্রকরণ হলো বায়ুর আর্দ্রতা। পাতার চারদিকের বায়ুর বান্স চাপের ঘাটতি বেশি হলে প্রস্বেদন বেশি হয়, কিন্তু সালোকসংশ্লেষণ বেশি হয় না, তাই প্রস্বেদনীয় দক্ষতা হাস পায়। বান্স চাপের ঘাটতির উপর তাপমাত্রার প্রভাব থাকায় উচ্চ তাপমত্র্য প্রস্বেদনীয় দক্ষতা হাস পরে এবং সর্বোচ্চ প্রস্বেদনীয় দক্ষতার জন্য সর্বোন্তম সৌরবিফিরণ আছে। অন্তঃস্থ রোধক কম এবং বাউন্ডারি গুররোধক বেশি এমন অবস্থা ব্যতীত পত্ররন্ধ বন্ধ থাকলে প্রস্বেদনীয় দক্ষতা বাড়বে। পত্ররন্ধ বন্ধকরণের মাধ্যমে পানি ঘাটতি প্রস্বেদনীয় দক্ষতা বৃদ্ধি করে, কিন্তু সেই সাথে কার্বন ডাই-অক্সাইড গ্রহণে অস্তঃস্থ রোধক বেশি হওয়ায় এই দক্ষতা কমে যায়, তাই পানি ঘাটতি হলে প্রস্বেদনীয় দক্ষতা থুব সামান্যই বাড়ে।

এটি জানা গেছে যে, কার্বন ব্যবহারের অন্তঃস্থ কৌশলের উদ্ভিদের প্রস্বেদনীয় দক্ষতার উপর যথেষ্ট প্রভাব আছে। CAM উদ্ভিদের পত্রব্রদ্র রাওে থোলা থাকে, যখন বান্স চাপের ঘাটতি কম, এবং দিনে পত্রব্রদ্র বন্ধ অবস্থায় কার্বন আন্তীকরণ হয়। এর জন্য এদের প্রস্বেদনীয় দক্ষতা খুব বেশি ; Agave-এ প্রতি গ্রাম পানির জন্য ০.০৫ গ্রাম কার্বন ডাই–অক্সাইড আন্তীকরণের মতো উচ্চমান পাওয়া গেছে। C₄ উদ্ভিদের সালোকসংশ্লেষণের হার বেশি, কারণ C₃ উদ্ভিদের এলের প্রব্রদ্ধীয় এদের অন্তঃস্থ রোধক অর্থেক বা এর চেম্বেও কম এবং C₃ উদ্ভিদের তুলনায় রোধক বেশি। ফলে C₄ উদ্ভিদের দক্ষতা C₃ উদ্ভিদের প্রায় দ্বিত্তণ (Rawson e tal., 1977)।

শস্য পর্যায়ে প্রস্বেদনীয় দক্ষতা কেবল পাতার প্রস্বেদনীয় দক্ষতার উপর নির্ভর করে না, সেই সাথে মৃত্তিকা থেকে বান্দীতবন এবং প্রতি একক ব্যবহাত পানিতে যাতে ফলন সর্বোন্তম হয় তার ব্যবস্থা করা দরকার। সর্বোত্তম ফলন নির্ভর করে কতকগুলো কৃষিতাত্বিক প্রকরণের উপর। যেমন, বপনের সময়, প্রাথমিক বৃদ্ধি সারের ব্যবহার এবং রোগবালাই, আগাছা এবং জলাবদ্ধতার জন্য ফলন হ্রাস পায়। সেই সাথে যদি বৃষ্টিপাতের দক্ষতা সর্বোত্তম করতে হয়, তাহলে গড়িয়ে যাওয়া (run off) এবং গভীর অনুস্ত্রবণ (deep percolation) কমাতে হবে।

পানি ঘাটতির অভিযোজন (Adaptation to water Deficits)

পানি ঘাটতি এলাকায় কোনো শস্যের সন্তোযজনকভাবে জন্মানোর ক্ষমতাকে গুৰুতা প্রতিরোধ (drought resistance) বলে। একটি নির্দিষ্ট পরিবেশে কোনো শস্যের ভালভাবে টিকে থাকা এবং জননের জন্য গঠনগত এবং কার্যাবলীর যেসব পরিবর্তন হয় তাকে বলে অভিযোজন (kramer, 1980)। Begg এবং Turner (1976) পানি ঘাটতির অভিযোজনের কৌশলকে অঙ্গসংস্থানিক এবং শারীরতান্ত্রিক এই দুম্ভাগে ভাগ করেছেন। পরবর্তীকালে Turner (1979) এই কৌশলকে তিনটি ভগে ভাগ করেছেন:

১. শুল্বতা এড়ানো (Drought escape) : মৃত্ত্তিকা এবং উদ্ভিদের পানি ঘাটতির পূর্বেই শস্য উদ্ভিদের জীবন চক্র সম্পূর্ণ করার ক্ষমতা।

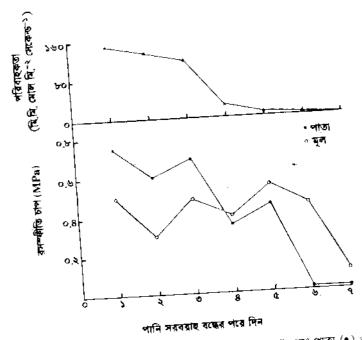
২, উদ্ভিদ কলায় নিমু পানির পটেনশিয়ালসহ শুল্কতা সহিষ্ণুতা (Drought tolerance with low tissue water potential) : উদ্ভিদ কলায় নিমু পানির পটেনশিয়াল বজায় রেখে তাৎপর্যপূর্ণ বৃষ্টিপাতহীন সময়ে টিকে থাকার ক্ষমতা (অর্থাৎ পানিবিয়োজন সহিষ্ণু)।

৩. উদ্ভিদ কলায় উচ্চ পানির পটেনশিয়ালসহ শুল্কতা সহিষ্ণুতা (Drought tolerance with high tissne water potential) : উদ্ভিদের কলায় উচ্চ পানির পটেনশিয়াল বজায় রেখে তাৎপর্যপূণ বৃষ্টিহীন সময়ে টিকে থাকার ক্ষমতা (অথৎে পানি বিয়োজন স্থগিত রাখে)। প্রত্যেক প্রকারের কৌশল ৬.১ নং সারণিতে দেখানো হয়েছে।

সারণি ৬,১ : শুক্ততা সহিষ্ণুতার কৌশল। Turner (1979) থেকে গৃহীত।

(ক) দুৰ	ত ফিনোলজিক্যাল (phenological) বিকাশ
	গশশীল প্লাশ্চিসিটি
નિંગુ જા	নির পটেনশিয়ালসহ শুল্কতা সহিষ্ণৃতা
	স্ফীতি বন্ধায় রাখা
	অসমোটিক সমন্বয়সাধন
۶.	ইলাসটিসিটি বৃদ্ধি
৩.	কোসের আকার হ্রাস
(খ) প্রার্চ	নবিয়োজন সহিষ্ণৃতা
	গ্রোট্যপ্রাজনীয় সহিষ্ণৃতা
	কোষ প্রাচীরের ধর্মাবলী
উচ্চ পাৰ্চি	নির পটেনশিয়ালসহ শুল্কতা সহিষ্ণুতা
	নি হারানো কমানে
	পত্রবন্ধীয় এবং কিউটিবুলার রোধক বৃদ্ধি
	সৌরবিকিরণের শোষণ হাস
ి.	পাতার ক্ষেত্রফল ধাস
(হ) পাঢ়ি	ন প্রিশ্যেষণ বজায় রাখা
	শন্দের ঘনত এবং গভীরতা বৃদ্ধি
	হাইড়োলিক প্ৰৱিব্যাহিত্যা বৃদ্ধি

শুষ্ণকতা এড়ানো (Drought escape) : গুষ্ণকা এড়ানো এবং সন্তোযন্ত্রনক ফলনের জন্য শাস্য উদ্ভিদের যে দুটি বৈশিষ্ট্য গুরুত্বপূর্ণ তা হনো দ্রুত ফিনোলজিক্যাল বিকাশ এবং বিকাশশীল প্রাশ্টিসিটি। যেখানে শস্যের জীবনকালে গুষ্ণতার সন্তাবনা বেশি, সেক্ষেত্রে শাস্যের জীবনকালের সময় কম হলে অধিকাংশ বছরেই ভাল ফলন হয়। তবে শস্যের জীবনকাল খুব কম হলেও ফলন কমে যায়। উপরস্ত, নিয়ত (determinate) শস্যে, ফলন এবং পত্বতাপ্রাণ্ডির সময়ের একটি সাধারণ সম্পর্ক আছে, তাই স্বন্ধ্য সময়ে যে শস্য পত্বু হয় তার ফলন সাধ্যরণত কম। যে বছরে বৃষ্টিপাত ভাল হয়, সে বছরে সেসব শস্যের ফিনোলজিক্যাল বিকাশ খুব দ্রুত হয় তাদের ফলন কম হয়।


বিকাশশীল প্লাম্ট্রিসিটি এই অসুবিধা দুর করতে সাহায় করে। অনুকূল পরিবেশে আধকাংশ শস্যের কিছু পরিমাণ বিকাশশীল প্লাম্ট্রিসিটি থাকে। যেমন– পানি ঘার্টভির ভুলনায় পানি থাচাঁত না থলে গমের পুম্পায়ন এবং শারীরবৃত্তীয় পক্ষতার (physiological naturity) সময় প্রলামত হয়, মঞ্জরী বহনকারী কুশির সংখ্যা বেড়ে যায়। প্রতি মঞ্জরীতে স্পাইকলেট এবং ফ্লোরেটের সংখ্যা লেড়ে যায় এবং সেই সাথে দানার আকার বাড়ে। উপরস্থু, বিকাশশীল প্লাম্ট্র্সিটির আরেকটি দিক হলে। যে, পানি ঘার্টতি হলে কতকগুলো শস্য, যেমন গম ও যবের বর্তমান সালোকসংশ্লেষণ কমে যাওয়ায় সঞ্চিত আঙ্ডীকারী ত্রব্য ফর্তিপুরণ করে। যদিও বিকাশশীল প্লাম্ট্র্সিটির আরেকটি দিক হলে। যে, পানি ঘার্টতি হলে কতকগুলো শস্য, যেমন গম ও যবের বর্তমান সালোকসংশ্লেষণ কমে যাওয়ায় সঞ্চিত আঙ্ডীকারী ত্রব্য ফর্তিপুরণ করে। যদিও বিকাশশীল প্লাম্ট্র্সিটিি নিয়ত শস্যে থাকতে পারে, তবে অনিয়ত শস্যেই এটি বেশি হয়, অধাৎ অন্য কোনো নাধা নাঞ্জেলে যতোকণ পর্যন্ত পানি পায় ততক্ষণ পর্যন্ত এদের পুম্পায়ন এবং বীজ তৈরি হয়। যার্দ্রিক উপ্রয়ে শস্য সন্দ্রহের মুবিধার্থে আনিয়ত শস্যের অধিকতর নিয়ত হওয়ার দিকে বাছাই করার জন্য বর্তমানে জেনে দের মুর্ঘির্যের সান্দ্রের জন্য অন্যান্য বৈশিষ্ট্য, যেমন– বীজ ফেটে যাওয়া (shattering) প্রতিরোধিতা বাছাই করা অধিক যুক্তিসংগত।

শুক্ষতা এড়ানোর বৈশিষ্ট্য, বিশেষ করে আগামতা (earliness) প্রথর্তন, বর্তমানকাল প্রশ্ব শুক্ষতা প্রতিরোধীতা উদ্ভাবনে উদ্ভিদ প্রজননের একটি শুরুত্বপূর্ণ অবদান। তথাপিও অধ শুক্ষ স্বঞ্চলে অথবা এমনকি নাতিশীতেয়ে এবং দ্রীষ্মমণ্ডলীয় অঞ্চলের শস্য শুক্ষতার কবলে পড়ে; তাই শসেরে শুক্ষতা সহিয়্যু বৈশিষ্ট্য থাকা সুবিধ্যস্তনক।

নিমু পানির পটেনশিয়ালসহ শুল্কতা সহিষ্ণুতা (Drought tolerance with Low Tissue water Potential)

(পানিধিয়োজন সহিষ্ণু) (Dehydration to lerance) : পানি বিয়োজন সহিস্কৃতার দুটি গণন কৌশন হলো কোযের রসম্ফৌতি বজায় রাখা এবং পানি বিয়োজন সহ করা (সারণি ৬.১)। শসা উদ্ভিদের অনেক প্রাণরাসায়নিক, শারীরতাত্ত্বিক এবং অঙ্গসংস্থানিক বৈশিষ্ট্য পাতার রসম্ফৌতিও সংবেদনশীল। তাই, পাতার পানির পটেনশিয়াল কমে গেলে, উদ্ভিদের শারীরতাত্ত্বিক প্রক্রিয়া চালানোর জনা কোষের রসম্ফীতি বজায় রাখা অত্যাবশ্যকীয়। রসম্ফীতি বজায় রাখার প্রধান কৌশন হলো অসমোটিক সমন্বয় সাধন, অর্থাৎ পানি ঘটতি হলে দ্রব জমা করা, এতে অসমোটিক পটেনশিয়াল কমে যায়, তাই কোযের রস্ফ্টীতি চাপ বেড়ে যায়। অনেক শস্য উদ্ভিদের বিদের্গ্র রাখার প্রধান অসমোটিক সমন্বয় সাধন, অর্থাৎ পানি ঘটতি হলে দ্রব জমা করা, এতে অসমোটিক পটেনশিয়াল কমে যায়, তাই কোযের রস্ফ্টীতি চাপ বেড়ে যায়। অনেক শস্য উদ্ভিদের বিদ্য অসমোটিক সমন্বয় সাধন দেখা গেছে এবং এর জন্য পাতার নিমু পানির পটেনশিয়ালে পাত্ররদ্ধ থোলা থাকে ও সালেকেসংশ্লেষণ সংঘটিত হয় এবং পাতার গুটানো (rolling) এবং মৃত্যু খুব কম পানির পটেনশিয়াল না হওয়া পর্যন্ত বিলম্বিত হয়। অসমোটিক সমন্বয় সাধনের জন্য কোনে। কোনে। ফেত্রে পূর্ণ রসম্ফ্রিতি দেখা গেছে, কিন্তু সবক্ষেত্রই পর্ণ রসম্ফ্রিতি বজায় রাখার একটা **১**৩৬

সীমা আছে। এটি এবং পাতার রসস্ফীতি বন্ডায় থাকা সন্ত্বেও পত্রবন্ধের পরিবাহকতা এবং সালোকসংশ্বেষণের হার কমে যাওয়া নির্দেশ করে যে, মৃত্ত্বিকার কম পানি বিটগের রসস্টীতিকে রাতিল করে দেয়। মৃত্তিকার পানির ক্রমহাসমান অবস্থায় যদি মূলেও অসমোটিক সমন্বয় সাধন হয়, কেবল তখনই বিটপের বৃদ্ধি বজায় রাখতে অসমোটিক সমন্বয়সাধন কার্যকর।

চিত্র ৬.২ : পানি সরবরাহে বন্ধের পর ভুট্টার পাতাব পরিবাহকতা (≰) এবং পাতা (●) ও মূলের (০) রসম্ফীন্ডি চাপের পরিবর্তন।

মটরের মূলে অসমোটিক সমন্বয় সাধন হয় (Greacen and Oh, 1972) এবং পানি ঘাটতির জন্য ভুট্টার পাঁতার তুলনায় মূলে কম পানির পটেনশিয়াল পাওয়া গেছে (Sharp and Davies, 1979)। যেহেতু পূর্ণ রসম্ফীতি অবস্থায় ভূটার অবস্থায় ভূটারে অসমোটিক পটেননিয়াল পরিমাপ করা হয়নি, পাঁতা ও মূলের অসমোটিক পটেনশিয়ালের পার্থক্য হতে পারে দুগুকার কোষের স্থিতি স্থাপকতার (elasticity) পার্থক্যের কারণে। তবে ৬,২নং চিত্রে দেখা যায় যে, গুকানো চক্রে (drying cycle) পাতার রসম্ফীতি চাপের তুলনায় মূলের রসম্ফীতি চাপ বেশি সময় বজায় থাকে। লিউপিনু (lupin) ুনিয়ে বর্তমানের গবেমণার ফলাফল থেকে জানা যায় যে, পূর্ণ রসম্ফীতিতে ধাতীত, পাতার অসমোটিক পটেনশিয়াল মূলের তুলনায় বেশি। Lupinus angustifolius তুলনায়, মূলের অসমোটিক সমন্বয় সাধন নগণ্য (সারণি ৬.২)। সম্পূর্ণ মূলের তুলনায়, মূলের বর্ধনশীল অগ্রভাগের অসমোটিক সমন্বয় সাধন বেশি, কারণ মূলের বৃদ্ধির (ভৌত বিধা অতিক্রম করার জন্য, যা মৃত্তিকার পানির পরিমাণ হাসের সাথে বৃদ্ধি পায়, মুলের অগ্রভাগকে চাপ প্রয়োগ করতে হয় (Greacen and oh. 1972)। পত্রবক্সীয় পরিবাহকতা এবং সালোকসংলেষণ ও প্রম্বেদনের হারের উপর কোনো প্রভাব ছড়াই, মৃত্তিকার দুই তৃতীয়াংশ পর্যন্ত লভ্য পানিশোষণ করা যেতে পারে (Burch et al., 1974)এবং মৃত্তিকার উপরের স্তর থেকে প্রথমে পান্দি পরিশোষিত হয়, এই দুটি পর্যবেক্ষণ জোরালোভাবে নির্দেশ করে যে, মৃত্তিকার প্রোফাইলের নিদ্ধাংশনের মূলের বর্ধনশীল অগ্রন্ডাগ প্রথমে মৃত্তিকার পানি ঘাটতি অনুভব করে (sensors)। সুতরাং বিটপের বৃদ্ধি নিয়ন্ত্রণকারী হরমোনের সমতা বজায় রাখতে ফুলের অগ্রভাগের অসমোটিক সমন্বয় সাধন খুবই গুরুত্বপূর্ণ।

পানিবিয়োজন সহিষ্ণুতা : পানি বিয়োজন সহিষ্ণুতা আগবিক পয্যয়ে ঘটে এবং ঝিল্লীর (membrane) গঠন ও এনজাইমের ক্রিয়ার উপর এক নির্ভর করে। Gaff (1980) এর মতে, এটি নির্ভর করে ভৌত ক্ষতি থেকে কোষের প্রতিরোধের ক্ষমতা, ঝিল্লীর ক্ষতি প্রতিরোধের ক্ষমতা এবং ঝিল্লী ও সাইটোপ্লাজমের প্রোটিন নষ্ট ২ওয়া প্রতিরোধের ক্ষমতার উপর। অসমোটিরক সমন্বয় সাথন উদ্ভিদের পানিবিয়োজন সহিষ্ণুতা বৃদ্ধি করে (Blum and Ebercon, 1981)। সারণি ৬.২–এ চারটি লিউপিন (Lupinus) প্রজাতির পাতা ও মূলের পূর্ণ রসস্ফীতি অবস্থায় অসমোটিক পটেনশিয়াল.. যা পর্যাপ্ত পানিতে এবং প্রভাত–পূর্ব (predawn) পাতার পটেনশিয়াল –১.৫ থেগাপ্যাসকেলে থাকে এমন পানিতে রাখা হয়েছিল।

্র্রজাতি	পূর্ণ রসাম্ফ্রীতিতে অসমোটিক পটেনশিয়াল (মেগাপ্যাসকেল)	অসমোটিক সমন্বয় সাধন (মেগাপ্যাসকেল)		অসম্বেটিক সাধন		ক সমন্বয় গসকেল)
· · · · · · · · · · · · · · · · · · ·	পানি ঘাটতি পাতা	পানিযুক্ত	পাতা–	পানি ঘাটতি মূল	भानियूर	৽মুল
L. attanticus	- 208	-0.68	0,82	-0.05	ં ગ	0.05
L. pilosus	- 2, 22	૦્વક	0.86	- 0.80	- 0,85	- 0.02
L. luteus	-0.20	- 0.9b	0,50	-0.0%		0,08
L angustifolius	- 2,0b	- 0,98	0,58		0.0¥ 	<u>چ</u> ر و

H'siao এবং তাঁর সহকর্মীরা (1984) এটি খুব স্পষ্টভাবে প্রমাণ করেছেন ; তাঁরা দেখিয়েছেন যে, পাতার সকল পানির পটেনশিয়ালেই ধানের পাতার মৃত্যুর শতকরা হার হাসের সাথে প্রায় ০.৫ মেগাপাসকেল অসমোটিক সমন্বয়সাধন সম্পর্কযুক্ত। গুদ্ধ বায়ুমণ্ডলে থাকার জন্য মূলের তুলনায় বিটপ প্রকট পানিধিয়োজন পরিবেশে থাকে, ঝিল্লীর অখন্ডতা রক্ষা করতে এবং গুদ্ধ পরিবেশে টিকে থাকার জন্য বিটপ এবং পাতার অসমোটিক সমন্বয় সাধনের কিছু তাৎপর্য আছে।

Turner (1979) যুক্তি দেখিয়েছেন যে, শস্য উদ্ভিদে পানিবিয়েজন স্থগিতকরণের তুলনায় পানিবিয়োজন সহিয়্থতার উপর কম গুরুত্ব দেয়া উচিৎ, কারণ শস্য উৎপাদনে টিকে থাকার তুলনায় শস্যের ফলনের উপর বেশি গুরুত্ব দেয়া হয়। তবে যেথানে অনির্ধারিত পানি ঘাটতি হয়, সেখানে ফলনের জন্য সালোকসংশ্লেষী কলা অথবা বর্ধিষ্ণু অগ্রভাগ টিকে থাকা প্রয়োজন এবং এগুলো সুষ্পষ্টভাবে পানি বিয়োজন সহিষ্ণুতার কৌশনের গবেষণা।

অভাগো পুনাহতারে নাম দেয়ের তথ্য উচ্চ পানির পটেনশিয়ালসহ শুল্কতা সহিষ্ণুতা (Drought Tolerance with high Tissue Water potential) : পানি পরিশোষণ বৃদ্ধি করে অথবা পানি হারানো হ্রাস করে শস্য উদ্ভিদে পানিবিয়োজন স্থগিত করা যায় (সারণি ৬.১)।

পানি পরিশোষণ বৃদ্ধি (Increase of water absorption) : মূনের গভীরতা এবং দনত্ব বেশি হলে পানি পরিশোষণ বেশি হয়। যেহেতু নিমু পানির পটেনশিয়ালে অসমোটিক সমন্বয় সাধনের হলে পানি পরিশোষণ বেশি হয়। তাই বেশি আয়তনের মৃত্তিকা থেকে পানি সংগৃহীত হয়। অবশ্য জন্য মূলের বৃদ্ধি বেশি হয়, তাই বেশি আয়তনের মৃত্তিকা থেকে পানি সংগৃহীত হয়। অবশ্য জন্য এবং তাঁর সহকর্মীরা (1983) মন্তব্য করেছেন যে, অসমোটিক সমন্বয় সাধনের জন্য Jordan এবং তাঁর সহকর্মীরা (1983) মন্তব্য করেছেন যে, অসমোটিক সমন্বয় সাধনের জন্য কেবল অতিরিক্ত কয়েকদিন প্রস্কেদন এবং শারীরতান্ধিক কার্যাদি চলে, তাই ফলনের উপর এর প্রভাব সামান্যই। McGowan এবং সহকর্মীরা (1984) মন্তব্য করেছেন যে, পাতার অসমোটিক সমন্বয়ের জন্য মাঠে জন্মানো গমের পানি পরিশোধণের উপর যথেষ্ট প্রভাব আছে। যে বছর পাতার অসমোটিক সমন্বয় হয়েছিল তার তুলনায় যে বছর পাতার অসমোটিক সমন্বয় হয়নি সেই বছরে মূলের দৈর্ঘ্য বেশি এবং মৃত্তিকার অধিক গভীরতা থেকে পানি পরিশোষণ করলেনও, যে বছর মৃতোর অসমোটিক সমন্বয় হয়েছিল সে বছর মৃত্তিকা থেকে ২৫ মিলিমিটার অতিরিক্ত পানি পরিশোষিত হয়েছিল এবং অধিক সময় পাতার রসম্ফীতি বরুয়ে ছিল।

নারলোগত ব্যয়বন্দের সানি পরিশোষণের দ্বিতীয় নিয়ামক হলো পানি প্রবাহের হাইড্রোলিক মৃত্তিকা থেকে উদ্ভিদের পানি পরিশোষণের দ্বিতীয় নিয়ামক হলো পানি প্রবাহের হাইড্রোলিক রোধক। মৃত্তিকা এবং বিটপের মধ্যে নিমু হাইড্রোলিক রোধকের তুলনায়, উচ্চ হাইড্রোলিক রোধকের জন্য মূলের চেয়ে পাতায় অপেক্ষাকৃত কম পানির পটেনশিয়াল হয়। বিভিন্ন প্রজাতির রোধকের জন্য মূলের চেয়ে পাতায় অপেক্ষাকৃত কম পানির পটেনশিয়াল হয়। বিভিন্ন প্রজাতির রোধকের জন্য মূলের চেয়ে পাতায় অপেক্ষাকৃত কম পানির পটেনশিয়াল হয়। বিভিন্ন প্রজাতির রোধকের জন্য মূলের চেয়ে পাতায় অপেক্ষাকৃত কম পানির পটেনশিয়াল হয়। বিভিন্ন প্রজাতির রোধকের জন্য মূলের চেয়ে পাতায় অপেক্ষাকৃত কম পানির পটেনশিয়াল হয়। বিভিন্ন প্রজাতির মধ্যে হাইড্রোলিক রোধকের পাথকৈয় আছে এবং জাইলেমের ব্যাস পরিবর্তনের মাধ্যমে এর মধ্যে হাইড্রোলিক রোধক উদ্ভিদ বায়েরীয় পীড়নে অধিক এবং মৃত্তিকার পানি ঘাটতিতে কম সংবেদনশীল।

পানি হারানো হ্রাস (Reduction of water loss) : যে সমন্ত নিয়ামক, যেমন পত্রব্জীয় পরিবাহকতা হাস, পাতা গুটানো (rolling) এবং পাতার ক্ষেত্রফল কমানো, পানি হারানো হাস করে পানিবিয়োজন হুগিত রাখে তা আবার শস্যের ফলনকে হ্রাস করে (Turner, 1979) । দিনের করে পানিবিয়োজন হুগিত রাখে তা আবার শস্যের ফলনকে হ্রাস করে (Turner, 1979) । দিনের করে পানিবিয়োজন হুগিত রাখে তা আবার শস্যের ফলনকে হ্রাস করে (Turner, 1979) । দিনের করে পানিবিয়োজন হুগিত রাখে তা আবার শস্যের ফলনকে হ্রাস করে (Turner, 1979) । দিনের করে পানিবিয়োজন হুগিত রাখে তা আবার শাস্যের ফলনকে হ্রাস করে (Turner, 1979) । সংকটকালীন সময়ে যখন বান্দ চাপের ঘাটতি প্রকট থাকে, সে সময় পানি হারানো হ্রাস পায়, কিন্তু সকালে এবং বিকেলে যখন বান্দ চাপের ঘাটতি কম, তখন সালোসংশ্লেষণ চলতে থাকে, তাই সকালে এবং বিকেলে যখন বান্দ চাপের ঘাটতি কম, তখন সালোসংশ্লেষণ চলতে থাকে, তাই বান্দ চাপের ঘাটতি পানি ব্যবহারে দক্ষতা বৃদ্ধি করে। দুপুর পত্রবন্ধ্র বন্ধ হওয়া, এবং পতো মিইয়ে পড়া অথবা গুটিয়ে যাওয়ার জন্যও এরকম হয়। একইভাবে শস্য উদ্ভিদের জীবনকালের প্রথমের দিকে সালোকসংশ্লেষণ এবং পানি ব্যবহার কম হলে, পুন্দায়নের পরবর্তী সময়ের জন্য পানি সংরক্ষণের মাধ্যমে ফলন বেশি হয়।

পানি হারানো হ্রাসের জন্য পত্রবন্ধ বন্ধ হওয়া একটি শক্তিশালী ব্যবস্থা ; পূর্বেই উল্লেখ করা পানি হারানো হ্রাসের জন্য পত্রবন্ধ বন্ধ হওয়া একটি শক্তিশালী ব্যবস্থা ; পূর্বেই উল্লেখ করা হয়েছে এটি অ্যাবসিসিক এসিড এবং সাইটোকাইনিন উভয়েরই নিয়ন্ত্রণে বলে মনে হয়। উপরস্থু, পাতার পানির পটেনশিয়ালের কোনো পরিবর্তন না ঘটিয়ে, বায়ুর বাষ্প চাপের ধাটতি পত্রবন্ধের পরিবাহকতার উপর প্রভাব আছে।

সংকটকালীন সময়ে দুপুরের দিকে পাতা গুটানোর জন্য পানি হারানে হাস পায়। পাতার সংকটকালীন সময়ে দুপুরের দিকে পাতা গুটানোর জন্য পানি হারানে হাস পায়। পাতার বুলিফরম (builiform) কোযের রসম্ফীভির উপর পাতার গুটানোর মাত্রা নির্ভর করে। সংকটকালীন স্বময়ে পানি হারানে। হাস হওয়ায় পাতার কলার পানিবিয়োজন স্থগিত হয় এবং দৃত্তিকার পানি ঘটতিও কম হয়।

সক্রিয় অথবা নিশ্ক্রিয় পাতার চলন, অথবা পত্রপষ্ঠের রোম (pubescence) ধর্জি অথব পত্রপৃষ্ঠে মোমের বৃদ্ধিজনিত (waxiness) কারণে পাতা কতৃক সৌরবিকিরণের সমন্তেরালে পারে। পানি ঘাটতির জন্য কতকগুলো শস্য উদ্ভিদের আপতিত সোরবিকিরণের সমন্তেরালে পাতার সক্রিয় চলন দেখা যায়। নিশ্ক্রিয় মিইয়ে পড়া অথবা পাতা গুটানোর জনাও শস্য কর্তৃক সৌরবিকিরণ শোষণ কম হয়, এবং আনুভূমিক (horizontal) ও গুটায় না– এমন পাতার তুলনায় কম পানি হারায় ও পানি ব্যবহারে দক্ষতাও অনেকাংশে বৃদ্ধি পায়। পানি ঘটতির জন্য কোনো কোনো শস্য উদ্ভিদে পাতার রোমের এবং/অথবা মোমের আপ্তরণ বেড়ে যায় এবং উত্তয় অভিযোজনের জন্যই পাতা থেকে সৌরবিকিরণের বেশি প্রতিফলন হয় ও পানি হারানো কম হয়।

পানি ঘাটতির একটি উল্লেখযোগ্য প্রভাব হলে৷ শস্য উদ্ভিদের পাতার ক্ষেত্রফল হ্লাস পাওয়া এটি ইয় পাতার প্রসারণ হ্রাস পাওয়ায় অথবা পাতার বার্ধক্যপ্রাপ্তি এবং মৃতু েব্বরান্বিত হওয়ার জন্য। পত্র ক্ষেত্রফল সূচিক (Leal Area Index বা LAI) ৩ এর কম হলে, এর হ্রাসের সাথে সাথে শস্যের প্রক্ষেদনও হ্রাস পায়। সুতরাং শস্যের LAI কম হলে শস্যের প্রস্তেদন কমায়, মুন্তিকার পানির ঘাটতি কমায় এবং পাতার পানির পটেনশিয়াল ধীরে ধীরে হ্রাস পায়।

অতিরিক্ত পানিজনিত পীড়ন বা জলোবদ্ধতা (Water logging)

শস্য উদ্ভিদ এবং পরিবেশের সাথে গ্যাসীয় বিনিময় এবং বৃদ্ধি ও বল্পীয় প্রস্বেদনের জন্য পর্যাপ্ত পানি প্রয়োজন। খুব বেশি অথবা খুব কম পানির জন্য উপরোক্ত প্রক্রিয়া বহেত হলে প্রীড়নের সৃষ্টি হয় এবং এর ফলে শস্যের ফলন হসে পায়, এমন কি উদ্ভিদের মৃত্যু পর্যান্ত হতে পারে। অতিরিক্ত পানিজনিত প্রীড়ন (বন্যা অথবা জলাবদ্ধতা) বৃদ্ধি পায় এবং যখন শারীরতাত্ত্বিকভাবে সক্রিয় গ্যাস মৃত্তিকায় জমা এবং জলাবদ্ধ মৃত্তিকা রাসায়নিকভাবে অতিরিক্ত বিজ্ঞার্যিত হয়। এ অবস্থায় উদ্ভিদ ক্রমাণত শারীরতাত্ত্বিকভাবে খাপখাইয়ে নেয়ার চেষ্টা করে। শুব্দ পান্ধর বিনিময়ে উদ্ভিদে এমন কিছু পরিবর্তন ঘটে (যেমন পত্রস্কে বন্ধ এবং পাতার অকালবাধক্য) যা পরবতী সময়ে শস্য উদ্ভিদের টিকে থাকা এবং ভাল ফলনের জন্য সহায়ক হয়। এগুলোকে বলে জ্যাকলিমেটিক (acclimatic) বা নতুন পরিবেশে অভ্যস্তকরণ প্রতিক্রিয়া।

দক্ষিণমেরু ধ্যতীত পৃথিবীর স্বব্যই বন্যার কারণে জলবেদ্ধতার সৃষ্টি হয়। অতিরিক্ত পানি সেচন, সেচনালা থেকে পানি চোয়ানো, ভূ–নিমুস্থ আগকুইফারে পানির চলাচল এবং বন্যা নিয়ন্ত্রণকারী বাঁধের জনাও সাময়িক জলাবদ্ধতায় সৃষ্টি হয়।

মৃত্তিকার উপর জলাবদ্বতার প্রভাব (Effect of water logging on Soil)

(ক) ভৌত প্রভাব (Physical effects)

সাধারণত মৃত্তিকার আয়তনের শতকরা ১০ থেকে ৬০ ভাগ গ্যাস। ভাল গঠনের এবং সুনিক্ষানিত মৃত্তিকার পানি ও কঠিন পদার্থের তুলনায় গ্যাসীয় পদর্থের পরিমাণ বেশি: অক্সিজন গ্রহণ, কার্বন ভাই–অক্সাইড তৈরি এবং মৃত্তিকার অণুজীব কর্তৃক ডাইনাইটোজেন (N₂) সংবদ্ধন সত্ত্বেও সুনিক্ষানিত মৃত্তিকার গ্যাসের গঠন মোটামুটি অপরিবর্তনশীল ; কারণ মৃত্তিকা এবং বয়েুমণ্ডলের মধ্যে দ্রুও গ্যাস বিনিময় ২য়। কিন্তু মৃত্তিকার যদি গ্যাসীয় রব্রের মাত্রা শতকরা প্রায় ১০ ভাগে নেমে আসে, তাহলে গ্রাসীয় ব্যাপন প্রায় বন্ধ হয়ে যায়। বন্যা বা জলাবদ্ধতা প্রকৃতপথ্যে খুভিকার গ্যাসপূর্ণ বন্ধ কমিয়ে দেয়, এবং মৃণ্ডিকার উপরের বায়ুমণ্ডলের সাথে গ্যাস বিনিময়ের পরিবতে মৃত্তিকার পানিতে আগবিক ব্যাপন হয়। বায়ুর তুলনায় এই মৃত্তিকার পানিতে আমবিক ব্যাপন হয়। বন্দুর তুলনায় এই প্রক্রিয়া প্রায় ১০^৪ গুণ মন্থর। তাই মৃত্তিকার আঞ্চিন্ডেন সরবরাহ বন্ধ হয়ে খায় এবং মন্ত্রিকায় বিপাকের ফলে সৃষ্ট গ্যাসীয় পদার্থ জমতে পাকে '

জলাবদ্ধতার কয়েক ঘণ্টার মধেইে মূল এবং মৃত্তিকার অণুজীব পানির অথবং মৃত্তিকার অবশিষ্ট অক্সিজেন দ্রুত নিঃশেষ করে ফেলি, নাইট্রোজেন, কার্বনি ডাই- অক্সাইড, মিপ্রেন এবং হাইডোজেনের পরিমাণ বেড়ে যায়। গ্র্যাসীয় পদাথগুলো বুদবুদের আকারে নির্গত হয়। জলমগ্ন ধানক্ষেত থেকে একটি মৌসুমের বিভিন্ন সময়ে এই বুদবুদ পরীক্ষা করে দেখা গেডে যে, এগুলোর মাত্রার পরিবর্তন নিমুলিখিতভাবে হয় : নাইট্রেন্ডেন (১০ থেকে ৯৫%), থিথেন (১৫ থেকে ৭৫%), কার্বন ডাই–অক্সইড (১ থেকে ২০%) এবং হাইড্রোব্রেন (০ থেকে ১০%)। জলাবদ্ধতার জন্য স্টান্ডকা কর্তৃক সৌরবিকিরণ শোষণ, মৃত্তিকার তাপধারণ ক্ষমতা ও তাপমাত্রার পরিবর্তন হয় এবং মৃত্তিকার গঠনের ক্ষতি হয়।

(খ) তড়িৎরাসায়নিক পরিবর্তন (Electrochemical changes)

জনারদ্ধ মৃত্তিকার প্রত্যক্ষ ও পরোক্ষ তড়িৎরাসায়নিক পরিবার্চন ২য়া। একটি প্রত্যক্ষ এবং অতন্তি দ্রুত পরিবর্তন হলে। মৃত্তিকার দ্রবণ লঘু হওয়া। এর জন্য pH বেড়ে যায় এবং বৈদ্যুতিক পরিবাহিতা (electrical conductivity বা EC) এবং রেডঙ্গ (redox) পটেনশিয়াল হাসপায় বিষয় মৃত্তিকা জলাৰদ্ধ হলে pH বাড়ে এবং কারীয় মৃত্তিকার বিপরীত অবস্থা হয় ৷ আয়ন বিনিময় হলো মৃত্তিকরে কলয়েন্ডে ইলেকটোম্টটিক আকর্ষণে লেগে থাকা কর্মটায়ন এবং অধনায়নের মৃত্তিকার দ্রবণের আয়ন দ্বারা প্রতিস্থাপন। জলাবদ্ধাতার প্রভাবে মন্দ্রিকার বিজ্ঞারণ হওয়ার জন্য আয়ন বিনিময় বিক্রিয়া প্রভাবিত হয়। মৃষ্টিকার কলয়েডে বৈদ্যুতিক আধানের পরিবর্তন এবং অন্নু মৃত্তিকায় লৌহ (Ee¹⁺) এবং ম্যুম্পুনিছ ${
m M_n}^{2+}$), কারীয় মৃত্তিকায় কালসিয়াম (Ca $^{2+}$) এবং উভয় প্রকার মৃত্তিকায় HCO3 - বৃদ্ধির জন্য এণ্টি ঘটে।

(গ) রাসায়নিক রূপান্তর (Chemical transformation)

জলাবন্ধতার জন্য প্রধান প্রধান রাসায়নিক পরিবর্তন হলে। আগ্রজেন নিঃশেষ ২ওয়া, কাবন ডাই অক্সাইড জন্ম হওয়া, স্তৈব পদার্থের অবাত ভাঙন, ডাইনাইট্রোজেনের রূপন্তের এবং লৌহ ম্যাঙ্গানিজ এবং সালফেটের বিজ্ঞারণ , জলাবন্ধ মৃত্তিকার কর্যণযোগ্য স্তরের প্রতি হেক্টরে তিন টন পয়স্ত কার্বন ডাই- অক্সাইড জন্মতে পারে। কারণ কার্বন ডাই অক্সইড পানিতে দ্রবর্ণীয় এব রাসায়ানকভাবে সক্রিয়া, এটি কার্বেদিক এসিড এবং বাইকাবোনেট তোঁর করে এবং ছি যোগ কটোয়নের সাথে বিভিন্যা করে অন্তরণীয় কাবোনেট তেরি হয়। সুঁচালালিত মৃতিকরে তুলনায ভলাবন্ধ মৃত্যিকায় খুৰ ধীৰে জৈব পদাৰ্থের ভাষ্টন হয় এবং এক্ষেত্রে কিবল অথ্যখুন্ধীৰী নাদকটোরা অংশগৃহণ করে। যদিও অবাযুজীরী মন্তিকায় প্রাকৃতিক জেব পদার্থের ভাঙন খুব হীরে হয়, কি বিজ্ঞানণ অবস্থায় কীটনাশক, আগোডানশেক এবং ছন্ত্রাকবারকের ভাঙ্গন খুর দ্রুত ঘটে।

সুনিক্ষাশিত মৃত্তিকায় জৈব পদার্থ ভাঙ্গনের স্থায়ী বস্তু হলে। কাবন ডাই-অঝ্লাইড এন হিউমিক পদার্থ : কার্যন ডাই-অক্সাইড বয়েমণ্ডলে ফিরে থায়, অপরপক্ষে, কদম এন যায়। অ্যামোনিয়া আকারে যে নাইট্রোজেন মুক্ত হয় তা নাইটেটে পরিণত হয় এবং সালফার যৌগ সালফেটে জারিত হয়। মন্ডিকার জৈব পদার্থের অবাত ভাঙ্গনের প্রধান প্রধান স্থায়ী যৌগ হলো কার্বন ডাই-অক্সাইড, মিথেন এবং হিউমিক পদার্থ। অ্যামোনিয়াম নাইটোজেনের এবং সালফেট সালকারের স্থায়ী অবস্থা। কিন্তু অবায়ুজীবী ব্যাকটেরিয়ার বিপাকে অনেক প্রকার বস্তু তৈরি ২য় : এদের মধ্যে বেশ কিছু ক্ষণস্থায়ী যা সুনিক্ষাশিত মৃত্তিকায় হয় না। যেমন- অ্যামোলিয়া, কার্বন ডাই-অক্সাইড, কার্বন মনোঞ্জাইড, হাইড্রোজেন, হাইড্রোজেন সালফাইড, নাইট্রোজেন, নাইট্রোজেন মনোঝাইড, নাইটোজেন ডাই-অক্সাইড, নাইটোজেন পারঅক্সাইড, মিথেন, ইথানন, মিথনেল ইত্যাদি : জলাবদ্ধ মৃত্তিকায় জৈব নাইট্রোজেন থেকে অজৈব নাইট্রোজেনে রূপান্তর অ্যামোনিয়াম পর্যায়ে এসে থেমে যায়, কারণ অক্সিজেনের অভাবে এটি থেকে নাইটেট তৈরি হয় না। মাঠ পর্যায়ের পরীক্ষার ফলাফল থেকে জানা গেছে যে, ইউরিয়া অথবা অ্যামোনিয়াম সালফেট যা জলাবদ্ধ ধানের ক্ষেত্রে ছড়িয়ে (broadcast) দেয়া হয়, তার শতকরা ২০ ভাগ পর্যন্ত অ্যামোনিয়া গ্যাস আকারে নষ্ট হয়। পানিতে অ্যামোনিয়মের উচ্চ ঘনমাত্রা, মৃত্তিকার উচ্চ _DH, শৈবাল এবং নিমক্তিত উদ্ভিদের উচ্চ সালোকসংশ্লেষণ এবং উচ্চ তাপমাত্রা অ্যামোনিয়া উদ্ধায়ীকরণে (volatization) সাহায্য করে। জৈবিক নাইটোজেন সংবশ্ধনে জলাবদ্ধতা সহায়তা করে। যখন জলাবদ্ধ মৃত্তিকার অন্মিজেন এবং নাইটেট শেষ হয়ে যায় তখন অবায়ুজীবী ব্যাকটেরিয়া শ্বসনের সময় ইলেক্টন গৃহীতা হিসেবে মৃত্তিকার জারিত উপাদান, যেমন– ন্যাঙ্গানিজ (Mn⁴⁺) ও লৌহের (Fe³⁺) হাইড়াস অক্সাইড ও সালফেট (SO_4^{2+}) ব্যবহার করে এবং এদেরকে বিজ্ঞারিত করে যেমন Mn^2 + Fe^2 + এবং S^2 !

শস্য-উদ্ভিদের উপর জলাবদ্ধতার প্রভাব (Effects of Waterlogging on Crop Plants) (ক) মূলের বৃদ্ধি ও বিপাক (Root Growth and Metabolism) উদ্ভিদ কলার অক্সিজন সম্পূর্ণ নিঃশেষ হওয়ার (anoxia, অ্যানোক্সিয়া) আগেই, মূলের চারদিকে অতিরিস্ত পানির জন্য মূলের বৃদ্ধি ব্যাহত হয়। উদ্ভিদ হরমোন ইথিলিনের পরিমাণ বৃদ্ধি এবং অন্তঃস্থ অক্সিজনের মাঝারি ধরনের ঘাটতির (hypoxia, হাইপোক্সিয়া) জন্য এটি ঘটে। জলাবদ্ধ অবস্থায় ধানের বৃদ্ধি ভাল হয়। এর মূলের অন্তঃস্থ ইথিলিন তৈরির হার মন্থর, তাই জলাবদ্ধ অবস্থায় ধানের বৃদ্ধি ভাল হয়। এর মূলের অন্তঃস্থ ইথিলিন তৈরির হার মন্থর, তাই জলাবদ্ধ অবস্থায় মাঝারি পরিমাণ ইবিলিন তৈরি হয়। অপরপক্ষে, যেসব শস্য উদ্ভিদের, যেমন– সাদা সরিষা, ইথিলিন সংশ্লেশনের হার বেশি, তাদের খুব বেশি পরিমাণে ইথিলিন তৈরি হয় যা বৃদ্ধির জন্য ফতিকারক। হাইপোক্সিয়া এবস্থায়ও মূলের বৃদ্ধি ব্যাহত হতে পারে, কারণ- মূলের অস্থিজনের ব্যবহার এবং মূলে অক্সিজনের ব্যাপন রোধক খুব বেশি হওয়ায় মূলে অ্যানোক্সিক অবস্থার সৃষ্টি হয়। জলাবদ্ধতরে জন্য মূলের বৃদ্ধির দিন্দ পরিষত্তন হয় এবং মূলে গ্যাসপূর্ণ অ্যারেনকাইমা কোয তৈরি হয়। মূল এবং নাযবীয় বিটপের মধ্যে অস্তঃস্থ গ্যাসীয় চলাচল এর জন্য সুবিধাজনক বলে অ্যানোক্সিক পীড়ন পরিহারের এটি একটি কৌশল।

মৃত্তিকায় অক্সিজেনের অনুপস্থিতে কতকগুলো বিজারণ বিক্রিয়া সংঘটিত হয়। এই বিক্রিয়ায় সৃষ্ট কওকগুলো বিজারিত যৌগ (NO₂⁻, M_n²⁺, S⁻) এবং অণুজীবের মেটাবোলাইট এমন মাত্রায় জন্ম ২৩ে পারে যা মূলের বিপাকের জন্য ক্ষতিকারক। অক্সিজেন ঘটতি মূলে অবাত বিপাকে সৃষ্ট কওকগুলো যৌগ খুব বেশি পরিমাণে জন্ম হলে মূলের ক্ষতি করে। চোয়ানো এবং ডিনাইটিফিকেশনের জন্য মৃত্তিকার নাইটেজেনের পরিমাণ হ্রাস পেতে পারে।

লেগ্যুমজাতীয় শস্য উদ্ভিদের অবুর্দ কম হয় এবং নাইট্রোজিনেজ এনজাইমের কার্যকর্ত্রেত হাস পায়। প্রাকৃতিক পরিবেশে কতকগুলো শস্য উদ্ভিদে ভেসিকুলার-আরবাসকুলার মাইকোরাইজা (vesicular-arbuscular mycorrhiza) দেখা যায়। এরা ফসফেট এবং আরও কতকগুলো মৃত্তিকায় অচল মৌল উপাদ্যনের মূল কর্তৃক পরিশোষণে সহায়তা করে। মূলে মাইকোরাইজা– তৈরিতে জলাবদ্ধতা ব্যাহত করে।

জলবেদ্ধতার জন্য বিটপে নাইট্রেজন ফসফরাস এবং পটাশিয়ামের মাত্রা হাস পায় ; আয়ন পরিশোষনে বিষ্ণু ঘটায় এন্টি হয় অসন্তঃস্থ অক্সিজন ভালভাবে ধরে রাখার স্বিধার্থে জলাবদ্ধ উদ্ধিদের মূলের হাইপোডার্মিসে প্রচুব পরিমাণে লিগনিন এবং সুবেরিন জমা হয়, বিস্তু এর জন্য মূলে আয়ন চলাচলে বাধার সৃষ্টি হয়। দানাশসেরে বিটপে অন্যান্য মৌলের তুলনায় সোভিয়ামের পরিমণ বেড়ে যেতে পারে। লবণ-সংবেদনশীল প্রজ্ঞাতির এরকম সোভিয়াম বৃদ্ধির জন্য বৃদ্ধি ও ফলন হাস পার।

ঝ্যানোজিন্যা অবস্থায়, সাইটোক্রেম অক্সিডেজ থেকে ইলেকটন অক্সিনের ওনাওর ২৫৫ পারে না, তাই ইলেকটন প্রবাহ এছের মধ্যাম ATP উৎপন্ন হয় না। উপরস্থু, (এবস চঞে না NADH2, NADPH2 এবং PADH2 তৈরি হয়, তা ইলেকটন প্রবাহ তন্ত্রে জারিত হয় না বলে চঞ্চটি ধর্গ হয়ে যায়। কোয়ে প্রযাপ্ত শতির অভাবে কোয়ে বিভাজন তথা মূলের বৃদ্ধি বন্ধ হয়ে যায়।

বিভিন্ন প্রকার পীড়নের জন্য উদ্ভিদ কোষে সুনির্দিষ্ট পলিপেপটাইড প্রমুৱ পরিমাণে সংশ্লেষিত ২য়, যা জেল ইলেকটোফোরেসিসের সাহায়ে পৃথক করা সম্ভব। প্রভাবিক মাত্রার আরজেনের ওপস্থিতিতে ভূট্টার প্রাথমিক মূলে ২০০ এর বেশি পালপেপ্যাইড সনা জ করা হয়েছে। কিন্তু অক্সিজেনের ঘাটাঁত অবস্থায় প্রেটিন সংশ্লেষণ থুব কম হয়, কিন্তু RNA নিতর এক মন্দ গুপের পলিপেপ্যাইড সংশ্লেষিত হয় একে এবংহরীয় পলিপেপটাইড বলে। যা ব্যারবিয় মলে মন্পপ্রিত। প্রোটিন সংশ্লেষণের পার্চানের পারে এবংহরীয় পলিপেপটাইড বলে। যা ব্যারবিয় মলে মন্পপ্রিত। প্রোটেন সংশ্লেষণের পার্চানের পারে হার সংশ্লের ভূরি মলে প্রায় ৭৯ গুলীর মণ্ডেই মরা হয়ে হার্ট অবায়বীয় প্রোটনের তৎপর্য বোঝ্য কার্টনার তাবে এটা মনে রাখ্য দারকার যে, আগন্যের্যায় এবঞ্জার যেসব প্রণারামান্দ্রনিষ্টা স্বন্ধপ সময়ের জন্য হলেও কেয়েকে ব্যাচিয়ে রাখে তা উদ্ভিদের জন্য অত্যন্ত প্রয়োজনীয়।

(খ) বিটপের বৃদ্ধি ও বিপাক (Shoot growth and metabolism)

জনাবদ্ধতার জন্য বিউপের বিভিন্ন রকম পরিবতন হয়। এই পরিবতনের মারা অবশা নিজর করে অনেকগুলো পারস্পরিক সম্পর্কযুক্ত প্রকরণের উপর, যেমন - প্রজাতি অথব। জাত, এর বয়স অথবা বিকাশের পথায়, জলাবদ্ধতার শ্বায়িত্বকাল, গাভীরতা এবং সময়, মৃত্তিকার প্রকার এবং জলাবদ্ধতার সময়ে, এখন কি পূর্বে তাপমাত্রা এবং আলোঁ।

জলবেদ্ধতা এবং আনেগেরিয়াতে পাতার বৃদ্ধি খুব সংবেদনশীল। একটি পরীক্ষার ফলাফল থেকে জানা গেছে যে, আনেগিয়া ২ওয়ার ২৫ দিন পর গমের পাতার ফেব্রফল শতররা ৮৩ - শ এবং ৭৬ ভাগ, খ্রাস পায় যথাক্রমে ২১ এবং ৯ সেলসিয়াস তাপমান্ডায় : উভয়ক্ষে ব্রই পাতার প্রসারণ এবং কুশি (তরি বাধাগ্রস্থ হয়েছে: এই হ্রসের জন্য ইপিলিন দায়ী হতে পারে, কারণ Gramineae গেছের উদ্রিদের পাতার বর্ধনশীল গ্রেয়া মৃত্রিকা থেকে অথব। গোড়ায় লেগে গাঁরা পানি থেকে ত্রতি সহস্বেই ইথিলিন গৃহণ করে। একই কারণে কাণ্ডের বৃদ্ধি বন্ধ হয়ে যায় আন্দার্দ্ধিয়ার জন্য গুল প্রদান গৃহণ করে। একই কারণে কাণ্ডের বৃদ্ধি বন্ধ হয়ে যায় এর কারণ সন্থান আন্দার লসন বাধাগন্থ হয়, এবং ফাণ্ডিস্ত ফ্রেয়েন এবং মানে, শুন্দ পদাণ্ড চাহিদা না থাকার কারণে ম্যাল গুল্চ পদ্রথের স্থানান্তর কম হয়। যদিও জলাপদ্যতা সাধান্য ভাবে বৃদ্ধিকে বাধাগ্রস্ত করে, তথ্য কেরেনা কোনো শস্য উন্থিদের থ্যাক সন্য। কাণ্ড অথবা পার্বৃপ্তের ক্রত বৃদ্ধি ঘটায়। কোনো কোনো শস্য উদ্ভিদের কাল্ডের গোড়া অপরা হাইপেরে উটা ক্রিন্ডারে যায়, একে হাইপার্ট্টফি (hypertrophy) খলে। কটিস্কের হোম বড় হওয় এবং কতুক লাভা লাভ ভেঙে গ্যাসপূর্ণ অবকাশ (space) তৈরির জন্য এরকম ঘটে।

অনেক একবীজপত্রী ও দ্বিবীজপত্রী শস্য উদ্ভিদের কান্ডের অথবা হাইপোকটাইলের নির্মাণনত অংশ থেকে দ্রুত গতিতে অস্থানিক মূল নির্গত হয়। অকার্যকর আদি মূলের কাষাদি এই নতুন মল সম্পাদন করে এবং উদ্ভিদটিকে টিকে থাকতে এবং আংশিকভাবে স্বাভাবিক অবস্থা ফিরে পেতে সাহায্য করে। অন্যান্য মূল মরে গেলেও এই মূল বেঁচে থাকে, কারণ এই মূল পানিপৃষ্ঠের কাণ্ড থেকে উৎপন্ন ২য় এবং এখানে পানি ও অক্সিজেন পর্যাপ্ত পরিমাণে পাওয়া যায় এবং অব্যেরীয়তাবে পৃষ্ট বিধান্ড পনার্থ অনুপস্থিত। অনেকসময় অ্যারেনকাইম। কোষযুক্ত কাণ্ডের সাথে এদের সরায়ারি সংযুক্তির জন্য এদের অক্সিজেনের ঘাটতি হয় না। আরেকটি বৈশিষ্ট্য হলে এরা পানিতে ভেসে থাকে এবং আনুভূমিকভাবে বৃদ্ধি পায় (ডায়োঞ্জিটগিজম)। এ দুটি বৈশিষ্ট্যের জন্য বায়ু-পানির পৃষ্ঠ উর্বাগর মূল অবস্থান করে এবং এখানে বৃদ্ধির জন্য পর্যাপ্ত পরিমাণে দ্রীভূত অক্সিজেন থাকে।

জনবেদ্ধতরে জন্য পত্রবৃত্তের ইপিন্যসটিক (epinastic) বক্রতা দেখা যায়। জলাবদ্ধতার করেক খণ্টা বা কয়েক দিনের মধ্যেই, মূল দিয়ে বিটপে প্যানি প্রব্যাহের রোধক সাময়িক বৃদ্ধি পাওয়ায় পাতায় পানি ঘটতি হয়। ইপিনাসটির অ্যাকলিমেটিক তাৎপর্য হলো যে সৌরতাপ হাসের মাধ্যমে এই সংকটকালীন সময়ে প্রস্কেদন হাস করা।

জলাধদ্বতার কারণে পাতার বার্ধক্যপ্রাপ্তি ত্বরান্থিত হয় এবং অ্যাবসিসন ৫০ত হয়। একটি পরীক্ষার ফলাফলে দেখা গেছে যে, জলাবদ্ধতার ৪ থেকে ৫ দিনের মধ্যেই যবের পুরাতন পাতার ক্লোরো ফিলের পরিমাণ হাস পায়। পাতার অগ্রভাগ থেকে হলুদ হওয়া গুরু হয়। জাইলেম প্রবাহে সাইটোকাইনিন এবং জিবারেলিনের মাত্রা জলাবদ্ধতার প্রথম তিন দিনের মধ্যেই কমে খায়। মূলের অগ্রভাগ নষ্ট হয়ে যাওয়া অথবা খুব সীমিত বিপাকীয় কার্য হওয়ার ফলে এখানে হরমোন সংশ্লেষিত ২য় না। জলাবদ্ধতার কারণে পত্ররঞ্চ বন্ধ হয়।

যদিও জলাবদ্ধতার কারণে উদ্ভিদের প্রতিক্রিয়া সম্পর্কে এখনও অনেক কিছু জানা বাকি আছে, তথাপিও এ পর্যন্ত জলাবদ্ধ পরিবেশ এবং তা কিভাবে উদ্ভিদের বৃদ্ধি ও ফলনকে প্রভাবিত করে সে সম্পর্কে অনেক তথ্য সংগৃহীত হয়েছে। এগুলোর উপর ভিন্তি করেই প্রজননবিদরা জলাবদ্ধতা সহিষ্টু শস্যের জাত উদ্ভাবনে হয়তো সঞ্চম হবেন।

তাপজনিত পীড়ন (Temperature Stress)

শস্য উদ্ভিদের তাপশক্তির সমতা (Heat Energs Balance crop plant) : তাপশক্তির বিনিময়ের সমতার দিক থেকে উদ্ভিদকে প্রায় কৃষ্ণ বস্তু (black body) এলে গণ্য করা হয়। একটি নিদিষ্ট তাপমাত্রায়, উদ্ভিদে এবং উদ্ভিদ থেকে তাপশক্তির বিনিময়ের সমতা শূন্য। নিট বিকিরণ, শক্তি আত্তীকরণ এবং তাপের বিনিময় হলো প্রধান নিয়ামক যা উদ্ভিদের তাপশক্তির সমতাকে প্রভাবিত করে, এই সম্পর্ক নিয়ুলিখিত শক্তির বাজেট সমীকরণের সাহায্যে দেখানো যায় :

 $Q_I + Q_M + Q_P + Q_H + Q_E = 0 \dots (\mathfrak{H})$

Q। হলে। দিট সৌরবিকিরণ ; পরিপার্শ্ব থেকে নোযানের তুলনায় পাতা বেশি তাপশক্তি বিকিবন করলে এর মান ঝণাত্বক এবং পাতা বেশি সৌরবিকিরণ নোযণ করলে এর মান ধনাত্রক। বিকিরণের মাধ্যমে সূর্য থেকে পৃথিবী পৃষ্ঠে তাপশক্তি আগে যা উদ্ভিদ, মৃদ্ভিকা, এবং পানি শোষণ করে। আগার তাপীয় বিকিরণের (thermal radiation) মাধমে পৃথিবী পৃষ্ঠ তাপশক্তি হারায়। তাপীয় বিকিরণ, পৃথিবী পৃষ্ঠের অপেক্ষাকৃত নিমু তাপমাত্রার জন্য হয়, দীর্ঘ-তরঙ্গ দৈওের প্রথমের। (৩ থেকে ১০০ মাইক্রোমিটার), এবং বয়েুমণ্ডলের দ্বি–মেরু অণু, বিশেষ করে জলীয় বান্স কতৃক। প্রবলভাবে শ্যেষিত হয়।

Q_M হলে। বিপাকীয় শক্তি ; সুর্যালোকের উপস্থিতিতে সালোসংশ্রেষণের মধ্যমে শক্তি গৃহীত হয়, অপরপক্ষে অন্ধকার এবং ক্লোরোফিলবিহীন কলায় শ্বসনের মাধ্যমে শক্তি নিগত হয়। এ দুটি বিপাক প্রক্রিয়ার অত্যন্তগুরুত্ব সঞ্চেও তাপশক্তির সমতায় Q_M এর অবদান অতাস্ত কম, শতকরণ ১ থেকে ২ তাগ।

Qµ হলো ফাইটোমাস কর্তৃক ভমাকৃত তাপশক্তি। যখন পারিপ্রশ্বিক পরিবেশ থেকে তাগের তুলনায় বেশি তাপশক্তি গ্রহণ করে তখন ধৃত তাপশক্তি সাময়িকভাবে উদ্ভিদে জমা থাকে। এর ফলে ফাইটোমাসের তাপধারণ ক্ষমতার উপর নির্ভর করে উদ্ভিদে তাপমাত্রা বাড়ে।

QH হলো ইদ্রিয়গ্রাহ্য (sensible) তাপশক্তির (পরিবহণ এবং পরিচলন) স্থানান্তর এবং QE হলো লীন তাপের বিনিময় (latent heat exchange)।

তাপশন্ডির সমতার ফেত্রে পরিবহণ এবং পরিচলন (ইন্দিয়গাহা তাপ বিনিময়) এবং বাঙ্গীভবন ও ঘনীভবনের (নীন তাপ বিনিময়) গুরুত্ব খুব বেশি। ওবে শস্য উদ্ভিদের ফেত্রে পরিবহণের গুরুত্ব কম। বিকিরণের সমতা ধনাত্বক হলে, সাধারণও পরিচলনের মাধ্যমে উদ্ভিদ থেকে তাপশক্তি নির্গত হয় (অথাৎ Q_H ঝণাত্বক)। অপরপফে, বায়ুর তুলনায় যদি উদ্ভিদ শীতন হয়, তখন পরিবেশ থেকে তাপশক্তি উদ্ভিদে স্থানান্তরিত হয় (Q_H ধনাত্বক)। বায়ুপ্রবাহের বেগ বেশি হলে এবং পতো ফুদ্রাকার হলে পরিচলন বৃদ্ধি পায়।

উদ্ভিদের তাপীয় সমতা কেবল পরিবেশের ভৌত প্রকরণ দ্বারা নিয়ন্ত্রিত হয় না, কারণ প্রস্কেদনের সময় পত্রবন্ধ্রর নিয়ন্ত্রণ শারীরতাদ্ধিক প্রক্রিয়া দ্বারণও প্রভাবিত হয়। যথন উদ্ভিদ প্রস্কেদন হয়, তথন QE ঝণাত্রক এবং যথন প্রাত্যর উপর শিশিরবিন্দু ঘনীভূত (condensation) হয়, তথন এটি ধন্যান্নক।

তাপীয় সমগ্র সমীকরণ অথবা প্রস্কেদনের হার থেকে প্রস্কেদনের শীওনীকরণ প্রভাব নিগণ। করা নায়। পানিকে ব্যাহ্প পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন হয়, সেই পরিমাণ শক্তি ইরিস প্রস্কেদনের সময় ভারতান তাই কথানো কথনো ০০০ এব পরিবার ১০০ ব্যাহার বরা হয়। এক্ষেত্রে E হলো যে পরিমাণ পানির বাল্গীতবন হয়েছে এবং ম হলো পানির বাল্গীতবনের নান তাপ (heat of vapourization)। Q_E হলো বাল্গীতবনের হার এবং পানির বাল্গীতবনের নীন তাপের ওপফল। প্রস্বেদনের হার প্রতি ঘন্টায় প্রতি বগ ডেসিমিটারে ১ গ্রাম পানি (অর্থাৎ ০.১ মিলিমিটার প্রতি ঘন্টায়) হলে উদ্ভিদ থেকে ০.১ ক্যালোরি প্রতি বর্গসেট্টিমিটার প্রতি মিনিট শক্তি হারায়। উদ্ভিদ পর্যান্ত পানি পেলে, বায়ুর তাপমাত্রা বেশি হলে জলীয় বান্দ কম থাকলে প্রস্কেদনের মাধ্যমে শীতনীকরণ বিশেষতাবে কার্যকর। যদি বায়ুপ্রব্যাহের জন্য প্রস্কেদন ত্বরান্বিও হয়, তাহলে উদ্ভিদ প্রহি পরিমাণে তাপশক্তি হারায় এবং পারিপার্শ্বিক বায়ুর তুলনায় পাডার তাপমাত্রা করোক ডিগ্রি খ্রাচু পরিমাণে তাপশক্তি হারায় এবং পারিপার্শ্বিক বায়ুর তুলনায় পাডার তাপমাত্রা করোক ডিগ্রি খ্রাহ্র নায়।

সৌরবিকিধণ খুব বেশি হলে প্রায়ই পরিচলন এবং প্রস্কেদনের মাধ্যমে উদ্ভিদ থেকে পর্যাপ্ত পরিমাণ তাপশক্তি স্থানান্তরিও হয় না। তাই পরিবেশের তুলনায় উদ্ভিদের তাপমাত্রা ১০° সেলসিয়াস পর্যন্ত বেড়ে যায়। ব্যতিক্রমমূলক ক্ষেত্রে ১৫ থেকে ২০° সেলসিয়াস পর্যন্ত বড়ে : আবার উদ্ভিদের বিভিন্ন অংশ বিভিন্ন রকম উত্তপ্ত হয়। শুধু যে বিভিন্ন পাতায় তাপমাত্রার পার্থক্য হয়, তাই নয়, একটি পাতার বিভিন্ন অংশেও তাপমাত্রার ভিন্নতা পরিলক্ষিত হয়। এই ঘটনা ঘটে রাতে শীতলীকরণের সময়। বায়ুপ্রবাহ না থাকলে, পাতার কিনারে এবং অগ্রভাগের তাপমাত্রা অন্যান্য অংশের চেয়ে কম। শিশির প্রথমে শীতল অংশে জমা হয় এবং অন্যান্য অংশের তুলনায় এই অংশে দ্রুত বরফ তৈরি হয়।

শস্য উদ্ভিদের উপর নিম্নতাপের প্রভাব (Influence of Low Temperature on Crop plant) : সর্বোন্ডম তামাত্রার চেয়ে কম তাপমাত্রায়, শস্য উদ্ভিদের বৃদ্ধির হার ও বিপাকীয় ক্রিয়াকলাপ হাস পায়। ফলে শস্যের জীবনচক্র সম্পূর্ণ করতে বেশি সময় লাগে; প্রত্যেক শস্যের একটি গড় সংকটকালীন তাপমাত্রা আছে যার কমে এদের যৌন জনন সাথকভাবে হয় না।

অব-গ্রীষ্মমগুলীয় এবং গ্রীষ্মমগুলীয় শস্য উদ্ভিদকৈ ০ থেকে ১০° সেলসিয়াস তাপমাত্রার পরিসরে রাখলে এদের বিপাক ফ্রিয়া, বিশেষ করে খসন অতি দ্রুত হ্রাস পায় এবং এর জন্য ব্যাপক ক্ষতি হয় ও কয়েক ঘন্টা ব্য কয়েক দিনের মধ্যে উদ্ভিদ মারা যেতে পারে। নিমু তাপে এসকল প্রজাতির ঝিল্লীর (যেমন- কোয ঝিল্লী) লিপিডের দশার পরিষ্ঠেন হয় (যেমন- তরল থেকে কঠিন) এর জন্য ঝিল্লী সংযুক্ত এনজাইমগুলো নিষ্ক্রিয় হয়, যেমন- মাইটোকনভিয়নের বিল্লীতে লেগে থাকা শ্বসনিক এনজাইম, এবং মূলের পানি ও খনিজ মৌল পরিশোষণ বিদ্বিত হয়। নাতিশীতোফা উদ্ভিদের ঝিল্লীর লিপিডে অপেক্ষাকৃত বেশি অসম্পক্ত ফ্যাটি এসিড থাকায়, এদের বিল্লী অধিকতর স্থায়ী এবং নিমু তাপমাত্রার ক্ষতি থেকে রক্ষা পায়।

সাধারণভাবে, নাতিশীতোফ্ট উদ্ভিদ ৫° সেলসিয়াসের উপরের ঠাণ্ডা তাপমাত্রায় সংবেদনশীল নয় এবং কেবল এদের কলায় বরফ তৈরি হলে ব্যাপক ফতি হয়। যেমন– অনেক বৃক্ষ প্রজাতির ফেব্রে দেখা গেছে যে, আন্তঃকোষীয় (extra cellular) বরফ তৈরি গা হওয়া পর্যন্ত (সাধারণত –৩ থেকে –৫° সেলসিয়াস) সাল্যেকসংশ্রেষণ –সম্পূর্ণরূপে বন্ধ হয় না. তা সম্বেও পুরোপুরি ভৌত কারণে (বরফ কর্তৃক কাবন ডাই–অক্সাইড ব্যাপন বাধাগ্রস্থ হওয়ায় এই প্রক্রিয়া প্রথম অবস্থায় বন্ধ হতে পারে। শীতলীকরণ নিমু হারে হলে <১° সেলসিয়াস প্রতি ঘন্টয়ে), উদ্ভিদ কলার ম্যাপোপ্রাম্টে (অর্থাৎ আন্তঃকোষীয়, অন্তঃকোষীয় নয়) প্রথম বরফ তৈরি হতে থাকে, কারণ সাইটোপ্রাজম ও কোষগহনরে অধিক পরিমাণে দ্রব থাকে। যতোক্ষণ পর্যন্ত এই বরফ তৈরিকরণের সময় দীর্ঘায়িত না হয় এবং বরফ গলন (thaw) খুব দ্রুত না হয় ততোক্ষণ পর্যন্ত ব্যক্ষ হারফ হারফে ধ্যের্ফ হারফে জেরি কার্ব্য এরং প্রের্ফ গলন (thaw) খুব দ্রুত না হয় তেলোর না। তবে আন্তঃকোষীয় বরফ স্থায়ী হলে অ্যাপোপ্লাস্ট এবং কোষের বাম্প চাপের জোভারেনের জন্য কোষ থেকে পানি অ্যাপোপ্লাস্টে বের হয়ে আসে, এই পানি বরফে পরিণত হয়, ২০০০ কলায় বরফের পরিমাণ বেড়ে যায়। যান্ত্রিক ক্ষতি ছাড়াও এই প্রক্রিয়ার জন্য কোষ কলাভার লাভ হারায় এবং কোষরসের ঘনমত্রা বেড়ে যায় (পানি ঘটিতির মড়ো)। ফলে কোষের এমলাভাল বিক্রিয়া দারুণভাবে বিঘ্নিত হয় ; এনজাইমসহ সকল প্রোটিনের গঠনের ফতি হয় (denamed) বিক্রিয়া দারুণভাবে বিঘ্নিত হয় ; এনজাইমসহ সকল প্রোটিনের গঠনের ফতি হয় (denamed) আবন্ধ (compartmented) বস্তু, যেমন– হাইড্রোলাইটিক এনজাইম সাইটোপ্লাজমে মৃত্ত হয় (denamed) সিস্টেম কোষের pH নিয়ন্ত্রণে সক্রম হয় না এবং পানিবিয়োজনের জন্য প্রান্ত কালা কলাজ ম্যাক্রোঅণুগুলো ঘনীভূত হওয়ার প্রবণতা হয়। অধিকাংশ ফেল্লেই এরাপ প্রভাবের জন্য কেন্দ্র মৃত্যু ঘটে। কোষের বিপাক এবং পানি সম্পর্ক আরও বিঘ্রিত হওয়ায়, বরফ গলন দৃত হল উদ্ভিদের উপর ফতিকারক প্রতাব পড়ে।

প্রতিরোধী প্রকৃতির সাইটোপ্লাজমের জন্য, অনেক প্রজাতির হারডেন্ড (hardened) ভাঙদ পুন নিমু তাপে এবং উচ্চ মাত্রার পানিবিয়োজন অবস্থায় অনেক দিন ধরে টিকে থাকে। চলে বুন প্রতিরোধী উদ্ভিদও খুব দ্রুত শীতলীকরণের জন্য সৃষ্ট অন্তঃকেট্রীয় (intracellular) বর্ত্তান্দ সহ করতে পারে না।

হিমাঙক তাপমাত্রা প্রতিরোধী উদ্ভিদকে, যা প্রধানত অন্তঃকোযীয় বরফ তোর প্রাণ্ডরোই। (যদিও কোযের পানিবিয়োজন সহিষ্ণুতা এবং আন্তঃকোযীয় বরফের জন ভৌত ফাঁত প্রাণ্ডরোগর খুব গুরুত্বপূর্ণ), প্রতিরোধীতার কয়েকটি পর্যায়ক্রমিক লাইন হিসেবে দেখা যেওে পারে সাধারণভাবে, শীত যখন প্রকট হয়, তখন টিকে থাকার জন্য একাধিক লাইনের প্রয়েজন হয়ন প্রতিরক্ষার প্রথম লাইন হলো কোষগহরর এবং সাইটোপ্লাজমের পানির হিমান্ড খানচন (depression of freezing point), দ্রবণীয় ত্রবের জন্য এন্টি ঘটে। এভাবে হার্ডেনিং এর প্রথম বরফ তৈরি না হয়েও নাতিশীতোফ্ষ অনেক উদ্ভিদকে হিমান্ডের কয়েক ডিন্টি নিচে (সাধারণতা -থেকে - ৫° সেলসিয়াস) পর্যন্ত শীতল করা যায়।

শরৎকালে কোযরসে নিমু আগবিক ওজনের কতকগুলো জৈব এব (চিনি, জৈব এবড অ্যামাইনো এসিড এবং বৃহদাকার প্রোটিন অণু) জমা হওয়ার কারণে হিমাঙ্ক অবনমন আরও বান হওয়ায় উদ্ভিদকে আরও তুযারপাত প্রতিরোধী করে। নিমু তাপমাত্রায় আঙীকারী এবং চাহেনা বন হওয়ায়, অতিরিক্ত পানিবিয়োজন্দের হাত থেকে সাইটোপ্লাজমীয় ম্যাক্র্যে অণু এবং নির্দ্ধার ভাষন মাধ্যমে দ্রব জমাকরণ আরও গুরুত্বপূর্ণ ভূমিকা পালন করে।

প্রতিরক্ষার দ্বিতীয় লাইন, যা কাষ্ঠল উদ্ভিদের গুরুত্বপূর্ণ কলাকে (সুগু কুঁড়ি এবং জ হলেন রশ্মি (ray) প্যারেনকাইমা) খুব নিমু তাপমাত্রা প্রায় –৪০° সেলসিয়াস থেকে রক্ষা করে, কাষ্যন হতে পারে কেবল বুদ্ধি বন্ধ হওয়ার পর, সুগ্রাবস্থা স্থাপনের পর এবং কয়েকদিন যাবং ন সেলসিয়াসের নিচের তাপমাত্রায় কলা হার্ডেন্ড হওয়ার পর। সুতরাং শীত গুরুর হাংলে পরিপার্শ্বিকতার জন্য এই প্রতিরক্ষা ব্যবস্থা কার্যকর হয়। এভাবে শর্তবন্ধ (conditioned) কল এমন আচরণ করে, যাতে মনে হয় এদের অন্তি–বিশুদ্ধ (ultra-pure) পানি আও, যা নিউক্লিয়েটিং স্থান না থাকায় বরক্ষ তৈরি হতে পারে না। তাই বরক্ষ তৈরির আগে এদেরকে হলে বেশি শীতল করা যেতে পারে, প্রায় - ৩৮° সেলসিয়াস পর্যন্ত (পানির স্বত্ঃস্ফুর্ত নিউক্লিয়েটিন তাপমাত্রা)। পরিবেশগত পীড়ন

যে সমস্ত শস্য উদ্ভিদ খুণ নিমু তাপমাত্রা সহ্য করতে পারে তাদের ব্যায় প্রচান করা বর্তন ঝিল্লীর ক্ষতি না হয়েও অ্যাপোপ্লাস্টে প্রচুর পরিমাণে বরফ জমা থাকে। এরা সাইটোপ্লাজনের প্রদন্দ পানিবিয়োজন অবস্থা সহ্য করতে পারে এবং পানিবিয়োজন এবং পানিযোজন চত্রের সাথে স্বান্ধ ভৌত এবং প্রাণরাসায়নিক পীড়ন সহ্য করতে সক্ষম। হার্ডেনিং এর সাগে এসকন পাছন সহ করার ক্ষমতার উন্নতি হয়, তবে এর সঠিক কৌশল সম্পর্কে আমাদের জ্ঞান অত্যন্ত গীমতা, এর প্রধান কারণ হলো নিমু তাপমাত্রায় কোষের উপযুক্ত বৈশিষ্ট্যাদি পরিমাপ করা অত্যন্ত কাঠন।

শস্য উদ্ভিদের উপর উচ্চ তাপমাত্রার প্রভাব (Influence of High Temperature on Crop Plant)

পূর্বেই উল্লেখ করা হয়েছে যে, উদ্ভিদ কলা থেকে প্রধানত তিনটি প্রদ্ধাততে (দীণ তরঙলেন) বিকিরণ, পরিচলন এবং প্রস্কেদন) তাপশক্তির স্থানান্তর হয় ; এদের মধ্যে প্রস্কেদনে ভূমিরনড বেশি। মাঠ পর্যায়ে সাধারণত উচ্চ তাপমাত্রা এবং পানি ঘাটতি একই সাথে ঘটে। তাই পানি ঘাটতির জন্য পত্রবন্ধ বন্ধ হওয়ায় উচ্চ তাপমাত্রায় (১৪০° সেলসিয়াস) উদ্ভিদে প্রস্কেদনভানি চ শীতলীকরণ হয় না। এজন্য গ্রীষ্মমণ্ডলীয় এবং অব–গ্রীস্মমণ্ডলীয় অঞ্চলের গুল্ড এলাকার শস্য উদ্ভিদ সাধারণত পানি ঘাটতিজনিত এবং তাপজনিত উভয় প্রকার পীড়নের পড়ে। নার্চ জানে অঞ্চলের মরুজ নিরাসেও (যেমন– ধালিয়াড়ী, অগভীর মৃত্তিকা) এরকম ঘটে।

পানি ঘাটতি এবং উচ্চ তাপমাত্রার মধ্যে এরকম নিকট সম্পর্কে থাকায়. মাঠ পথ্যয়ে এখ্রাটর প্রভাব পৃথক করা বেশ কঠিন। এজন্য নিয়ন্ত্রিত পরিবেশে এখ্রুটির প্রভাব আলাদাভাবে পরীক্ষ করা দরকার। যেমন– উচ্চ তাপমাত্রার প্রভাব নির্ণয়ের জন্য উদ্ভিদকে পর্যাপ্ত পরিমাণ পানি সরবরাহ করতে হবে। এরকম পরীক্ষার ফলাফল নির্দেশ করে যে, স্বন্প পরিসরের তাপমাত্রায় (৪৫ থেকে ৫৫° সেলসিয়াস) উদ্ভিদকে অম্প সময়ের জন্য (প্রায় ৩০ মিনিট) রাখলেও পাতার যথেষ্ট ক্ষতি হয়। অপর পক্ষে, নিমু তাপমাত্রার পরিসর বেশ বিস্তৃত (+৫ থেকে ৪০° সেলসিয়াস অথবা আরও কম)।

উচ্চ তাপজনিত কতির প্রকৃতি বেশ জটিল। এই পরিসরের তাপমাত্রায় (৪৫ বেকে ব সেলসিয়াস) ক্লোরোপ্লান্টের লিপিডের দশার পরিবর্তন হয়; হঠাৎ করে সান্দ্রতা (viscosity) কনে যায় এবং এ থেকে ধারণা করা হয় যে, উচ্চ তাপজনিত ফতির স্থান হলো বিঞ্লী। অন্যন্দ প্রক্রিয়ার (শ্বসন, আয়ন পরিশোষণ) তুলনায় সালোকসংশ্লেষণ খুব বেশি তাপে সংবেদনশীল। অব-কোষীয় (sub-cellular) পর্যায়ে, পাতার সালোকসংশ্লেষণ খুব বেশি তাপে সংবেদনশীল। এনজাইমের কার্যকারিতা, রঞ্জকতন্ত্র ২ ব্যতীত, তাপমাত্রায় কম সংবেদনশীল। এ থেকে মন্থব করা যায় যে, ফতিকারক উচ্চ তাপমাত্রার প্রধান প্রভাব হলো (ক্লার্য্যলার্দ্রার ধন্দ্রীর দশার (phase) পরিবর্তন ঘটিয়ে রন্জক তন্ত্র ২-এর ইলেকটন প্রবাহকে বিচ্ছিন্ন করে।

মরুজ উদ্ভিদের যে বিপুল পরিসরের অঙ্গসংস্থান এবং ফিনোলজি (যেমন ক্ষুদাকন স্বঞ্জকালস্থায়ী উদ্ভিদ থেকে বিশালাকার ক্যাকটাস পর্যন্ত) পরিলক্ষিত হয়, তা নিদেশ করে যে, উষ্ণ এবং গুষ্ণ পরিবেশে নানা প্রকার অভিযোজনের মাধ্যমে উদ্ভিদ টিকে থাকে। উষ্ণ এলাকার ফলেক প্রজাতির জীবনচক্র এমনভাবে সুবিন্যস্ত যে, এরা বছরের উষ্ণতম সময় এডিয়ে চলে। এটি ঘটডে পারে পত্র পতনের মাধ্যমে কেবল শক্ত, তাপপ্রতিরোধী মুকুল থাকে অথবা বর্ষজীবী উদ্ভিদ হাদের জনন বৃদ্ধি সম্পন্ন করে বছরের অপেক্ষাকৃত শীতল সময়ে। শেযোক্ত প্রজাতির কতকগুলোতে হাবার আপাত অনুপোষ্যক্ত অভিযোজন দেখা যায়। যেমন ভায়েওলেওটোপেক সৃষ অনুগল-(সৃষ্টের সাথে পাতা সমকোণে অবস্তান করে সর্বোচ্চ সূর্যালোক শোষণ কবে) এবং ৬০ লংকার্টের হার যা স্বল্পস্থায়ী অনুকুল পরিবেশে এদের দ্রুত বৃদ্ধিতে সহায় তা করে। বিকলপ চানে, একক পাত-অথবা সাম্পূর্ণ কয়নোপির এমন বৈশিষ্ট্য থাকে যা সৌরবিকিরণ শোষণ হাস কনে অলক পাত-আথবা সাম্পূর্ণ কয়নোপির এমন বৈশিষ্ট্য থাকে যা সৌরবিকিরণ শোষণ হাস কনে অলক পাত-লীতলীকরণে সহায়তা করে, এর মাধ্যমে ক্ষতিকারক উচ্চ তাপমাত্রার হাত থেকে ডান্ডদ র্বদা পাত এবং সারা বছর ধরেই এদের বৃদ্ধি চলতে থাকে। যেমন– পাতার কোনো (angle) এবং পাত গুটানোর অমত্য এসকল প্রজাতির খুব বেশি, এদের পাতা সূযোর সমান্তরালে মানে প্যেরাহেলিওটোপিক সূয় অনুসরণ করে) বলে সৌরবিকিরণ কম শোষত হয়। তবে, ভায়া এব প্যারাহেলিও টোপিক উভয় প্রকাশ চলনই স্বচেয়ে বেশি কায়কর হবে এমন এলাকায় যেয়নে মেসমুস্ত আকাশ এবং পরিক্ষার বায়ু বিরাজ করে, এখানে পরিব্যাপ্ত (difuse) বিকিরণের ক্ষম এবং যোনে বায়ুপ্রবহু দ্বায়া প্রজারি বায়ু বিরাজ করে, এখানে হয়।

পানি গাটতি পরিবেশে পাতা যদি অতিরিক্ত সৌরবিকিরণ শোষণ করে, তাহলে উদ্ভিদক্রে টিকে থাকার জন্য পত্র পৃষ্ঠ থেকে অতিরিক্ত তাপ পরিচলনের মাধ্যমে তাগে করতে হবে এখন শোষিত হওয়ার আগেই আপতিতো রশ্মি প্রতিফলিত হতে হবে। পাতার অঙ্গসংস্থানিক বৌশস্থেন (যেমন - ফুদ্রাকার পাতা) জন্য পাতার ব্যউদ্ডারি গুর রোধক হুসে পায় বলে প্রথম প্রাক্রয়, ৫০ হয়।

কতকগুলো উদ্ভিদ প্রজাতি আছে যারা উচ্চ তাপমাত্রা না এড়িয়ে, সহা করে এনেক রসালো উদ্ভিদ যাদের বৃহৎ আকার (পরিচলনের হার খুব কম) এবং (CAM) চাঁপ্তদেব নাননে লাবেননেন মাধ্যমে শীতলীকরণ হয় না) পাতার শীতলীকরণের সুযোগ কম, যাদও পানির আপোঞ্চক তাল বেশি হওয়ায় এবং এসর উদ্ভিদে পানি সঞ্চয় বেশি থাকায় তাপমাত্রা পারব চনের ঘক্ষে বাফ্যারান মঙ্গে কান্ড করে। প্রকৃতপঞ্চে, ডাঁস্ভিদে সার্বাচ্চ তাপমারা নাডা নালে স্বাহাস, ত্রক ৮ করা হাইন এক Opunia প্রজাতিতে, এবং সাধারণভাবে দীর্ঘ সময় ধরে কলার তাপমাত্রা হল সেনাসিয়ালে অধিক হলেও কার্কটাস তা সহ্য করতে পারে।

বীজের অংকুরোদগম এবং চারাগ্যন্তের প্রতিষ্ঠা শস্য উদ্ভিদের প্ল'বন চকেব মকান ভুক্ত হল প্রশায়। এই প্রয়ায় তাপমাত্রা গুরুত্বপূপ ভূমিকা পালন করে। অতি ৮০০ তাপে চারা মজনে কল তাদের প্রতিষ্ঠা ঠিকমতো না হওয়ার জন্য প্রতি একক জমিতে উদ্ভিদের সংখ্যা কমে ফণ্ডয়ায় ফলন হাদে পায়। জনন বৃদ্ধির বিভিন্ন প্রয়ায়েও উচ্চ তাপমারের প্রভাব আছে। পুষ্ণায়ন, পরানারণুর জীবনীশ্র্জি (viability), নিযেকা, দানা ভাঁতর হারাও সময়কলে ইতাদি ওগ্যাত প্রথান ভার প্রজারিকার্য্য ফলনকে হাস করে।

খনিজ মৌলজনিত পীড়ন (Mineral stress)

পানি এবং তাপমাত্রাজনিত পীড়ন ছাড়াও, মৃ'রকায় খনিজ মৌ'লের ধন্যপ্রতা কিবা বাধের ফলে। পীড়নের উদ্ভব হয়। এরকম সমস্যাসঙ্গুল মৃত্তিকা হলো লোনা (salme) মৃ'রকা, অগ্রীয় (sado) বৃত্তিকা, ছুন্মময় (Calcareous) মৃত্তিকা, সোডিক (sodie) মৃত্তিকা এবং ধাতু কলুদিও (metalrontaminated) মৃত্তিকা প্রধান। এসব মৃত্তিকায় জন্মানো শস্য উদ্ভিদের উপর সাধারণভাবে ছাত্তকগুলো প্রভাব দেখা যায় সারলি (ড.৩)।

লোনা মৃত্তিকা (Saline Soil)

যে মৃষ্টিকায় উচ্চ মাত্রায় দ্রবণীয় লবণ থাকে, সে মৃত্তিকায় শস্য উদ্ভিদ জন্মতে পারে না , লিপাল মাত্রার চেয়ে কম লবণ থাকলে উদ্ভিদের বৃদ্ধি ও ফলন ব্যাবত হয় , মৃত্তিকার পার্মনার খনিজ মৌলজনিত পীডনের প্রভাবের একটি সরল শ্রেণীবিভাগ।

সারণি ৬.৩ : সম্পদ (resource) অর্জনের ক্ষমতার উপর প্রভাব

(১) পানি অর্জন :	(ক) দ্রব্যের অত্যধিক ঘনমাত্রার জন্য অসম্বেটিক প্রভাব	ĺ
	(খ) কোষ বিভাজনে বাঁধা, মুলের বাঁদ্ধ ব্যাহত	
(২) খনিজ মৌল অর্জনা	(ক) আয়নের মধ্যে প্রতিযোগীতা	
	(খ) ঝিল্লীর ক্ষতিসাধন	İ
	(গ) সিমায়োল্টের উপর প্রভাব	
	(ঘ) কোষ বিভান্সনে বাঁধা	
(৩) সৌরবিকিরণ এবং	· · · · · · · · · · · · · · · · · · ·	i
কার্বন ডাই–অক্সাইড অর্জন :	(ক) ক্লোরোফিল ব্লিচিং	
	(খ) পত্রবন্ধের উপর প্রভাব	
সম্পদ ব্যবহারের ক্ষমতার উপর	(ক) এনজাইমের ক্রিয়ার বাঁধা	
প্রভাব	(খ) কোষ বিভান্সনে বাঁধা	:
	(গ) শ্বসনিক বস্তুর ঘটতি এবং অক্সিজেন স্বন্ধ্য ৩	

পরিমাণের উপর নির্ভর করে এই অবস্থা অস্থায়ী অথবা স্থায়ী হতে পারে। পানি নিশ্দশেন ভাল না হলে মৃত্তিকা লবণাক্ত হওয়ার সম্ভাবনা বেশি থাকে। পৃথিবীতে লবণাক্ত এলাকা দিন দিন বাদ্ধ পাচ্ছে। এর একটি প্রধান কারণ হলো অপেক্ষাকৃত অধিক মাত্রার দ্রবণীয় লবণযুক্ত পানি শাস্যক্ষেতে সেচের জন্য ব্যবহার। এ অবস্থায় লবণ পরিশ্যেযণের তুলনায় পানি পরিশোষণ বেশি হয়। যে এলাকায় ভূমি অসমান, সেখানে উচ্চভূমি থেকে লবণ নিমুভূমিতে জন্ম ২০০ পারে। পৃথিবীর সেচ নির্ভর ২০০×১০° হেক্টর জমির মধ্যে প্রায় এক–তৃতীয়াংশ লবণান্ত-তায় আক্রান্ত (Epstein *et al.*, 1980)।

বিশুদ্ধ পানির তুলনায় প্রবণীয় লবণের দ্রবণের ভেতর দিয়ে সহজে বিদৃৎ প্রবাহিত হয়। বৈদ্যুতিক পরিবাহিতা (electrical conductance, EC) লবণের ঘনমাত্রার সাংঘ সরলরৈখিকভাবে সম্পর্কযুক্ত এবং এর সাহায়ে দ্রবণে লবণের ধনমাত্রা পরিয়াপ করা যায়। আন্তর্জাতিক পদ্ধতিতে বৈদ্যুতিক পরিবাহিতাকে ডেসিসিমেন (deci siemens বা ds) প্রাত মিটার অর্থাৎ ds^{m-1} হিসেবে প্রকাশ করা হয়। পুরাতন পদ্ধতিতে এই একককে মোস (ndrus) বর্ণা হতো (lds^{m-1}= Immhos cm⁻¹)।

যদি মৃত্তিকার দ্রবণের বৈদ্যুতিক পরিবাহিতা ৪ ডেসিসিমেন প্রতি মিটার এর বেশি হয়। তাহলে সেই মৃত্তিকাকে লোনা মৃত্তিকা বলা হয়। পূর্বেই উল্লেখ করা হয়েডে যে, ৬৫ প্রানির পটেনশিয়ালকে হ্রাস করে। মৃত্তিকার দ্রবণের অসমেটিক পটেনশিয়ালের (ψπ) সাংঘ। ো নিমুলিখিতভাবে সম্পর্কযুক্ত:

Ψπ= EC (-0.0৩৬ মেগাপ্যাসকেল) (৬.৮.)

উদ্ভিদের বৃদ্ধি ও পানি সম্পর্কের উপর লবণাক্ততার প্রভাব লবণাক্ততা সহিয়্বতার উপর ভিত্তি করে উদ্ভিদকে দু'ভাগে ভংগ করা হয়েত্বে :

১. লবণ উদ্ভিদ (Halophytes) : যা লবণাক্ত প্রবিশেষে মূল (native) জিল্প এবং এবা সবচেয়ে বেশি লবণ সহিষ্ণু।

২. গ্লাইকোফাইট (Glycophytes) : অপেক্ষাকৃত কম লবণ সহিষ্ণু, তবে বিভিন্ন প্রজ্ঞাঁত এবং একই প্রজ্ঞাতির বিভিন্ন জাতের মধ্যে এই সহিষ্ণুতার পার্থক্য আছে। অধিকাংশ শস্য ডদ্ভিদ এই ক্ষুপের অন্তর্গত। লবণের ফতিকারক প্রভাব নির্ভর করে লবণের পরিমাণ এবং প্রকৃতির উপরা

ী লবণাক্ততার জন্য শস্য উদ্ভিদের পাতার প্রসারণ হার কমে যায়। লবণের জন্য পাতর পানির পটেনশিয়াল কমে যায় এবং রসস্ফীতি চাপ কমে যাওয়ায় পাতার প্রসারণ বণ্ডের হয়। লবনাদ্র তার জন্য বিটপের তুলনায় মূলের বৃদ্ধি বেশি প্রভাবিত হয়। যব, সরগদে এবং বরেমৃড়া ঘটের ক্লেচে দেখা গেছে যে, নিম্ন থেকে মধ্যম লবণাক্ততা এদের মূলের বৃদ্ধিতে সহায় গা করে মেনের ক্লেচে দেখা গেছে যে, নিম্ন থেকে মধ্যম লবণাক্ততা এদের মূলের বৃদ্ধিতে সহায় গা করে মেনের ক্লেচে বাক্তে হয়। যবে, নিম্ন থেকে মধ্যম লবণাক্ততা এদের মূলের বৃদ্ধিতে সহায় গা করে মেনের ক্লেচার ব্যার্থ গেছে যে, নিম্ন থেকে মধ্যম লবণাক্ততা এদের মূলের বৃদ্ধিতে সহায় গা করে মেনের কে দেখা গেছে যে, নিম্ন থেকে মধ্যম লবণাক্ততা এদের মূলের বৃদ্ধিতে সহায় গা করে মেনের কেরে দেখা গেছে যে, নিম্ন থেকে মধ্যম লবণাক্ততা এদের মূলের বৃদ্ধিতে সহায় গা করে মেনের কেরে বৃদ্ধি ব্যাহত হয় মৃষ্টিকার ভৌত প্রকরণের জন্য। কর্দম মৃত্তিকার বিনিময়গোগ্য সোডিয় ম আয়ন মৃত্তিকার গঠনকে (structure) দূর্বল করে এবং মৃত্তিকার ঘনত্র বৃদ্ধি করে চোলান্ডকেনা 1984)। লবণাক্ত পরিবেশে জন্মানো উদ্ভিদের পাতা সাধারণত পুরু এবং রসালে। হয়। খুব বোশ লোনা মৃত্তিকার মূলে অ্যাবসিসিক এসিডের পরিমাণ বৃদ্ধি পায়। সালোকসংশ্লেষণের উপর লবগ্যজ্যতার ফাতিকারক প্রভাবের সাথে ক্লোযোফিলের পরিমাণ কমে যাওয়ার সংশক্ত আছে।

লোন্য মৃত্তিকায় সাধারণত N_a⁺. Cl⁻ এবং SO₄² আয়ন সবচেয়ে জান পার্বমানে তাক এবং মৃত্তিকার দ্রবণের অসমোটিক ধর্মাবলীর জন্য এদের অবদান ডাই বেনি। পানির পটেনলিয়াল এবং মৃত্তিকার দ্রবণের উপর এদের প্রভাব ছাড়াও, এদের বিশেষ করে N_a⁺ এবং Cl কেংখর গঠনগত অখণ্ডতা এবং বিপাকের উপর সুনিদিষ্ট প্রভাব আছে। মূল রোনের কোষ কেরীতে অবস্থিত C_a²⁺ কে N_a⁺ সরিয়ে দিতে পারে লবণাক্ততার জন্য NO₃ পারশোষণ এবং পাতার নাইটেট রিডাকটেন্ড এমজাইমের কার্যকারিতা ব্যাহত হয়।

লোনা মৃত্তিকার লবণের পরিমাণ কমিয়ে আনলে শস্য উদ্ভিনের ইদ্ধি অনেকচন ধাতাবৈক ২য় কিছু লবণ সরিয়ে দিয়ে অথবা অলোনা অবস্থায় যে পানির প্রয়োজন তার চেয়ে বোশ পানি বজার রেখে লবণের পরিমাণ কমানো সম্ভব। তবে মৃত্তিকার, বিশেষ করে ভারী ঘাঁওকায় চনজ এবস্থা রঙ্গায় রাখলে বায়ু চলাচলের বিয়ু ঘটে। নিমু মাত্রার অক্সিজেন সেডিয়াম বজন কৌশলের ফতি করে, এর জন্য উদ্ভিদ লবণাক্ততা স**হিয়ু হ**য়। অক্সিজেনের মাত্রা কম হলে মূল থেকে বিচপে সোডিয়াম স্থানান্তর বৃদ্ধি পায়।

আলোনা মৃত্তিকায় যেভাবে অজৈব সার ব্যবহার করা হয়, লোনা মৃত্তিকায় ভার পরিব টন দরকার। উচ্চ মাত্রায় NO3" প্রয়োগ করলে CI" ক্ষত্তিকারক প্রভাব কমে ধায়, কিয়ু এই সার দ্রুত দ্রবীভূত হয়ে মৃত্তিকার লবণাক্ততা বৃদ্ধি করতে পারে। ডাংমেদনবালে নাইটোজেন CI পরিশোধন বৃদ্ধি করতে পারে, কিন্তু সোডিক (sodic) লবণাক্ত মৃত্তিকার pH কানায়ে দেশ নগজে প্রয়োগ করলে, যে বিক্রিয়ার মধ্যেমে ক্যালসিয়াম অপ্রাপ্য হয় তার অনুক্র পরিবেশ সৃষ্টি করে লবণাক্ততার ক্ষতিকারক প্রভাব আরও বৃদ্ধি করে। তার জন্বকার দ্রান্দির জন্যানের সন্দ লবণাক্ততার ক্ষতিকারক প্রভাব আরও বৃদ্ধি করে। তার লেনা দ্রান্দিকায় জন্যানের সন্দ নিয়ে এ বিষয়ে ব্যাপক গবেষণা চলাছে।

অশ্লীয় মৃত্তিকা (Acid Soil)

খনিজ মৌল পরিশোষদের সময় উদ্ভিদ কর্তৃক ক্যাউয়ন গৃহণ এবং প্রেউন (114) জানের ফলে মৃত্তিকা অদ্র হয়। অ্যামোনিকালে নাইটোজেন, জৈবিক কার্যকলাপে (চার হলে অবরা অন্যমানয়াম লবণ হিসেবে মৃত্তিকায় প্রয়েগ করলে, এর জারণেও অন্ত্রকরণ (acidication) হয়। এনায়োনয়াম গ্রানাইট অথব। যেসব মৃতৃ পদার্থে ফারীয় খনিজ কম আছে তা থেকে ডৎপন্ন মৃতিকা অন্নীয় হয়। যে সমস্ত অঞ্চলে প্রচুর বৃষ্টিপাত হয় এবং তাপমান্রাও কেনি, সেসব অস্তলে অন্ত্রীয় করা চরা হয় এবং চুইয়ে নূরে সরে যায় এবং কারন ডাই-অক্সাইড পানিতে চরা চাত হয়ে জনা সৃষ্ট প্রোচন কাটোয়নকে অপস্থাৰণ করে।

pH হাসের সাথে সাথে দ্রবীভূত অ্যানুমিনিয়াম এবং লেগের পরিমাণ বৃদ্ধি পায় এবং এক আয়নযুক্ত যৌগের আদ্রবিশ্লেষণ হয়। আদরিশ্লেষণে উৎপন্ন পদায়ে, বিশেষ করে আন্ত্রেমানয়ে, আয়ন এবং লোহার আয়ন, কার্যকরভাবে বিনিময়যোগ্য ক্যাটায়নকে অপস্যারিত করে, কেনেন কোনো এলাকার মৃত্তিকায় প্রচুর পরিমাণে সালফাইড থাকে। জ্যারণের মধ্যেমে সালফাইড সালফেটে পরিণত হলে মৃত্তিকা যুব অন্নীয় হয়।

আধিক অশ্নীয় মৃত্তিকায় সব উদ্ধি*দ জন্মাতে পা*রে মান লেখুআক সাধারণ চাবে অনুহা অসহিষ্ণু উদ্ধিদ বিসেবে গণ্য করা হয়। অনেক এলাকায় এই উদ্ভিদকে জন্যানোর জন্য চুনাপাথর (Jime stone) ধ্যবহার করা হয়।

অধিক অশ্বীয় মৃত্তিকায় খনিজ লবন পরিশেষেদের সময় ১০৫৫ জেন আয়ন খন ন ক্যাটায়নের সংখে প্রতিযোগিতা করে এবং যুলের আতসাধন করে। অশ্বায় মৃত্তিকার কোনো কোনো মৌল অলপ পরিমানে, কোনো জোনো মৌল অধিক পরিমানে এবং কতকগুলে। আবার ইছিলের ফতিকারক (IDXiC)মাত্রায় থাকে। বিভিন্ন রাসায়নিক অবস্থায় চবণায় আল্বমিনিয়াম ফাঁত কারক মাত্রায় থাকে। অজৈব মনেমেরিক অবস্থার চারচির সবগুলোও (IXL⁴⁺, AL (OH)²⁺) AL(OH)2⁺ এবং AL(OH)⁻4</sub> এবং জৈবভাবে সংযুক্ত অ্যালুমিনিয়ামের কমপক্ষে কয়েকটির ফতিকারক প্রভাব আছে। অশ্বীয় মৃত্তিকায় আয়লুমিনিয়াম হাড়াও আত্রমিন সেন্ধে কোনো কোনো ফতিকারক প্রভাব আছে। অশ্বীয় মৃত্তিকায় আয়লুমিনিয়াম হাড়াও আত্রমিনিয়ামের কমপক্ষে কয়েকটির ফতিকারক প্রভাব আছে। অশ্বীয় মৃত্তিকায় আয়লুমিনিয়াম হাড়াও আতরি জাল্যমিনিয়ামের ক্যাত্রমে ফবিকারক প্রভাব আছে। অশ্বীয় মৃত্তিকায় আয়লুমিনিয়াম হাড়াও আতরি কার্পে মিন্দা এবং লৌহ (Fe³⁺) উদ্ভিদের বৃদ্ধি বন্ধেত করে। বৃহত্তর পুষ্টি উপালানের মধ্যে পাটাশিয়মে বিন্দায় স্থান বেকে অপস্থারিত হয় এবং চোয়ানোর মধ্যমে দুরে সরে যায় ; ফসফারাসের প্রাপতোও কনে যায়।

মৃত্তিকায় প্রচুর পরিমাণে দ্রবণীয় আল্বোধনিয়াম থাকারে জন্য মূলের বাদ্যা কোয় বিভাগন হয়। কোষ দীর্ঘিকরণ **দরুনভাবে ব্যাহত হয়।** সাধারণ্ডত মলের ত্রনময় বিভাগে এ্যাল্মিনিয়াম কম থাকে

∙দেয় ∙প্রীশান জ্ঞান

এবং এই মাত্রা বিভিন্ন প্রস্তাতিতে বিভিন্ন রক্ষার প্রেয়ক ডাইনের ওপর প্রভাৱ ভারতে প্রায়ক মুলে ব্যা**কটোরিয়ার আক্রমণ এবং সুচারুরূপে কা**য় সম্পাদনের উপর অ্যাল্যমিনিয়ামের প্রভাব আছে।

অতিরিক্ত অগ্নীয় মৃত্তিকার pH বৃদ্ধির জন্য গুড়া করা চুনাপাগর ব্যবহার করা হয়। এব জন্য দ্রবণীয় এবং বিনিময়যোগ্য হাইড়োজেন, আঃলুমিনিয়াম এবং মঙ্গপনিজ ৯ মনের পরিমাণ কমে যায়, দ্রবণীয় এবং বিনিয়যোগ্য ক্যলেসিয়াম আয়নের পরিমাণ বৃদ্ধি পায়, মালবডেনগের দ্রবণীয়া বৃদ্ধি পায় এবং যদি ডলোমিটিক চুনাপাথর ব্যবহার করা হয়, তাহলে ত্রবণীয় এবং বিনিসয়যোগ্য ম্যাগনেশিয়াম বৃদ্ধি পায়।

সাধারণত দ্রবণীয় কালেসিয়াম বৃদ্ধির তুলনায় দেশৌয় হ'টডোজেন, আগলুমিনিয়াম এবং ম্যাঙ্গানিজ বৃদ্ধির উপকারিতা বেশি। কোনো কোনে ক্ষেত্রে পুষ্ট উপাদন যোগ করে অন্ত্রীয় মু'ওকরে ক্ষতিকারক প্রভাব সফলভাবে দূর করা যয়। উচ্চ মাল্রুমিনিয়াম জারবেশে দেশৌয ফসফরাস প্রয়োগ করলে উদ্ভিদের বৃদ্ধিতে সহায়তা হয়। টাষ্টদের আভয়েরে এবং বাইরে আগোমিনিয়ানির আচলতায় ফসফরাস সহায়তা করে। যুব বেশি অভবণায় আল্বেমিনেফস্টেট বেঁও তিরি ধলেও মে সমস্ত উদ্ভিদের ফসফরাস পরিশোষণের কার্যের বেশিলার যাডে, তারা পরান্দ্র প্রারমণে ফসফরাস পায়। অধিকাংশ ফেরে খরচের কথা বিবেচনা করলে অন্ত্রীয় মান্তকায় ফসফরাস প্রয়োগের তুলনায় চুনাপাথর প্রয়োগ আবকতার স্বাধিজনক। ব্যাহাত্র উদ্ভিদের মান্তমের মহায়েরে তুলনায় চুনাপাথর প্রয়োগ আবকতার স্বাধিজনক। ব্যাহাত্র তান্দ্রি নিয়ার মন্ত্রান্দ্র হিলের বংলগাতীয় পদ্ধতিও কায়কর।

চুনাময় মৃত্তিকা (Calcareous Soil)

খুব বেলি পরিমাণে ক্যালসিয়াম কার্বোনেটমূজ (মুনলা ঘর, মনা ১০০ অনগন্য আনজাও ওপনাজের ওলানি) মার্চ-পদার্থ থেকে উৎপন্ন মৃত্তিকার pH ও অথবা ১৯০০ জারি থালে, এথ মৃত্তিকারে চুনাময় মৃত্তিকা বলে। মৃত্তিকার দ্রবহের প্রকৃতিকে কারেনেচ কল লাভাবিত করে ১৫০ এব সংথ খনিজ মৌল লেগে থাকে। কোনো কোনো চুমাময় মৃত্তিকায় সোঁডিয়াম কার্বোনেচ জনা হয়। অতিরিক্ত সোঁডিক পরিবেশে, অধিকাংশ উল্লিদের বৃদ্ধি সম্পৃধকালে বন্ধ হয়ে যায়।

বিভিন্ন পরিবেশের জন্য চুনমেয় মৃত্তিকাং উদ্ভিদের বৃদ্ধি 'এরা ভিন্ন হয়। কম বর্ষিপাত এলাকায় পানি স্বল্পতা বৃদ্ধির প্রধান প্রতিবন্ধক। অধিক বৃষ্টিপাত এলাকায়, অপযান্ত পৃষ্টি ভগাদন, বিশেষ করে নাইটোজেন ও ফসফরাস বৃদ্ধি সাঁমায়ি ১করণে আধক গুকণ্ডপুণ। চুগাময় মৃত্তিকায় উদ্ভিদের টিকে থাকা এবং বৃদ্ধির ফমতার আগ্তঃপ্রভাতি ও আত্ত প্রজ্ঞাতি পার্থকা আছে। এই মৃত্তিকায়, যে সমস্ত উদ্ভিদ ভালভাবে বৃদ্ধি পায়, তাদেরকে ক্যলাসকোল (calcicole), এবং যারা ভালভাবে বৃদ্ধি পায় না, তাদেরকে ক্যলাসফিউজ (calcituge) বার্গা

চামাৰাদ করার ভান্য চুনা মুন্তিকার ভৌত, রাসায়নিক এবং জেবিক বৈশিষ্টের পরিধানন হয়, বিশেষ করে যখন উদ্ভিদের ভাল বৃদ্ধির জন্য পানিসেচ করা হয়। ক্ষয়ীভবন এবং জেবিক ক্রিয়াকলাপ এরায়িত হয়, খনিজ লবণ মূল অঞ্চল থেকে দুয়ে নরে যেওে নারা, বায়ু চলচল বাধাগ্রস্ত হয়, মুন্তিকার দ্রবদের আয়োনিক মান্ত্র হাস পেতে পারে, কারা, ডাই এঞ্চাইচের পরিমাণ বেড়ে যেতে পারে এবং দ্রবনীয় ক্যালসিয়াম, pH ও রেডার (Redox) অবস্থায় পারিবান হা পারে। উদ্ভিদের বৃদ্ধির মাধ্যম হিসেবে মৃত্তিকার উপর এই প্রাভাবে লোকা, আরস্থায় পারবান হা তুনাময় মৃত্তিকায় নাইট্রোজেনের অভাবে প্রকার উপর এই প্রাভাবের পরিমাণ মান্তি সংগ্রা কার্যনায় মৃত্তিকার দার্ঘ্য জন্য প্রান্ত কার্য প্রাণ্ড হার্য প্রেজির গ্রন্থি কার্যনার হার্য্ত হার্য লোকা হার্য্য হার্য্য লোকা হার্ট্র কার্যনার হার্য্য হার্য্য হার্য্য হার্য্য কোর্য নাইট্রোজেনের অভাবে প্রান্ত গ্রায় হার্য্য হার্য্য হার্য্য গ্রে স্থান বার্য্য হার্য্য কার্য লার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য কোর্য্য হার্য্য কার্য্য নাইট্রোজেনের অভাবে প্রকায় ভাবে একার্য হার্য্য হার্য্য বির্বায় হার্ট্যের্য্য হার্ট্র্যান্ত লার্য্য হার্য্য কের পদার্থ জন্য হার্য্য হার্য হার্য হার্য্য হার্য্যার হার্য্য কির পদার্থ জন্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্ত্ত হার জন্য ভার্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য বির্বায় করে পদার্থ জন্য হার্য্য হার্ত্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্ব্য হার্য্য হার্দ্র হার্য্য হার্য্য হার্য্য হার্ত্ব হার্য্য হার্য্য হার্য্য হার্য্য হার্য হার্য্য হার্য্য হার্য্য হার্ট্য হার্য হার্য্য করের সন্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য হার্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য হার্য হার্য হার্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য্য হার্য হার্য্য হা চুনমেয় মৃত্তিকায় লোহার ঘটেওি থাকায় উদ্ভিদের ব্রান্ড ব্যাহত হয়। উদ্ভিদে লেহের ফাট ডর জন্য সাধারণত নতুন পাতা হলুদ হয়ে যায়। একে চুন প্রয়োচিত ক্লোরে সিম বলে চুন্দায় মৃত্তিকায় চাযাবাদ এবং পানেসেচের জন্য দন্তার (Zn) গাটতি হয়। pH বুদি পেলে, বিশেষ করে ৮ ওর বেশি হলে, অধিক পরিমাণে আয়োনিক দন্তা Zn (OH)⁺ এবং Zn (OH)³⁺ এ পরিণত হয় য Zn²⁺ এর তুলনায় উদ্ভিদ কম পরিশোষণ করতে পারে। ফসফরাস ঘটিত সার প্রয়োগের ফলে চুন্দায় মৃত্তির দন্তা বিদ্যালয় মৃত্তির দন্তা হয়ে হয় যা হানান্তরে ফসফরাস বিদ্ব সৃষ্টি করে।

চুনাময় মৃত্তিকায় শস্য উৎপাদনের জন্য নিমুলিখিত ব্যবস্থা গৃহণ করা যায় (১) মৃত্তিকার pH কমানো, (২) এমন পুষ্টি উপাদান প্রয়োগ করা যা অধিক pH-এ অপেঞ্চাকৃত বেশি অন্রবণীয়. (০) HCO3⁺ যাতে কম তৈরি হয়, সেজন্য সুবিবেচনার সথে পানিসেচ করতে হবে. (৪) খণিজ মৌলের অত্যধিক প্রয়োগ বন্ধ করতে হবে (যেমন– ফস্ফরাস, যা অন্যান্য মৌলের ঘাঢ়তিকে প্ররোচিত করে, যেমন– দস্তা), (৫) মৃত্তিকায় জৈব পদার্থের পরিমাণ বৃদ্ধি করতে হবে এবং (৬) মূল অঞ্চলে অবস্থিত উদ্ভিদের জন্য ফতিকারক পদার্থ দূর করতে হবে -

যদি কোনো মৃত্তিকা চুনাময় এবং সোডিক হয়, তাহলে pil কনানে এবং এই মৃত্তিকা উদ্ভিদ জম্মানোর মতো উপযুক্ত করা বেশ জটিল। কেবল দ্রবণীয় সোডিয়াম নয়, বিনিময় স্থানে অবস্থিত সোডিয়ামকেও দূর করতে হবে। কারণ মৃত্তিকার ভৌত গঠনের উপর সোডিয়ামের প্রভাবের জন্য এ মৃত্তিকায় চোয়ানো দ্রুত হয় না।

সোষ্টিক চুনাময় মৃত্তিকায় ক্যানেসিয়ামের দ্রবণীয়তা এবং সোডিয়াম দুর করার জনা সালফিউরিক এসিড প্রয়োগ খুব কার্যকর পন্থা। অনেক শিল্পজাত উপাজাত দ্রবা যতে সালফিউরিক এসিড থাকে, সোডিক মৃত্তিকা পুনরুদ্ধারের জন্য এসব দ্রব্য কার্যকরী। তবে এগুলো ব্যবহারে সতর্কতা অবলমন করা দরকার এই জন্য যে, কোনো কোনো দ্রব্যে এমন কিছু থাকতে পারে যা পরিবেশ, মানুষ ও উদ্ভিদের জন্য ফতিকর। সোডিক মৃত্তিকায় মৌল সালফার প্রয়োগেও সালফিউরিক এসিডের মতো সোডিয়াম চোয়ানোযোগ্য হয় ; কিন্তু পুনরুদ্ধারের হার সাধারণত মন্থর হয়, কারণ সালফার জারণের জন্য জৈর্বিক ক্রিয়াকলাপের প্রয়োজন।

অমুকরণ প্রভাবের জন্য, চুনাময় মৃত্তিকার নাইটোজেন থাটাত পূরণের জন্য নাইটোটো তুলনায় অ্যামোদিক্যাল নাইটোজেন অধিক কাষকর। উদ্বায়ীজনিত আন্যোনিয়া হারানোর, বিশেষ করে শুক্ষ মৃত্তিকায়, সম্ভাবনাও বিবেচনা করে দেখা উচিৎ। চুনাময় মৃত্তিকায় উচ্চ pH থাকায় নাইটিফিকেশনের সুবিধা হয় ; তাই পানি ও অপমাত্রা যদি অনুকল হয়, তাহলে অ্যামোনকালে নাইটোজেন দ্রুত নাইটোটে পরিণত হয়। একারণে উদ্বায়ীজনিত ঘাটাত কম হয়। অ্যামোনিকালে খনিজ লবণ ও ইউরিয়ার উদ্বায়ীজনিত ফ্রতি কমানোর জন্য প্রচুর পরিমাণে ক্যালসিয়াম মৃত্তিকায় থাকা দরকার।

চুনাময় মৃত্তিকায় ফসফরাসের ঘাটতি পূরণের জন্য এমন ফসফরাসজাতীয় সার ব্যবহার করা উচিৎ যা মৃত্তিকায় অতিরিক্ত ফার তৈরি না করে। ডাই অ্যামোনিয়াম ফসফেটের সম্পৃক্ত দ্রবণ ফারীয় এবং মনোক্যালসিয়াম ফসফেট মনোত্য্যামোনিয়াম ফসফেটের দ্রবণ অখ্রীয়। যখন দ্রবণীয় অর্থোফসফেট সার চুনাময় মৃত্তিকায় প্রয়োগ করা হয়, তখন ডাইক্যালসিয়াম ফসফেট ডাইহাইডেট এবং অকটাক্যালসিয়াম সালফেটের মতো অধিকতর অদ্রবণীয় যৌগ তেরি ২তে পারে। উচ্চ মাত্রার ফসফরাস সার ব্যবহার করে দস্তার ঘাটতি পূরণের বিযয়াটি বিবেচনা করার দরকার আছে। চুনাময় মৃত্তিকায় উদ্ভিদের জন্য ফসফরাসের উৎস হিসেবে কাঁচা পাথুরে ফসফেট কাযকরী নয়।

ধাতু-কল্যিত মৃত্তিকা (Metal Comminated Sod)

কতিপন্থ মোল সাধাৱণত আঁতকাৱক মানায় মানকায় মানকায় একা কাতকালোঁ মোল মানন সমন-সেলেনিয়াম এবং আর্সেনিক প্রাকৃতিক ভাবে ফাঁতকাৱক মানায় পৌছতে পারে, কিন্তু স্বধ্যেষ্ গুরুত্বপূর্ণ ধাতুর মধ্যে আছে তামা, দান্তা, সাস্য (PF) তালোন এব কালাও মানকারা ভাষণ্যাম (Cd), কোমিয়াম (Cr), কোবল্ট (Co) এবং নিবেল (N₁), এসকল ধাতুর মানজ প্রাকৃতিক অবস্থায় পাওয়া মুদ্য ।যদিও প্রাকৃতিক অবস্থায় ধাতু-কল্যায়ত মানকা পাওয়া মুদ্য এবং কালাকাতক অবস্থায় পাওয়া মুদ্য ।যদিও প্রাকৃতিক অবস্থায় ধাতু-কল্যায় চালাকাত মানা হালাকাতক অবস্থায় পাওয়া মুদ্য ।যদিও প্রাকৃতিক অবস্থায় ধাতু-কল্যায় মানতা প্রাক্ত মানজ প্রাকৃতিক বেশি দৃষ্টি আকৃষ্ট হয়েছে কৃত্রিমভাবে কল্যিত সৃত্তিকারা প্রতি আর্ড সাধ্যবেণত মেহানে লান ধাববা ধাতু-গলানেয় কারখানার বন্ধ্য পদের্থ স্থুপীকৃত করা হয়। অনা ভাবে ব্যয়মানল থেকে পাঁচত মাহানে খাতু-গলানেয় কারখানার বন্ধ্য পদের্থ স্থুপীকৃত করা হয়। অনা ভাবে যায়ুমানল থেকে পাঁচত মাহান বাজু-গলানেয় কারখানার বন্ধ্য পদের্থ স্থুপীকৃত করা হয়। অনা ভাবের যায়ুমানল থেকে পাঁচত মাহাব জন্যও মৃত্তিকা কলুয়িত হতে পারে। নিয় pH- এ ধাতুর আয়নের মুক্তকাণ সূবিধাজনক। সেনন কপার সালফাইড অথবা কার্বোনেট খনিজ থাকে। ফোরকা সানাফটের সাথে কলার সালফাইডের এবন্য এব জারণকারী-ব্যাকটেরিয়ার ফ্রিয়ার ফলে খনিজ থেকে পরোক্ষাভাবে তামা, নিকেল, দন্ত্য, আর্সেনিক এবং এমন কি মলিবডেনম মুক্ত হয়।

খনিজ মৌলজনিত পীড়ন প্রতিরোধ (Resistance to Mineral Stress)

কতকগুল্যে উদ্ভিদ এমন মাত্রার খনিজ মৌল সমূদ্ধ মৃত্রিকায় জন্মতে পারে যা অন্য উদ্ভিদের জন্য খুবই ফতিকারক। চারটি প্রধান কৌশলের মাধ্যমে এটি ঘটে। এটেলো হলো :

(ক) এড়ানো (Escape) : যেখানে পীড়ন ঋতুগত, সেখানে সবচেয়ে অনুকুল সময়ে জীবনচক্রের সক্রিয় পর্যায় সম্পন্ন করে।

(খ) বর্জন (Exclusion) : - মৃত্তিকায় ক্ষতিকারক আয়ন টিনতে উদ্ভিদ সক্ষম এবং এর পরিশোষণে বাধা দেয়, ফলে- ক্ষতির হাও থেকে রক্ষা প্রয়:

(গ) উন্নতি (Amelioration) : উদ্ভিদ ক্ষতিকারক আয়ন পরিশোষণ করতে পরে, কিন্তু এর উপর এমন ক্রিয়া করে যাতে করে এর ক্ষতিকারক প্রভাব অনেক কমে যায়। এট ঘটে চিলেশন (chelation), লঘুকরণ (dilution), কোনো বিশেষ আলে সীমানদ্ধকরণ (localization) অথব্য এমন কি নিঃসরণের (excretion) মাধ্যমে।

(ঘ) সহিষ্ণুতা (Tolerance) : উদ্ভিদে এখন।বিপাৰ্কীয় পন্ধতি থাকে যাৱ জন্য ক্ষাতকা**রক** মাত্রার মৌলের উপস্থিতিতেও শারীরতাত্ত্বিক ক্রিয়া চলতে প্রারন

সবচেয়ে প্রতিরোধী প্রস্তাতি উপরোক্ত একাধিক কোশল বর্ত্তহার কো।

মৃত্তিকার থনিজ মৌলের ঘটতি পূরণে অথবং এর ফাওবেরে প্রভাব দুর করতে যে সার ব্যবহার করা হয়, তার মূল্য বর্তমানে অনেক বেড়েছে। তাই, ব্যাপকভাবে মৃত্তিকরে পরিবাইন না করে, এমন জার্রাট উদ্ভাবনের দিকে বিজ্ঞানীরা বৌশ নজর দিয়েছেন, যা এই পীড়ন সংগ্র করে ভালভাবে টিকে থাকতে পারে। কোনো মৌলের ঘার্টাত হলে এরকম মৃত্তিকা থেকে তা পরিশোষণ এবং কোনো মৌল অতিরিস্ত হলে তা উদ্ভিদ থেকে বের করে দেখার বৈশিষ্টেরে ভিগ্নতা শার্ব উদ্ভিদে আছে। যেমন- ব্রাজিলের বিজ্ঞানীরা গম ও সরগমেন্ত এমন জার্তটি উদ্ভাবন করেছেন যা আলুমিনিয়াম সহিচ্ছু এবং নিমু pH টিকে থাকতে পারে, এমন অবস্থায় আনেক জাতের ফলফরাস ঘার্টাত হয়। সংবেদনশীল জতের তুলনায় প্রতিরোধী জাতের সোমনাল এবং অস্থানিক চেরোৱা) মূল উন্ডিয়েই প্রায় দ্বিগুণ। অন্নীয় মৃত্তিকায় উপযুক্ত মন্রেয় চুন প্রয়োগ করে এবং ফলফরাস থোগ করে ফতিকারক প্রভাব অনেকাংশে পুর করা যায় : তবে এটিও এখনেতিরভাবে স্থাবাডনক হবে না। খনিজ মৌলের কার্যকরীভাবে পরিশোসণ ও ভারতারে মারত দেশকে হারায়কে বিজ্ঞান বর্গের বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান ব বংশপরস্পরায় বাহিত হয়। তাই উদ্ভিদ প্রজ্ঞাননের বিভিন্ন কেন্দ্রেনিক প্রয়োগ করা হারা বিজ্ঞান পীড়ন সহিস্থ্য শস্য উদ্ভিদের জাতটি হয়তো ভলিয়ারে উদ্ধান হার

বায়ু দূযণজনিত পীড়ন (Air pollation stess)

বর্তমান শস্য উৎপাদনে একটি বড় সমসন দেশ, দিয়েয়ে বান্নু দূষণ্ডভানত করণে চাবনালপা এই কৃতির পরিমাণ সঠিকভাবে জানা না গেলেও, এই ফাউর পরিমাণ যে যথেষ্ট সোবচায় সন্দেহ নেই। অধিক সালফারযুক্ত জীবাণ্যু জ্বালানির নহনে এবং মেটের ইঞ্জিনে পেটেলিয়ামজাত দরেন অসম্পূর্ণ দহনে সৃষ্ট জারক (oxidant) থেকে বায়ু দুষিত স্থান নায়ু দুষণের একক পদ্ধা হিসেবে শেযোক্তটি সবচেয়ে কার্যকর। একটি পরিসংখয়নে তামা হায় হয়, ১৯৭০ সংজ বেলল পেটোলিয়ামজাত দূষণের জন্য উদ্ধিদের ফাউর পরিমাণ প্রায় ১১০ মিলিয়ন মার্কন জলার। মেটরেয়ান থেকে নির্গত হয়েছে ১১০ মিলিয়ন টন এবং শিক্ষা কার্য্যায় থেকে নির্গত হয়েছে ১১ মিলিয়ন উন এবং শিক্ষা-কার্য্যানা থেকে নির্গত হয়েছে ১১ মিলিয়ন মার্কন ওলার। এই পর্য্রিয়ান জেকে বির্তৃ হয়েছে ১১০ মিলিয়ন টন এবং শিক্ষা কার্য্যায় থেকে নির্গত হয়েছে ১১ মিলিয়ন উন এবং শিক্ষা-কার্য্যানা থেকে নির্গত হয়েছে ১১ মিলিয়ন টন দুষক পদ্রুথ। নতমানে বে এই পর্য্রিয়াণ অনেক বেড়েছে, স্থে বিয়য়ে কোনোই সদেহে নেই।

মেটিরযানের ইঞ্জিনে জ্বালানির অসম্পূর্ণ দহনে হাইড্রোকখনের এংশ ভেরি ২৫ ফাওলরত যৌগ এবং নাইটোজেনের অক্সাইড, যেমন NO₂ তৈরির অনুযুটক হিসেবে কাজ করে আলের প্রভাবে NO₂ ভেঙে NO এবং O হয়। এরপর আপরিক অঞ্চিজনের (O₂) সাথে O যুজ ২৫ ওজোন (O₃) তৈরি হয় যা উদ্ভিদের জন্য খুবই ফার্ডকারক ত্রেমন কি তার পিশিত্রম মাধ্যর নিচেও)। নাইটোজেন অক্সাইড হাইড্রোকার্বনের অংশ এবং ওজোনের সঙ্গে ক্রিয়া করে পার-আন্নি অ্যাসিটাইল নাইটোড়ে (PAN) তৈরি করতে পারে, এটি উদ্ভিদের জন্য খুবই ফার্ডকারক যোগ।

ওজেন সম্পাতের (expousure) আগে যে শমান্থ ভান্থদ নিনু, তাপমেত্রার (১৯.২৫৫-১৯ সেলসিয়াস) থাকে, তাদের তুলনায় যে সমস্ত উদ্ভিদ উচ্চ তাপমান্রায় (২৭ থেকে ৩.২ নেভার্নিয়াস) থাকে, তারা ওজেনে বেশি সংবেদনশীল। তবে সম্পাচের মময় নিমু তাপমান্রায় অধিক ঘটত হয়। নিমু আপেক্ষিক অর্দ্রতায় জন্মানো উদ্ভিদের তুলনায় উচ্চ আপেন্দিক আর্দ্রতায় জন্মনেন উদ্ভিদ ওজেনে বেশি সংবেদনশীল। উচ্চ আলোতে জন্মনেনা উদ্ভিদের তুলনায় নিমু আলেতে পেন্ উজেনে বেশি সংবেদনশীল। উচ্চ আলোতে জন্মনেনা উদ্ভিদের তুলনায় নিমু আলেতে পেন্ উজেনে বেশি সংবেদনশীল। উচ্চ আলোতে জন্মনেনা উদ্ভিদ বেশি সংবেদনশীল। জীবান্দ্র আলোনি এবং খনিজ-শোধন শিল্পের জৈর পদার্থ থেকে ২০ ভাগ) জন্মনেনা উদ্ভিদ বেশি সংবেদনশীল। জীবান্দ্র আলানি এবং খনিজ-শোধন শিল্পের জৈর পদার্থ থেকে এবং সালফ্রিউন্ডিক অসিও উৎপদনের মেয় এখনত সালফার ডাই- অল্লাইত উৎপন্ন হয়। সালফার ভার্য- এডাইড পত্রাঞ্জ দিয়ে পাতার প্রনেশ শবে এবং জারিত হয়ে বুবই বিষান্ড সালফাইট্টে (SO.২) পরিণত হয় এবং পারবাঠীকেজে নম বিষান্ড সালফেট্ট (SO4) রাপান্তরিত হয়।

খুব ক্ষতিকারক পারঅক্সি অ্যাসিটাইল নাইটেট (PAN) এর ডাঁউদের উপর ফাঁডকরেন প্রভাব আলোর উপর নির্ভারশীল। অত্যাধিক PAN সংবেদনশীল ডদ্ভিদের মধ্যে-বিন, লেট্সে এবং যই প্রধান। মাঝারি প্রতিরোধী উদ্ভিদের মধ্যে জম এবং তামাক।

প্রতিরোধী উদ্ভিদের মধ্যে তুলা এবং তুট্টা। সালফাহাইডাল গ্রন্থের (SH) সাথে PAN বিক্রিয় করে যখন অধিক পরিমাণে SH লন্ড্য হয়, তখন উদ্ভিদ বেশি সংবেদনশীল হয়। বায়ু দূষণজনিত। বায়ু দূষণজনিত কারণে পাতা বেশি আক্রান্ত হয়, তবে মুলের বৃদ্ধিও ব্যাহত হয়। আর বায়ু দূষক এককভাবে ক্রিয়া না করে যৌথভাবেও ক্রিয়া করতে পারে।

মৃত্তিকায় পানি ঘাটতি হলে উদ্ভিদ বায়ুনুযণে সাধরণতে অধিক সহিষ্ণু হয় এবং সাওকায় খনিজ মৌলের ঘাটতি কিংবা অতিরিক্ত থাকার তুলনায় সবোত্তম পরিমাণ খনিজ খোল থাকলে উদ্ভিদ অধিক সংবেদনশীল হয়।

সপ্তম অধ্যন্থ

সালোকসংশ্লেষণ, অন্ধকার শ্বসন ও আলোকশ্বসন

সালোকসংশ্লেষণ

শস্য উদ্ভিদের শুচ্চ পদাথের শতকরা ৮৫ থেকে ৯০ ভাগ কার্বনঘটিত পদার্থ যা সালোকসংশ্লেষণের মধ্যমে তৈরি হয়। সালোকসংশ্লেষণের সম্পূর্ণ প্রক্রিয়াকে তিনটি আংশিক প্রক্রিয়ায় বিভক্ত করা যায়। এই তিনটি আবার পরস্পরের সাধ্যে সম্পর্কযুক্ত এবং অন্তঃস্থ ও বহিঃস্থ পারিবেশিক প্রভাবকের উপর নির্ভরশীন।

এই আংশিক প্রক্রিয়াগুলোর প্রথমটি হলো ক্লোরোপ্লাম্টে কার্বন ডাই-অঙ্গাইডের ব্যাপন যা নিমুলিখিত সমীকরণ দ্বারা প্রকাশ করা যায় :

 $\mathbf{F} = -\mathbf{D}\delta \left[\mathbf{CO}_2 \right] / \delta \times = g \Delta \left[\mathbf{CO}_2 \right] \dots \left(\mathbf{Q}_{\mathbf{v}} \right)$

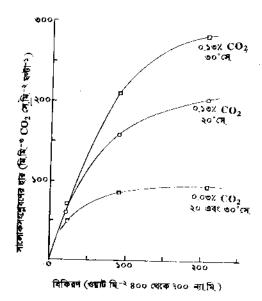
এক্ষেত্রে Δ [CO₂] হলে। কার্বন ডাই–অপ্সাইডের ঘনমাত্রার পার্থক্য এবং × হলে। বহিঃস্থ বায়ু ও ক্লোরোপ্লাস্টের মধ্যে পথের দৈর্ঘ্য এবং ৫´(=DCO2/×) হলে। কার্বন ডাই অক্সাইডের ধ্যাপনের পরিবাহকতা। কার্বন ডাই-অঞ্চাইডের ব্যাপনের পথ বেশ জটিল এবং তা পরবর্তীতে আলোচনা করা হয়েছে।

দ্বিতীয় প্রক্রিয়াটি আলোক–রাসায়নিক, এতে ক্লোরোপ্লাস্টের রঙকে পদার্থগুলো আলোক শোষণ করে। আলোকশক্তি ও অজৈব ফসফেট (Pi) এতে অংশগ্রহণ করে এবং পানিকে ভেষ্ডে আণবিক অক্সিজেন তৈরি হয়। সেই সাথে বিজ্ঞারিত নিকোটিনামাইড অ্যাডিনিন ডাই– নিউক্লিওটাইড ফসফেট (NADPH₂) ও ATP তেরি হয়। সমগ্র বিক্রিয়াটি নিম্নলিখিতভাবে প্রকাশ করা যায়:

 $4H_2O+2ADP+2NADP^+*2Pi \rightarrow O_2 + 2H_2O + 2ATP$

এই প্রক্রিয়া ক্লোরোপ্লাম্ট কর্তৃক সৌরবিকিরণ শোষণের পরিমাণ দ্বারা নিয়দ্বিত এবং এর উপর কার্বন ডাই–অক্সাইডের ঘনমাত্রা অথব্য তাপমাত্রার তেমন কোনো প্রভাব নেই।

তৃতীয় প্রক্রিয়ায়, ধরা যাক C₃ গতিপথ কার্যকর, কার্বন ডাই–অক্সাইডকে বিজারিত করে কার্বোহাইড্রেট এবং অন্যান্য যৌগ তৈরিতে এবং কার্বন ডাই-অক্সাইড গ্রহণকারী রাইবুলেজ বিস-ফসফেট পুনঃসংশ্লেষণে আলোকরাসায়নিক বিক্রিয়ায় উৎপাদিত NADPH+H⁺ এবং ATP ব্যবহৃত হয়।


 $3CO_2+9ATP+ 6NADPH+6H^+ \rightarrow Triose - P + 6NADP^+$

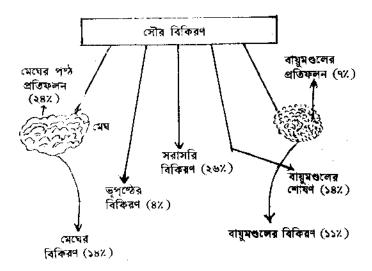
+ 9ADP+8Pi + 3H₂O (9.9)

এই বিজারণ অন্ধক্যরে চলতে পারে এবং তাপমায়ের ওপর নিউরশীল। সম্পূর্ণ সালোকসংশ্লেষণ বিক্রিয়াকে নিম্নুলিখিওভাবে প্রকাশ করা যায় ,

উপরোজ তিনটি প্রক্রিয়ার পারম্পরিক সম্পর্ক ৭০ নাল চিঙা দেখানো হয়েছে। নিমু নাঞর বিকিরণে আলোকরাসায়নিক প্রক্রিয়া সীমায়িত এবং সালোকসংশ্রেষণের হার বিকিরণের উপর নির্ভরশীল। বিকিরণ বৃদ্ধির সাথে সাথে কার্থন ডাই প্রজাইড সরবরাহ অধিকতর গুরুত্বপূর্ণ হয় এবং পরিশেষে এটিও সীমায়িত ২য়। বায়ুমণ্ডলের খাভাবিক কার্বন ডাই-অক্সাইড ঘনমাত্রায় (০.০০৫%), সালোকসংশ্রেষণ হারের উপর ওাপমাত্রার প্রভাব খুব কম। উচ্চ মাত্রার বিকিরণে এবং উচ্চ ঘনমাত্রার কার্বন ডাই-অক্সাইডে (০.১০%), ত্রাপমাত্রা তথা প্রাণরাসায়নিক প্রক্রিয়াগুলো সীমায়িত হয় এবং তাপমাত্রা ২০° সেলসিয়াস থেকে ৩০° সেলসিয়াসে বৃদ্ধির জন্য সালোকসংশ্রেষণের হার শতকরা ৫০ ভাগ বেড়ে যায়। ৭১ এর চিত্র প্রতিক্রিয়া কার্ডকে নিমুলিখিত সমীকরণের সাহায্য্য প্রকাশ করা যায়:

P = aQv/(b+Qv)....(9.4)

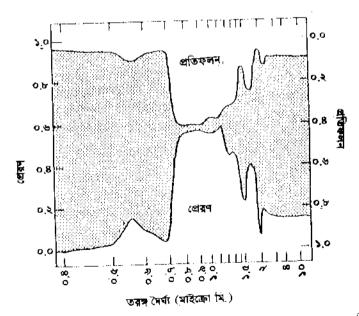
চিত্র ৭.১ : ৩০° সেলসিয়াস (বর্গক্ষেত্র) এবং ২০° সেলসিয়াস (বৃঞ) তাপমাত্রায় সালোকসংস্কেষণের হারের উপর বিকিরণ, তাপমাত্রা এবং কার্বন ডাই-অর্যাইডের ঘনমাত্রার প্রভাব।


এখানে a হলে৷ বিকিরণের , Qv, সাথে সালোকসংশ্রেষণের (P) হারের অ্যাসিস্পোটোট (asymptote অর্থাৎ সার্বাচ্চ সালোকসংশ্লেষণের হার) এবং a/চ হলো কান্ডের প্রাথমিক স্লোপ (slope) (অর্থাৎ আলোকরাসায়নিক বিক্রিয়ার দক্ষতা)। এখানে a আনুমানিক মান ছিল ৩০০, ৯২৬ এবং ১৫৬৩ ঘনমিলিমিটার কার্বন ডাই-অক্সাইড প্রতি মিটারে প্রতি সেকেণ্ডে এবং চ এর মান জিলা ২৮ গা, ১০৫ ও ১৮লা ওয়াট প্রার্থমেনেরে (Wm⁻²) যথক্রেমে ০,০০% কার্বন ডাই-অক্সাইড, ০,১০% কার্বন ভাই অপ্রাইড ২০ সেলসিয়াস তাপমাত্রায় এবং ০,১০% কার্বন ডাই-অক্সাইড ৩০° সেলসিয়াস তাপমাত্রার জন্য : সুতরাগ দেখা যাচ্ছে যে, তিনটি কার্ভের জন্যই এ/চ ছিল প্রায় একই রকম। তবে এরকম সামগ্রিক প্রতিক্রিয়া ব্যাখ্য্য করা বেশ কঠিন, বিশেষ করে যখন কার্বন ডাই-অক্সাইডের খনমাত্রা বুদ্ধির জন্য পত্রবন্ত্রীয় পরিবাহকতা হাস পায়। যদি পত্রবন্ত্রীয় নিয়ন্ত্রণ পরিহার করা হয় এবং তাপমাত্রা সাবো তাম হয়, তাহলে অন্তঃস্থ কার্বন ডাই-ঘরার প্রার্থ ৫.০০% থেকে ০,১% পরিসরে একই প্রকারের সীমায়িত কার্ত দেখা যায়। এটি নির্দেশ করে যে, কার্বোক্সিলেশন বিক্রিয়া সম্পৃক্ত হয়েছে।

সালোকসংশ্রেষণের আলোক–রাসায়নিক প্রক্রিয়ার বিভিন্ন দিক (Photochemical Aspects of Photosynthesis)

সৌরবিকিরণ (Solar radiation)

যে পরিমাণ সৌর্রবিকিরণ পৃথিবীর বায়ুমন্ডলে পৌছায় (সৌর ফ্রবক) তা হলো ১৩৫৮ ওয়াট প্রতি বর্গমিটারের (Wm⁻²)। বায়ুমন্ডল অতিক্রম ধররে সময় শোষণ এবং চারদিকে ছড়িয়ে পড়ার জন্য (scattering) সৌরবিকিরণ শক্তি হারায় এবং এজন্য মাত্র ১১০ ওয়াট প্রতি বর্গমিটারে (বিশ্ব গড়) ভূ-পৃষ্ঠে পৌছায়। এর মধ্যে ৪২০ ওয়াট প্রতি বর্গমিটারে সলোকসংশ্লেষণীয় সক্রিয় বিকিরণ (PAR) (৪০০ থেকে ৭০০ ন্যানোমিটার তরঙ্গ দৈর্ঘ্যের) এবং আবার এই বিকিরণের প্রায় শতকরা ৮৫ ভাগ উদ্ভিদ শোষণ করে। শোষিত শক্তির শান্ডকরা ১৫ ভাগের মতো তাপশক্তি হিসেবে নষ্ট হয় এবং শতকরা ৫ ভাগেরও কম শক্তি সলোকসংশ্লেষণা ৫


বয়েমগুলে সৌরবিঞ্জিরণ প্রবেশ করলে শন্তি বিভিন্নভাবে ছ**ড়িয়ে পড়ে যা মেঘের আচ্ছাদন।** ব্যয়ুমগুলে ধূলিকণায় পরিমাণ এবং এজাতীয় অন্যান্য দিন-রা**ত এবং ঋতুগত ভৌত প্রভাবকের** উপর নির্ভরশীল (চিএ ৭.২)।

ঠিত ৫২ : আপাতত সোৱা বিকিরমের পরিণতি**র একটি সাধারণীকৃত নকশা**।

পৃথিবীর বিভিন্ন অঞ্চলের সারা বহুরে গড় থিসেবে সোন বিকেরণের প্রায় শতকরা ২৫ থেকে ৩০ ভাগ শক্তি মেঘ এবং বায়ুমণ্ডলের বিভিন্ন প্রকার গণস ধারা প্রতিফলিত **হয়ে মহাশুনো** ফিরে যায়। মেঘ, ধুনিকণা এবং গ্যাসীয় পদার্থ সৌরশজির আরো শতকরা ২৫ ভাগ শোষণ করে যা বিষ্ণিপ্ত (diffuse) অবস্থায় এবং একই পরিষণে সৌরশজি সরসরি (direct) ভূ**-পৃষ্ঠে পৌ**ছাঁয়। ভূ পৃষ্ঠে পতিত সৌরশজির খুব সামান্য অংশ প্রতিফলিত হয়ে মহাশুন্যে ফিরে যায় এবং এটি নির্ভর করে পৃষ্ঠে প্রতিফলিতা (reflectivity) বা অ্যালবেডোর (albedo) উপর।

সুতরাং ভূ-পৃষ্ঠে আপতিও সৌরশক্তিকে দুটি উপাদনে ভাগ করা যায় সূর্য থেকে সরাসরি আপতিত শক্তি এবং বায়ুমণ্ডল এবং মেদ থেকে ছড়িয়ে পড়া অথবা প্রতিফলিত শক্তি। সরাসরি সৌরবিকিরণের তুলনায়, যিফ্রিপ্ত বিকিরণের বর্ণালীগত (Spechal) গঠনের পার্থক্য আছে, কারণ দীর্ঘ-তরঙ্গ দৈখ্যের তুলনায় হুস্ব তরঙ্গ দৈখ্যের রশ্মি নয়ের অণু কতৃক বেশি ছড়িয়ে পড়ে, এর দীর্ঘ-তরঙ্গ দৈখ্যের তুলনায় হুস্ব তরঙ্গ দৈখ্যের রশ্মি নয়ের অণু কতৃক বেশি ছড়িয়ে পড়ে, এর জন্য আকাশ নীল দেখায়। অবশ্য অধিকতর বড় কণা, যেমন ধূলিকণা এবং জলবিন্দু সকল তরঙ্গদৈখ্যের বিকিরণকে একইভাবে ছড়িয়ে দেয় এজন্য মেধ্যচ্ছর আকাশ সাদা দেখায়। একটি পাতা কিংবা শস্যের ক্যানোপির উপর আপতিত সৌর্য্রিকিরণ শোষিত (absorbed), প্রেরিত (transmit) অথবা প্রতিফলিত (reflect) হতে পারে। সৌর বর্ণালীর সালোকসংল্লেযগিয় সক্রিয় যধ্যে সবচেয়ে কয় শোষিত হয় (চিত্র ৭.৩.)।

চিত্র ৭.৩ : একটি আদশ পরে কর্তৃক সোৱাবন্দিরন প্রেরণ, প্রতিফলন এবং শোষণ। কিন্দুর দ্বারা নকশাকাটা অংশে শোষিত অংশ।

অবলেনিহত (infrared) অংশে (৭০০ থেকে ১২০০ নামেনিচিরি) পাতা কর্তৃক সৌরবিকিরণ শোষণ হঠাৎ করে খুব হ্রাস পায় এবং সেই সাথে প্রতিফলন এবং প্রেরণন্ত্র বৃদ্ধি পায়। আপতিত

শস্য শারীরবিজ্ঞান

সৌরগ্রকিরপের প্রায় অধ্যান্দ এই আলে আডে লিখা তরন্ধ দৈষ্যের অংশ তরল পানি অধিক পরিমাণে শেষণ করে অরু চলামে এনি অর্থমায় যে থেকে প্রায় **কিছুই প্রতিফলন এবং প্রেরণ হয়** না। পাতায় যে পরিমাণ সোরবিক্রিণে লোখাত হয় তা ব্রুগ**রোপ্রাপ্টের রঞ্জকের মাত্রা এবং এদের** সজ্জার সাথে সম্পর্কযুক্তা

যদিও এ পথান্ত সোরাইকিরণ ও শাও ফ্রারা হিসেবে বিবেচনা করা হয়েছে, তবে সালোকসংশ্লেষণে বিকেরণের শেষণ ও রবছারের ক্ষোত্র কোয়ান্টা (quanta) হিসেবে বিবেচনা করাই অধিকতর যুক্তিসংগত। একাট রোয়ান্টামে শান্তরা পরিমাণ বিকিরণের ফ্রিকোয়েন্দির, v (নিউ), ওপর টান্ডরশীল টোইল ২০, ১৪, এদের মধ্যে সম্পর্ক নিমুলিখিত সমীকরণের সাহায্যে প্রকাশ করা যায়।

 $E{=}h\nu,\ldots,\ldots,\nu > z$

এখানে El হলে। কে মান্দানে সময় প্রমান হলে প্রায়কা (L) লগে মেন্দ্র কি মেন্দান মেন্দ্র কে মেন্দ্র বিধায় ক্রাজের বিধায়ক জেলে ২০০০ মান্দ্র ক্রাক্ত সের ক্রাক্ত বিধায়ক ক্রাক্ত বিধায়কের বিধায় বিধায় বিধায় বিধায় বিধায় বিধায

সারশি ৭১০ বিভিন্ন তরসলৈখনে একেরণের বেলিস্কা

তরঙ্গান্ধা নাগনোমাগর			800	100
। তরঙ্গ সংখ্যা প্রোত সেন্টান্টনের ফিকোয়োন্সি প্রেতি সেকেন্ডের প্রতি কোয়েন্টান্ম শান্ডর পারমান			३७.१×३०° ৫×३० ^{३४}	
় (জুল।	-	61-1-10	o oxy	3,6-20-28

সালোকসংশ্রেষণে শান্তর রপান্থানে নমাতা কে কোয়ান্টাম দক্ষতা, P/Ia, হিসেবে অধিকতর নির্ভুতভাবে মলায়েন করা যায় একেছানে ৮ হালা সালোকসং**শ্রেষদের হার এবং Ia হলো শোষিত** কোয়ান্টার সাখ্যান মেহে তু বিভিন্ন রন্তুক জলাম রোভন্ন **ওরস্টেলর্ফের বিকিরণ বিভিন্ন মাত্রায় শোষণ** করে এবং এই এরস্য দেখেরে লোয়ান্টামের শক্তির পরিমাণ ভিন্ন**তর, সেহেতু কোয়ান্টাম ফলন** (quantum yield) ইংশা নির্করাজ্য ওরস্যান্টামের একটি ভটিল ফাংশন (function)।

পূর্বেই উল্লেখ করা ইয়েছে সমাবরণ মৃত্যু যে সালোকসংশ্লোষণের আলোকবিক্রিয়ায় NADPH+H⁺ এবং ATP তেরি হয় যে এককরো বিক্রিয়ায় কার্বন বিজ্ঞারণে অংশগ্রহণ করে। প্রতি অণু অগ্রিজন নিগমনের জন । এখন প্রতি অণু কার্বন ডাই-অক্সাইড বিজ্ঞারণ) আট কেয়েন্টা শাঁওর নরকরে । এর্ট্রায় মান । আলোর প্রথর ডা প্রায় শূন্য অবস্থায় একটি পাতার সাবনিমু ১২ থেকে ১৪ কোষন্ডমে প্রয়োগনা এর্খ জাঁও অংইনস্টাইন (cinstein, B) শক্তির জন্য ০০৭ থেকে ০০৮ মোল কারন ডাই এল্বাইড বিজ্ঞারত হয়। সুর্যালোকের দৃশ্যমনে অংশের (PAR) প্রাত একক শাভাতে কোয়ন্য মেন গুরু সংখ্যা প্রায় নির্দিষ্ট এবং যার পরিমাণ হাড় মাইক্রো আইনস্টাইন প্রাও জ্বোন্যা চা

শস্যা কর্তৃক সৌরবিকিরণ শোষণ চোচেচলোলোলা Notar Radiation by Crop) যদি কেনেল শসেরে প্রায় এমটা এমটান যে সিপেসেও মৃত্তিকায়ে শসং জন্সমায় তার ক্ষেত্রফল দিয়ে ভাগ করা হয়, তাহলৈ প্রায়ের্ফরফলন ফলান বিজ্ঞানিকা Index or LAT, অথিৎ মৃত্তিকার প্রতি একক ক্ষেত্রফলো প্রায়ার ক্ষেত্রফলনা ফলান TV, অর্থৎ প্রতি একক আয়েতনে পাতার

 $\mathbb{L}_{W'}$

ক্ষেত্রফল) প্রান্তয়া যায়। মৃত্তিকরে ফেত্রফলকে শস্যের উচ্চতা (h) দারা গুণন করলে ক্যানোপির আয়তন পাওয়া যায় এবং LAL কে করনোপির আয়তন দ্বারা ভাগ করলে পত্র ক্ষেত্রফল) পাওয়া যায়। শস্যের বিভিন্ন উচ্চতাং, Ly ভিন্নতর হয়। নর্বান শস্যে সবোস্ত ধনত্ব, LV, max, ২য় প্রায়ই ০.৫h উচ্চতায় এবং শস্যের বৃদ্ধি হলে এটি ২য় ০.৫h উচ্চতায়। শস্যের বৃদ্ধির সাথে সাথে সাধারনত Ly, max বেড়ে যায় ; কারণ কাণ্ডের দীধীকরণের তুলনায় নতুন পাতা তৈরি ও প্রসারণের হার অপেক্ষাকৃত বেশি। নিভিন্ন প্রজ্যাতিতে এবং বিভিন্ন পরিবেশে এটি পরিবর্তিত **হ**য়। ঘন ক্রোভার শসের এটি প্রতি মিটারে ১০০ (100m⁻¹) পর্যস্ত হতে পারে, তবে সাধারণত এই মান এর এক–দশমাংশ অপাৎ প্রতি মিটারে ১০ হয়। যখন মৃত্তিকার উদ্ভিদ মোটা**মুটি সমানভাবে বন্টন** থাকে, যেমন কোনো কোনো শস্যের শীর্ষ (ear) নিগমতর সময়, পাতাগুলো কুম-বেশি আনুভূমিক তলে ছড়িয়ে থাকে। আনুভূমির সাথে প্রতিটি পত্রফলক অথবা পত্রফলকের কিছু অংশ যে কাণ (angle)তৈরি করে তা নিভিন্ন প্রজাতিতে ভাবং বুদ্ধির বিভিন্ন দশায় ভিন্ন হয় ; ক্লোভার, কেল এবং বিনের মতো শস্যের ফুদ কোণ্ডের প্রাধান্য থাকে, অপরপক্ষে **দ্বাসের নবীন পাঁতা অধিকত**র খাঁডা (crect) এবং পাতার বয়স বৃদ্ধির সাথে সাথে ইথা শায়িত (Hatter)**হয়। সুতরাং নবীন অবস্থায়** অথবা থাসের শ্টাল্ডের (stand) উপরের অংশে বৃহৎ কোণের পরিমাণ বেশি <mark>; মাসের বয়স বৃদ্ধি</mark>র সাথে অথবা মন ক্যান্যোপির নিচের গুরে বিস্তার আধকতর একরাপ হয়। ক্যান্যো<mark>পির গঠনের এই</mark> বিষয়গুলো শস্য কর্তৃক সৌরবিকিরণ শোষণকে প্রভাৱিত করে।

সরাসরি (direct) এবং ৰিক্ষিপ্ত (diffuse) বিকিরণের ফ্লাক্স ঘনত্বের দুটি উপাদান যা ক্যানোপির রহেরে পৌছায় তা প্রাসঞ্জিক, ত্রন্দটোকে একসাথে বিবেচনা করাই সুবিধাজনক। একটি হলো দৃশ্যমান বিকিরণের অন্তগ্রহাঁ (meaning) ফ্লায় যা সালোকসংশ্রেষণে তাৎপর্যপূর্ণ। অপরটি হলো মোট আপতিত হ্রন্থ তরসনৈঘা বিকিরণের ফ্লান্থ যা দীর্ঘ তরসনৈর্ঘের বিকিরণের নিট বহির্গামী (outging) ফ্লাগ্রের সাথে একওে বান্দীয়ভবনের জন্য নিট শক্তি সরবরাহ করে।

কোনো শসের শীয়ে আপতিত একটি নির্দিষ্ট বর্ণালীর বিকিরণের ফ্লাক্সের (Qo) কথা বিবেচনা করা যাক। এর কিছু অংশ পাতা ফাঁক দিয়ে নিচে চলে যায় এবং কিছু অংশ পাতায় পতিত হয় ; শেষোক্ত বিকিরণের কিছু অংশ প্রতিফলিত (০০) এবং কিছু অংশ প্রেরিত (y) হয়। ক্যানোপি অতিক্রমের সময় সৌরবিকিরণের পরিমাণ হাস পায় এবং একটি তল বরাবর লয়া আনুভূমিক টিউব সোলারিমিটারের সাহায়ে বিকিরণের গড় মান পাওয়া যায়। কোনো তলের ফ্লাক্স সাধারণত নিমুলিখিতভাবে প্রকাশ করা হয়:

Q=Q10.2=p(-KL), এক্ষেণ্ডে L হলো পাঠার ক্ষেত্রফল। এরাপোনেন্ট K দুটি প্যারামিটার প্রকশ করে ; প্রেরণ গুণাঙ্গক y কেবল আলোক বণালীর গঠনের উপর নির্ভরশীল এবং একটি ক্ষেত্রতত্ত্ব বিষয়ক উপাদান, K, যা শস্যের অভ্যন্তরে পাতরে কোণের বিস্তারের সাথে এবং সূর্যের উচ্চতার সাথে পরিবর্তিত হয়। এগুলো পরস্পরের সাথে সম্পর্কিত ; K=k/(1-y)। অধিকাংশ শস্যে y=∞=0.01 পৃশ্যমন বিকিরণের (০০০ থেকে ২০০ ন্যানোমিটার) জন্য, ০.৪১ অবলোহিত বিকিরণের (৫০০ থেকে ০০০০ ন্যানোমিচার) জন্য এবং ০.২৫ মোট ব্রস্ব তরঙ্গদৈর্ঘ্য বিকিরণের জন্য। তাই মোট অন্তর্গামী হ্রস্ব তরঙ্গদৈয় বিকিরণে পরিমাপ করে যদি K নির্ণয় করা হয়, তাহলে K=1.33k ; যদি দৃশ্যমান বিকিরণ থেকে নিণয় করা হয়, তাহলে K=1.07k।

পাতার কোণ এবং পাতার বিস্তার K এর মনেকে প্রকটভাবে প্রভাবিত করে ; খাড়া পাতা এবং/অথবা ঝোপের মতো (Clumped) বিস্তারযুক্ত ক্যানোপির নিমু মান (দৃশ্যমান বিকিরণের জন্য ০.০ থেকে ০.৫) এবং আনুভূমিক (horizontal) পাতার ক্যানোপির উচ্চমান কে জিল ১.০) হয়। এছাড়াও, পাতা থেকে বিকিরণ প্রতিফলিত ২ওয়ার জন্য একটি উধ্বমুখ্য বিষ্ণুষ্ঠ হ এবং পাতার ফেব্রফলের (L) নিচে মোট ফ্লাব্স নির্ণয়ের জন্য এটি অবশ্যই নিমুমুখী ফ্লাব্লের সাথে যোগ করতে হবে। একটি কাছাকাছি গ্রহণযোগ্য মানের জন্য নিমুলিখিত সমীকরণ ব্যবহার করা যায় :

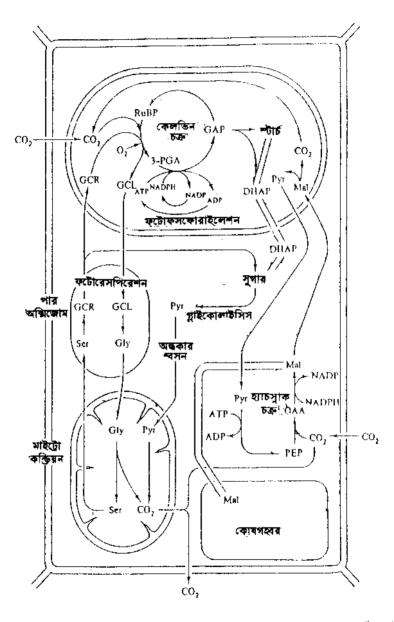
 $Q=Qo \exp\{-K(1-y-\infty)|L\}$ (9.9)

এরপর প্রত্যেক স্তরে প্রতি একক পাতার ক্ষেত্রফল কর্তৃক শোষিত স্ট্রাঙ্গ সরাসরি নির্ণয় করা যায়।

সমীকরণে ৭.৭-এ দৃশ্যমান (৪০০ থেকে ৭০০ ন্যানোমিটার) এবং মেট ব্রন্ধ তরস্টনৈর্দের (৩০০ থেকে ৩০০০ ন্যানোমিটার) বিকিরণ উল্লেখ করা হয়েছে। ক্যানোপির কোনো গুরে মেট লভ্য শক্তির পরিমাণ নির্ণয়ের জন্য দীর্ঘ তরঙ্গদৈর্ঘ্যের বিকিরণের বিনিময় অবশ্যই বিধেচনা করতে হবে। ক্যানোপির বাইরে দীর্ঘ তরঙ্গদৈর্ঘ্যের বিকিরণের উধ্বমুখী ফ্লাক্স সবসময়ই আকাশ থেকে নিমুমুখী ফ্লাক্স থেকে বেশি উষ্ণ এবং মেঘমুক্ত দিনে প্রাস্বেদনরত উদ্ভিজ্জে প্রায় ১.২ গুণ বেশি। ক্যানোপিতে নিট দীর্ঘ তরঙ্গদৈর্ঘ্যের বিকিরণের ফ্লাঙ্ক, যা উপর থেকে নিচে পরিমাণ করা হয়েছে, কাছাকাছিতাবে নিমুলিখিত সমীকরণের সাহযে বর্ণনা করা যায় :

 $QL = -(1-\beta)\delta T^4 \exp(-KdL) \dots (9, b^{-1})$

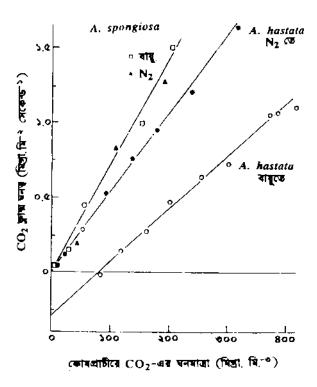
এক্ষেত্রে <u>(</u>) হলো ইমিসিভিটি (emissivity), যার মান শুক্ষ আবহাওয়ায় এবং পরিক্ষার আকাশের জন্য ০.৭ এবং আর্দ্র ও মেঘাচ্ছন্ন আকাশের জন্য ১ এর কাছাকাছি ২য়, ৪ হলো Stefan - Boltzmann ফ্রুবক, T হলো পরম তাপমাত্রা এবং Kd হলো প্রেরণ গুণাঙ্ক যার মান ক্যানোপির অভ্যন্তরে বিফিপ্ত বিকিরণের সমান।


আলোক বর্ণালীর বিভিন্ন অংশের উপর মিট বিকিরণের ফ্লান্স (QN) নিভর্গশিল। আনগণে মেদমুক্ত থাকলে এবং হ্রস্ব তরঙ্গদৈর্ঘ্যের ফ্লান্সের মান উচ্চ হলে, দৃশ্যমান বিকিরণ এবং মেট নিট বিকিরণের প্রোফাইল প্রায় একই রকম হয়। এর প্রধান কারণ হলো ৫০০ থেকে ১২০০ ন্যানোমিটার ব্যান্ডে শোষণ কম হয় এবং ১২০০ থেকে ৫৫০০ ব্যান্ডের শোষণ অনেকাংশে পূরণ হয় দীর্ঘ তরঙ্গদৈর্ঘ্যের বিকিরণের নিট হারানো (Joss) দ্বারা। ব্যানোপির প্রত্যেক গুর কর্তৃক শোষিত সকল তরঙ্গদৈর্ঘ্যের দিট বিকিরণের উপর প্রস্কেশনান নিউর্ব্যের জিল্ব কেবল দৃশ্যমান বিকিরণের উপর প্রস্কেদর্ঘ্যের মানালকেংশে পূরণ হয় দীর্ঘ সকল তরঙ্গদৈর্ঘ্যের নিট হারানো (Joss) দ্বারা। ক্যানোপির প্রত্যেক গুর কর্তৃক শোষিত সকল তরঙ্গদৈর্ঘ্যের নিট বিকিরণের উপর প্রস্কেশন নির্ভন্তশীল, কিন্তু কেবল দৃশ্যমান বিকিরণের উপর স্বস্কেশন নির্ভরশীল, কিন্তু কেবল দৃশ্যমান বিকিরণের উপর স্বালোকসংল্লেষণ নির্ভরশীল।

কার্বন ডাই-অক্সাইডের বিজারণ (Reduction of CO₂)

উদ্ভিদ কোষে কার্বনের গতিপথ রেখাচিত্রের সাহায্যে ৭.৪ নং চিত্রে দেখানো হয়েছে। দুটি প্রধান কার্বোস্তিলেশন অনুক্রম (sequence) – কৈলভিন চক্র এবং হ্যাচ এবং স্ল্যাক গতিপথ এবং দুটি ডিকার্বোস্লিলেশন অনুক্রম – অন্ধকারম্বসন (গ্লাইকোলাইসিস এবং ক্রেবস্ চক্রের মাধ্যমে) এবং আলোকশ্বসন আছে।

কার্বন ডাই-অক্সাইড গতিপথের উপর ভিত্তি করে শস্য উদ্ভিদকে তিনভাগে ভাগ করা যায়-C3, C4 এবং CAM উদ্ভিদ।


(ক) C₃ উদ্ভিদ–(কার্বন আজ্ঞীকরণের প্রথম স্থায়ী বস্তু তিন–কার্বন যৌগ); এক্ষেত্রে কেলভিন চক্রের মাধ্যমে কার্বন ডাই–অক্সাইড বিজারণ হয়। প্রাথমিক কার্থোব্লিলেশন বিক্রিয়ায় অংশ গ্রহণকারী এনজাইম, রাইবুলোজ – ১,৫–বিসফসফেট কার্বোঞ্জিলেজ, আবার অস্তিজিনেজ হিসেবেও কাজ করে। অক্সিজেনের ঘনমাত্রা বৃদ্ধির সাথে সাথে আজ্ঞীকৃত কার্বন ডাই অক্সাইড অধিক মাত্রায় গ্লাইকোলিক এসিড গতিপথে চলে যায় আলোকশ্বসনের সাবস্টেট হিসেবে কাজ

টিত্র , ৭,৪ : উদ্ভিদে সালোকসংশ্লেষণ এবং শ্বসনের গঠিপথের খসড়া চিত্র। DHAP= ডাই হাইডোরি অগ্রাসটেন ফসফেট, GAP = গ্লিসারালডিহাইড ফসফেট ; GCL= গ্লাইকেলেট : GCR= গ্লিসারেট : Gly = গ্লাইসিন ; Mal = ম্যালেট ; OAA = অগ্লালো অ্যাসিটেট : PEP=ফসফেএনল পাইরোডেট ; 3-PGA=৩ ফসফো-গ্লিসারালডিয়াইড ; Pyr=পাইরুডেট, RUBP=রাইবুলোজ –১,৫ বিসফসফেট।

(খ) C4 উদ্ভিদে বহিঃস্থ মেন্সোফিল কলায়ে হ্যাচ এবং স্ল্যাক গতিপথ কাৰ্যকর এবং অন্তঃস্থ ব্যন্ডিল শিথে কেন্নাভিন চক্র সংঘটিত হয়। কার্বন আস্ট্রীকরণের প্রাথমিক বস্তু একটি চার–কার্বন যৌগ, এসকল উদ্ভিদের বঠিঃস্থ কোষে কার্বন আস্ট্রীকরণ হয়ে ম্যানিক এসিডে (অথবা আ্যসপারটিক এসিড) পরিণত হয় এবং এটি অস্তঃস্থ কোযে চলে যায় এবং এখানে ডিকাবোক্সিলেশন বিক্রিয়া ঘটে।

এই উৎপাদিত কাৰ্বন ডাই-অক্সাইড পুননায় কেলভিন চক্ৰের মাধ্যমে আগ্রীকরণ হয় এবং পাইর্কাডক এসিড (অথবা অ্যালানিন) আবার বহিঃস্থ কোযে চলে আসে পুনরায় ফপফোএনল পাইর্কাডক এসিড তৈরি ২ওয়ার জন্য। সন্তবত বহিঃস্থ কোযে দক্ষতার সাথে কার্বন ডাই-অক্সাইড ধৃত ২৬য়ায় এবং অন্তঃস্থ কোযে উচ্চ ঘনমাত্রায় কর্বেন ডাই-অক্সাইড থাকায়, আলোকশ্বসনের মাধ্যমে C4 উদ্ভিদে খুব সামন্যে কিংবা একেবারেই কার্বন নষ্ট হয় না।

চিত্র ৭.৫ : অপরিবার্ডনীয় তাপমাত্রা, প্রখর আলো এবং ম্বাভাবিক ও অক্সিজেন মুক্ত বায়ুতে এবং পর্যাণ্ড পানিতে জন্মানো Atriplex sponglosa ও A. hastata–এর কার্বন ডাই–অক্সাইড বিনিমন্তের হারের উপর মেসোফিল কলার কোষ প্রাচীরে কার্বন ডাই–অক্সাইড খনমাত্রার প্রভাব :

সালোকসংশ্লেষণ, অন্ধকার শ্বসন ও আলোকশ্বসন

(গ) ত্র্যাপুলেসিয়ান এসিড বিপাক বা CAM উদ্ভিদের কেলভিন চক্র এবং হয়চ ও স্র্যুণ্ফ গতিপথ একই কোযে সংঘটিত হয়, তবে এদের কার্যকারিতা সময় দ্বারা পৃথক। এই প্রকার উদ্ভিদে রাতে পত্ররন্ধ্র খোলা থাকে এবং প্রচুর পরিমাণে কার্বন ডাই-অক্সাইড আন্তীকরণ হয় ও ম্যালিক এসিড হিসেবে কোয গহবরে জমা থাকে। দিনের অধিকাংশ সময় পত্রবন্ধু বন্ধু থাকে এবং ম্যালিক এসিডের ডি–কার্বোক্সিলেশন হওয়ায় কার্বন ডাই–অক্সাইড মুক্ত হয় এবং আবার কেলভিন চক্রের মাধ্যমে এর পুনঃআন্তীকরণ হয়।

নাতিশীতোঞ্চ অঞ্চলের অনেক শস্য উদ্ভিদ যেমন- গম, যব, সুগারবিট, গোল আল্, তুলা, সকল লেগুমে এবং কাণ্ঠল প্রজাতি C₃ উদ্ভিদের অন্তর্গত। অধিকাংশ গ্রীষমগুলীয় দানাশস্য এবং ঘাস, যেমন- ভুট্টা, সরগম, এবং আখ C₄ উদ্ভিদের অন্তর্গত। এ পর্যন্ত জন্য মতে আনারস হচ্ছে একমাত্র CAM উদ্ভিদ যা শস্য হিসেবে জন্মানো হয়।

C4 উদ্ভিদে আলোকশ্বসনের অনুপস্থিতি এবং শ্বসন সৃষ্ট কার্বন ডাই-অক্সাইড পুনরায় ব্যবহারের কার্যকর কৌশল থাকায়, C3 এবং C4 উদ্ভিদের পাতায় কার্বন ডাই-অক্সাইড ফ্লাগ্র-ঘনত্বের তাৎপর্যপূর্ণ পার্থক্য আছে। প্রথমত, উচ্চ বিকিরণে রাখা C4 উদ্ভিদের পাতা থেকে কার্বন ডাই-অক্সাইডমুক্ত বায়ুতে নির্ণয়যোগ্য কার্বন ডাই-অক্সাইডের ফ্লাক্স থাকে না ; অপরপক্ষে C3 উদ্ভিদে আস্তীকৃত কার্যনের শতকরা ২০ থেকে ৫০ ভাগের সঙ্গে সঙ্গেই শ্বসন ২য় (চিত্র ৭৫)। দ্বিতীয়ত, C3 উদ্ভিদের তুলনায় C4 উদ্ভিদের নিট ফ্লাক্স অনেক বেশি। যখন আলোকশ্বসন হাস করা হয় (অক্সিজেনের থনমাত্রা ০ থেকে ২/ কমিয়ে), তখন দুণ্ডকার উদ্ভিদের মধ্যে অধিকাংশ পার্থক্য আরে থাকে না। তৃতীয়ত, কেলভিন চক্রের মাধ্যমে এক মোল কার্বন ডাই অন্নাইড আন্ত্রীকরণের জন্য স্বনিমু ৫৬৭ কিলোজুল (KJ) শক্তির দরকার, অপরপক্ষে, সম্দূর্ণ C4 পথের জন্য প্রয়োজন ৪০ থেকে ৮০ কিলোজুল বা এর চেয়ে বেশি শক্তি।

কার্বন ডাই-অক্সাইডের ব্যাপনের পথ (Diffusion Pathways of CO₂)

ঘনভাবে জন্মানো কোনো শস্যের উপরের বায়ু থেকে ব্যাপনের মাধ্যমে কার্বন ডাই–অক্সাইডের ঘাটতি পূরণের তুলনায় যদি শস্য বেশি পরিমাণে কার্বন ডাই–অক্সাইড ত্যাগ করে, তাহলে সালোকসংশ্রেষণের জন্য কার্বন ডাই–অক্সাইড সীমায়িত হয়। শস্যের কানোপির অভ্যন্তরের বায়ুর সাথে শস্যের উপরের বায়ুর মিশ্রণকে বায়ুপ্রবাহ ত্বরান্বিত করে, এভাবে ক্যানোপির কার্বন ডাই– অক্সাইড ঘাটতি পূরণ হয়। সালোকসংশ্রেষণে আলো অথবা কার্বন ডাই–অক্সাইড সীমায়িত হবে তা নির্ভর করে আলোর প্রথরতা, উদ্ভিদের ঘনত্ব এবং বায়ুপ্রবাহের উপর। গ্রীনহাউক্রের মত্যে বদ্ধ প্রকোশ্চে কার্বন ডাই–আক্সাইডের ঘনত্র এবং বায়ুপ্রবাহের উপর। গ্রীনহাউক্রের মত্যে বদ্ধ প্রকোশ্চে কার্বন ডাই–আক্সাইডের মাত্রা বৃদ্ধি করা সন্তব (সাধারণত গ্যাস অথবা তেল পুঞ্জিয়ে এটি করা হয়), কিস্তু মুক্ত মাঠে এটি অসন্তব।

সালোকসংশ্লেষণে অংশগ্রহণকারী কার্বন ডাই-অক্সাইড পত্রবন্ধ এবং পরস্পর সংযোগকারী আন্তঃকোষীয় বায়ু প্রকোস্ঠের শাথান্থিত সিন্দেমের মাধ্যমে পাতা অথবা কাণ্ডের সবৃক্ত কোমে পৌছায়। বায়ুমণ্ডলের কার্বন ডাই-অক্সাইড পত্রবন্ধ্র অতিদ্রুমের পর, এটি অধ–পত্রবন্ধ্রীয় বায়ু প্রকোস্ঠ এবং সংযোগকারী বায়ু চলাচলের পথে প্রবেশ করে। এখান থেকে পাতার মেসোফল কলায় পরিবাপ্থ হয় কার্বন ডাই-অক্সাইড যখন ডেন্ধা কোমের পৃষ্ঠে পৌছায়, এটি পানিওে দ্রবীয় তায়ু প্রকোস্ঠ এবং সংযোগকারী বায়ু চলাচলের পথে প্রবেশ করে। এখান থেকে পাতার মেসোফল কলায় পরিবাপ্থ হয় কার্বন ডাই-অক্সাইড যখন ডেন্ধা কোমের পৃষ্ঠে পৌছায়, এটি পানিওে দ্রবীযূত হয়, পানিযোন্ধিত হয়ে কার্বেনিক আগিড (H2CO3) ২৪, এটি আবার কোষের ক্যাটায়ন দ্বারা আংশিকভাবে নিরপেক্ষ হয়ে বাই-কার্বোনেট আয়নে (HCO3) পরিণত হয়। এই বাইকার্বোনেট হলো কোষে কর্বেন ডাই-অক্সাইডের ভাণ্ডার যা সালোকসংশ্লেষণের ব্যবহৃ হয়: উচে শেণীর উদ্ভিদে দ্রবণীয় অবস্থায় কার্বন ডাই-অক্সাইডের ব্যাপনের পৃষ্ঠ প্রে কার্বন ডাই হের্যাটকেরে বার্বার্ কার্যে কার্যে কার্বন ডাই-আরাইডের জার্যনে কের্যেন ডাই দের্যার্ট কার্যে কার্যন ডাই বর্যার কার্বেরে কার্যের জার্বোনেট আয়নে (HCO3) পরিণত হয়। এই বাইকার্যেনেট হলো কোষে কর্যেন ডাই-অক্সাইডেরে ভাণ্ডার যা সালোকসংশ্লেষণের ব্যবহৃত হয়। জাই বাইকার্যেনেট হলো কোষে কর্যেন ডাই-অক্সাইডের ভাণ্ডার যা সালোকসংশ্লেষণের ব্যবহন্ত হয়। এই বাইকার্যেনেটে হলো কোষে কর্যেন ডাই-অক্সাইডের তাণ্ডার ব্যাপনের পথ খুল কম। কিন্তু কর্ত্বন ডারাই-অক্সাইড ক্যের্যারার কার্বন ডাই-অক্সাইডের ব্যাপনের ব্যের্যার্ড হার্য জার্ব-অক্সার কার্বের প্রার্য হার্য হা

সালোকসংশ্লেখণের শ্বান এবং বায়ুমণ্ডলে একটি ব্যাপন গ্রেডিয়েন্ট তৈরি ২ওয়ার জন্য কাবন ডাই–অক্সাইড পাতায় প্রবেশ করে। সুতরাং কাবন ডাই–অক্সাইড আন্তীকরণের নিট হার, এই ব্যাপন গ্রেডিয়েন্টর বরাবর কাবন ডাই–অক্সাইডের ফ্রাপ্পের হারের সাথে প্রতক্ষভাবে সম্পর্কিত। ফ্রাপ্স দ, গ্রেডিয়েন্টের আকার নিধারণ করে। যেহেতু বিডিয় ঘনমাত্রা অংশে গ্যাসের ফ্রাপ্স বৈদ্রুতিক কন্ডাকটারের ভেতরে বিদ্যুৎ প্রবাহের অনুরূপ, তাই ওহমের সূত্র অনুসারে ফ্রাপ্সকে (F) নিমুলিখিতভাবে প্রকাশ করা যায়:

 $\mathbf{F} = \Delta \mathbf{C} / \Sigma \mathbf{r}_1, \dots, \langle \nabla, \aleph \rangle$

এক্ষেত্রে পাত্রায় কার্বন ডাই-অক্সাইডের ফ্লাঙ্গ (F), ঘনমাত্রার গ্রেডিয়েন্ট (AC) এবং পাতায় কারন ডাই- অক্সাইড ব্যাপনে মেটি রোধক (Σr) হলো যথাক্রমে বিদ্যুৎ প্রবাহ (current), বিভবের পার্থকা (potential difference) এবং বেদ্যুত্তিক রোধকের অ্যানোগ্যাস।

কার্বন ডাই–অল্লাইড আন্টকিরণ প্রক্রিয়াটি বর্ণনার জন্য রোধক অ্যানালগ ব্যবহারের ধারণাটি প্রথম প্রকাশ করেন Gaastra ১৯৫৯ সালে। তাঁর মতে বায়ুমণ্ডল এবং কার্বোঞ্সিলেশনের স্থানের মধ্যে কার্বন ডাই অল্পাইড ব্যাপনের পথটি পর্যায়ক্রমিক তিনটি বেংধকে গঠিত যথা, বাউন্ডাবি স্তর রোগক _(A), পত্রবন্ধীয় রোধক (_{IS}) এবং মেসোফিল রোধক (_{ID})(চিত্র ৭.৬)।

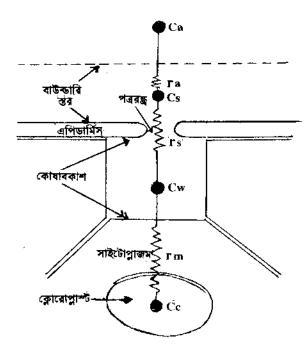
යහා $F = (Ca \cdot r)/(r_a + r_s + r_m)$ (৭.২০)

এক্ষেত্রে C_a হলে! বায়ুমণ্ডলের কাবন ডাই- মরাহডের ঘনমাত্রা এবং কাবোজিলেশনের ছানে কার্বন ডাই-অক্সাইডের ঘনমাত্রা অজ্ঞাও, Gaastra-এর মডেল অনুযায়ী এটি শূনের কাছকোঁ২, অর্থাৎ AC-Ca । পরবর্তী মডেলগুলোরে অবশ্য পাতার অভ্যস্তরে কার্বন ডাই-অক্সাইডের ঘনমাত্রা হিসেবে সালোকসংশ্রেযণের কারন ডাই-অক্সাইডের ফডিপুরণ বিন্দুকে (r) বিবেচনা করা হয়েছে:

বাউন্ডারি স্তর রোধক

যখন কোনো গ্যাসীয় প্রদাপ কোনো সমতল পৃষ্ঠ, যেমন পাতার উপর নিয়ে প্রবাহিত হয়, তখন সমতল পৃষ্ঠে বায়ুর অণুর একটি স্থির স্তরের সৃষ্টি হয়। একে বলা হয় বাউণ্ডারি গুর। এই স্তরের পূরুত্ব নির্ভর করে পৃষ্ঠের আকার ও আকৃতি এখং গ্যাসীয় পদার্থের প্রবাহের বেগের উপর। যদি এই স্তর পুরু হয় যেমন- বৃহদাকার পত্রপৃষ্ঠের উপর অথবা বায়ুপ্রবাহ স্থির থাকলে, তাহলে গ্যাসীয় পদার্থের ব্যাপনের রোধক বেশি হয় পাতাতে কিংবা পাতা থেকে জলীয় বান্ধ কিংবা কার্বন ডাইন অহাইড ব্যাপন মন্থর হয়, এবং বাউণ্ডারি স্তর রোধক (r_ম) বেশি হয়। সূতরাং বায়ুপ্রবাহ বেশি হলে এবং পাতা ডোট হলে দ্ব এর মনে সাধারণত বেশ কম।

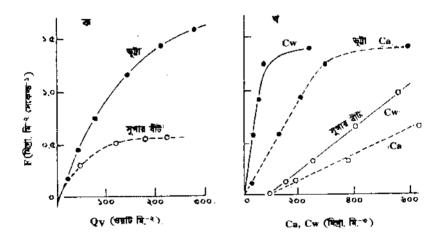
পত্ররন্ধীয় রোধক


পাতায় পাএরক্তের সংখ্যা ৬ রক্তের আব্দারের উপর প্রধানত এই রেখক নির্ভর করে। এটি ইলো সালেকেসংশ্রেষণের কারনা ডাই অঞ্চাইড আস্ট্রীকরণ পত্রের অ-বিপাকীয় রোগক। কণ্ডকণ্ডলো প্রভাবক, যেমন- আলোর ফ্রাক্স ঘনস্থ, পাতার তাপমাত্রা, কারনা ডাই অক্সাথড খনমাত্রা, পাতার পানির পটেননিয়াল এবং পাতা। ও রায়ুমণ্ডলের বান্প চাপের ঘার্টাও পত্রবন্ধীয় রোধকাকে প্রভাবিত করে।

মসোফিল রোধক

এটি প্রকৃতপক্ষে কতকগুলো রোধকের সমষ্টি ; এতে আছে পাগ্যর বায়ু প্রকোস্ঠে কার্বন ডাই-স্বক্সাইডের চলাচলের রোধক, মেসোফিল কোযের প্রাচীর থেকে কোযের অভ্যস্তরে কার্বোক্সিলেশনের স্থানে প্রবেশে রোধক এবং প্রংণ–রাসায়নিক বিক্রিয়ার সীমাবদ্ধতাজনিও রোধক। সুতরাং এর মান নির্ভর করে কার্বন ডাই–অঞ্জাইডের কোযীয় স্থানান্তরের দক্ষতা এবং ক্রোরোণ্লাস্টে আলেকে ও অন্ধকার বিক্রিয়ার দক্ষতার উপর।

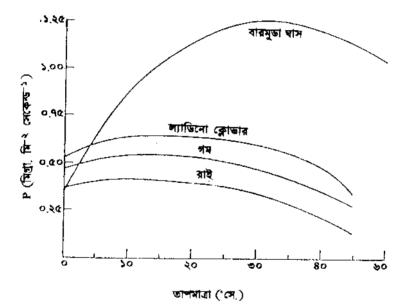
সর্বোগ্তম পরিবেশে মেসোউঙ্ডিদের পাতার CO₂–এর ব্যাপনের রোধকের পরিসর নিম্নরাপ–


r_a= ১০ থেকে ৩০ সেকেন্ড প্রতি মিটারে (sm⁻¹) ; r_a= ২৫০ থেকে ১০০০ সেকেণ্ড প্রতি মিটারে ; r_a= ২৫০ থেকে ৪০০০ সেকেন্ড প্রতি মিটারে।

চিত্র ৭,৬ : পাতায় কার্থ ডাই-অক্সাইডের ব্যাপনের বিভিন্ন প্রকার ৫েশক। C= কার্বন ডাই-অক্সাইডের খনমাত্রা (Ca=বায়ুমণ্ডলে, C_S= পর্যুওন্ধে প্রবেশ পথে, C_W = পণ্ডোর অন্ডাগুরে বায়ু প্রকোষ্ঠে, C_C = কার্বোঞ্জিলেশনের স্থানে); r= কার্বন ডাই-অক্সাহডের ব্যাপনের রোধক (r₀ বাউন্ডারি ওর. r_S = পত্রবন্ধীয়, r_m= মেসেফিল)। বিভিন্ন রোধকে কার্বন ডাই-অক্সাইডের ফ্রাস্কি F=(Ca-Cs)/r₀ (Cs-Cw)/r_S+(Cw-Cc)/r_m=(Ca-Cc)/(r₀+r_S+r_m)।

798

সালোকসংশ্লেষনের উপর পরিবেশীয় প্রভাবক আলো, কার্বন ডাই-অক্সাইড ও তাপমাত্রা C3 এবং C4 উদ্ভিদের সালোকসংশ্লেষণের হারের সাথে আলো এবং কার্বন ডাই-অক্সাইডের সম্পর্ক ৭.৭ নং চিত্রে দেখানো হয়েছে। C3 অথবা C4 উদ্ভিদের বিভিন্ন প্রজাতির মধ্যে (অথবা জাতের মধ্যে, এমন কি বিভিন্ন পাতার মধ্যে) সালোকসংশ্লেষণের হারের পাথর্ক্যের জন্য আলোকের যে মাত্রায় এবং অন্যান্য পরিবেশে পাতার বৃদ্ধি ঘটে তা সহ আরো কতকগুলো প্রভাবক দায়ী। এগুলো পাতার পুরুত্বকে (thickness) এবং এভাবে সালোকসংশ্লেষীয় সিম্টেমের আকারকে প্রভাবিত করে; মেসোফিল কোষের গড় আকার, সুনির্দিষ্ট পাতার ওজন (specific leat weight অথবা SLW) এবং প্রতি একক ফ্রেত্রফলে ক্লোরোপ্লাম্টের সংখ্যা (কিন্তু ক্লোরোফিলের পরিমাণ নয়) পাতার পুরুত্ব বড়ার সাথে সাথে বৃদ্ধি পায়।

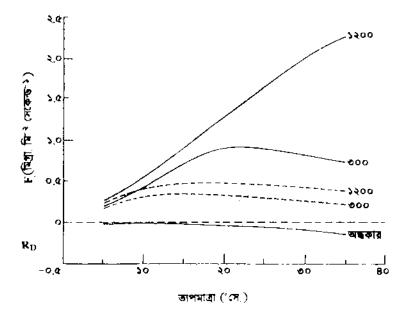

চিত্র ৭.৭ : ২৫° সেলসিয়াস তাপমাত্রায় দৃশ্যমান আলোর ফ্রাক্স ঘনত্ব Qv, বায়ুমণ্ডল, Ca, ও অন্তঃস্থ কার্বন–ডাই–অক্সাইডের ঘনমাত্রার Cw সাথে ভুট্টা (C4 উদ্ভিদ) এবং সুগারবিটের (C3 উদ্ভিদ) পাতায় কার্বন ডাই–অক্সাইডের নিট ফ্রাগ্মের, F, সম্পর্ক।

স্বাভাবিক সম্পৃক্ত আলোতে এবং কর্বন ডাই-অক্সাইডের স্বাডাবিক থনমাত্রায়, C₃ উদ্ভিদের সালোকসংশ্লেষণের হারের উপর তাপমাত্রার খুব বেশি প্রভাব নেই (চিত্র ৭.৮)। সালোকসংশ্লেষনের হারের প্রশস্ত প্লেটু (plateau) এবং উচ্চ তাপমাত্রায় সালোকসংশ্লেষণের হার কিছু কমে যায়, এরকম তথ্য অনেক গবেষকই প্রকাশ করেছেন। তবে অপেক্ষাকৃত বেশি তাপমাত্রায় C₄ উদ্ভিদের সালোকসংশ্লেষণের হার সর্বোচ্চ হয়।

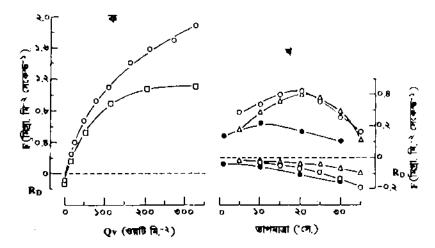
C₃ উদ্ভিদের সালোকসংশ্লেষণের উপর তাপমাত্রার প্রতিক্রিয়া আলো এবং কার্বন ডাই-অক্সাইডের ঘনমাত্রার দ্বারা অনেকাংশে প্রভাবিত হয় (চিত্র ৭.৯.)।

 $\sum_{i=1}^{n} b_i$

নিমু মাত্রার আলো এবং স্বাভাবিক ঘনমাত্রার কার্বন ডাই-অক্সাইডের প্রতিক্রিয়া, পূর্বে উল্লেখিত প্রতিক্রিয়ার মতোই। কার্বন ডাই-অক্সাইডের স্বাভাবিক ঘনমাত্রায়, তাপমাত্রার অধিকাংশ পরিসরে আলোর মাত্রা ধৃদ্ধির সাথে সাথে নিট ফ্লান্স ঘনত্র (F) বাড়ে এবং সর্বোন্ডম তাপমাত্রাও বেশি। কার্বন ডাই-অক্সাইডের উচ্চ ঘনমাত্রায় এবং অধিক আলোতে নিট ফ্লান্স ঘনত্ব (F) খুব বেশি হয় এবং প্রকৃতপক্ষে তাপমাত্রা বৃদ্ধির সাথে সাথে প্রায় সরলরৈখিকভাবে বৃদ্ধি পায় এবং সর্বোন্ডম তাপমাত্রাও অনেক বেশি। এখানে আলোকশ্বসন প্রায় সম্পূর্ণরপেই বন্ধ হয়ে যায়।



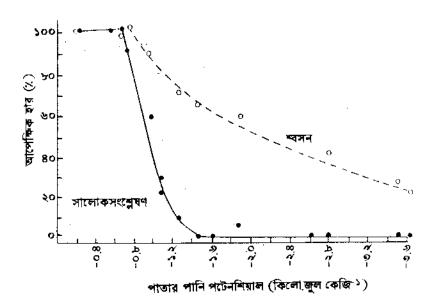
চিত্র ৭৮ : কার্বন ভাই–অক্সাইডের স্বাভাবিক ঘনমাত্রায় এবং ৪০ কিলোলগ্য (প্রায় ১৭৫ ওয়াট প্রতি বর্গমিটারে, ৪০০ থেকে ৭০০ ন্যামোর্মিটার) আলোতে তিনটি C₃ প্রজ্ঞাতি এবং একটি C₄ প্রজ্বাতির (ব্যবমুডা ঘাস) মোট সাল্যেকসংস্ক্লেষণের (P=P+R_D) তাপমাত্রর উপর প্রতিক্রিয়া।


এ পর্যস্ত যে সকল উদাহরণের কথা উল্লেখ করা হয়েছে এর অধিকাংশ ক্ষেত্রেই একটি নির্দিষ্ট পরিবেশে জন্মানো পাতাকে বিভিন্ন পরিবেশে রেখে কয়েক ঘন্টার মধ্যেই সালোকসংশ্লেষণের হার পরিমাপ করা হয়েছে।

তাৎক্ষণিক প্রভাব ছাড়াও, দীর্ঘমেয়াদি প্রভাবও আছে। এদের কতকগুলো পূ্ববর্তী দিন বা রাতের পরিবেশের উপর (চিত্র ৭.১০) এবং অন্যগুলো পাতা যে পরিবেশে বৃদ্ধি পায় তার উপর বেশি নির্ভরশীল। এ সকল ফলাফল নির্দেশ করে যে, তাপমাত্রার পরিবর্তনের জন্য সমন্বয় সাধন ২৪ ঘন্টার মধ্যেই সম্পূর্ণ হতে পারে, কিন্তু আলেরে জন্য এই সময়সীমা আরো বেশি। তবে, সাধারণভাবে আলো, কার্বন ডাই–অক্সাইড এবং তাপমাত্রার পরিপ্রেফিতে এ সকল অ্যাকলিমেটিজেশন (acclimatization) এর মাত্রা এবং তাৎপর্য এখনও সুম্পষ্ট নয়।

শস্য শারীরবিজ্ঞান

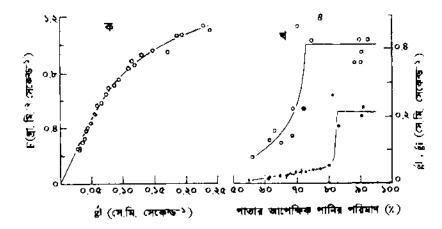
চিত্র ৭৯০ - তাপমাত্র দুখাননে আলের ১০ /বিজিয় লাইন) এবং ৪০০ (ধ্রবিজিয়া লাইন) ৫০টে /ব,মি, ফ্রাঙ্গ মনস্ত ৩০০ ৫.১৯০০ পিপিএম - মায়তন) খনমাধ্যা ০০৮ এব সংখ, ২০০সে, ওাপমত্রে ৫.৯০ ওয়াট ব,মি, খালেতে জন্মনো টখেটো পাতার ০০৮ এর দিটি ফ্রাঙ্গ মনস্ক, P, ও অঙ্জপার শ্বস্থানে, RD, প্রতিক্রিয়া



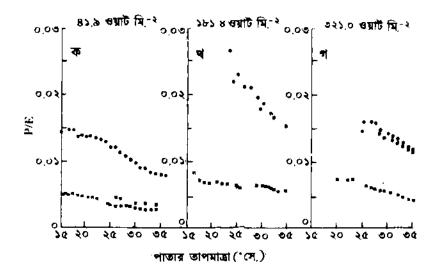
টির ৭১০(ক): ২০ সেনসিয়াস ভাপমান্ত্রায় জন্যানে এবং ০০° সেন্দ্রয়াসে সারা রাজ আকলিয়েটিজেশনের পূরে (বর্গকেত্র) এবং পরে (বৃত্ত) Pantenni coloration এ কারন এট অক্সাইডের নিট ফ্রাঙ্গ ঘনরের উপর আলোর প্রচার (ব) ও থেকে উদ্দেলসিয়াস রাপমার্গ্য মন্টে একানো বেষ্ট্রু, ২০ /২০° সেনসিয়াস দিনার্গ্রান্ত রাপমার্য্যা গ্রেখি চেমারে কান, র্যার্ভ (মৃত্রু বৃত্ত) পদের পাতনা নেচ্ এর বিনিময়ের হারা। প্রমিশ করা হায়েছে ৬০ কিলোলার (প্রাণ ৬৬০ ওয়ান্ বর্গনিটার) আলোয়েন

+Q6

পানি


মৃত্তিকার পানি ঘাটতি বৃদ্ধির সাথে সাথে শ্বসনের হারের তুলনায় সালোকসংশ্লেষণের হার অপেক্ষাকৃত বেশি হাস পায় এবং এর জন্য নিট সালোকসংশ্লেষণের হার কমে যায় (চিত্র ৭,১১)। পাতার পরিবাহকতা (g^{*}c) পানি ঘাটতির জন্য হাস পাওয়ায় সালোকসংশ্লেষণের হার হাস হয় বলে ধারণা করা হয়। যেমন– মূলের তাপমাত্রার কমিয়ে পাতার আপেক্ষিক পানির পরিমানের (RLWC) পরিবর্তন করা যায়। মূলের প্রবেশ্যতা কমে যাওয়ায় পানি পরিশোষণ কম হওয়ার জন্য সম্ভবত এটি ঘটে।

চিত্র ৭,১১ : পাওরে পানির পটেনশিয়ালের সাথে সালোকসংষ্ট্রেম্বণ (বন্ধ বৃত্ত) এবং শ্বসনের (মুক্ত বৃত্ত) আধ্যেক্ষিক হারের সম্পর্ক।


এই পদ্ধতি প্রয়োগ করে তুলা গাছে, এক্ষেত্রে CO₂–এর ফ্লাক্থ খনত ₂় এর সাথে ঘনিষ্ঠভাবে সম্পর্কিত (চিত্র ৭.১২ক), দেখা গেছে যে, যখন পাতোর আপেক্ষিক পানির পরিমাণ প্রায় ৮৫% এর কম হয়, তখন g^{*}e কমতে শুরু করে, কিন্তু পাতার আপেক্ষিক পানির পরিমাণ প্রায় ৭৫% এর কম না হওয়া পর্যন্ত g^{*}e (অন্তঃশু পরিবাহকতঃ) এর সামন্যে পরিবর্তন হয় (চিত্র ৭.১২.খ) : এই সংকটকালীন মাত্রার পর পাতার আপেক্ষিক পানির পরিমাণ ব্রাসের সাথে সাথে উন্তয় প্রকার পরিবাহকত্যই হ্রাস পায় :

এটি সাধারণত দেখা যায় যে, পত্ররষ্ঠীয় পরিবাহকতরে পরিবর্তনের জন্য সালেকসংশ্লেষণের হারের তুলনায় প্রস্থেদনের হার বেশি প্রভাবিত হয়। বিভিন্ন মাত্রার আলো ও তাপমাত্রায় গম ও সরগমের সালোকসংশ্লেষণ এবং প্রস্কেদনের হারের তুলনা করা হয়েছে। উচ্চ মাত্রার আলো ব্যতীত, গমের তুলনায় সরগমের পত্ররক্ষীয় পরিবাহকতা কম, সুতরাং এর প্রস্কেদনের হার কম। তবে গমের তুলনায় সরগমের আলোকশ্বসন কম এবং সালোকসংশ্রেষণের হার বেশি এবং

িএ ৭,১২ ক) : তুলার পার্টার হার্টন ডাই- **অক্সাইডের ফ্রাক্স হন র, F,** এবং পাতার পরিবাহকতার, gi_e (প্রতি একক পাতার পৃষ্ঠি; সাথে সম্পর্ক : **(খ)** পাতার আপেক্ষিক পানিব পরিমাণের সাথে gi_e (বৃদ্ধ বৃস্ত) এবং মন্ত্রহন্ত পরিবাহক হার, gii প্রচি একক পাতার ক্ষেত্রফলা (মুন্ট পৃত্ত) সম্পর্ক

এ কারণেই P/Eপ্রেঞ্বেদন) অনুপাত সরগমে বেশি (চিত্র ৭,১৩) । অধিকতর দক্ষতার সাথে পানি ব্যবহারের সুবিধা C4 উদ্ভিদে আছে।

চিত্র ৭,১০ : বিভিন্ন পরিসারে পাতার তাপমাত্রা এবং আলোতে গম (বগক্ষেত্র) এবং সরগমের (বৃত্ত) সালোকসংল্লেষণ (P) এবং প্রস্তেদনের (E) অনুপাত।

প্যনি ঘটেতির জন্য সালোকসংশ্রেষণের হার হ্রাসের কারণ বহুবিধ। তীব্র পানি ঘাটতি হলেও, ক্লোরোপ্লাম্টের ঝিল্লীর অখণ্ডতা বজায় থাকে। তবে পানি ঘাটতির জন্য C4 উদ্ভিদের ধান্ডিল শিখের ক্লোরোপ্লাম্টের তুলনায় মেসোফিল ক্লোরোপ্লাস্ট অধিকতর দ্রুত নষ্ট হয়।

পানি ঘাটতি হলে সালোকসংশ্লেষণের প্রাণরাসায়নিক বিক্রিয়ায় অংশগ্রহণকারী এনজাইমের কার্যকারিতা নষ্ট হয়।

বর্তমানে প্রাপ্ত তথ্য থেকে বলা যায় যে, পানি ঘাটতির জন্য পত্রবন্ধ বন্ধ হওয়া এবং ক্রোরোপ্লাস্টের কার্যকারিতা কমে যাওয়ায় সালোকসংশ্লেখণের হার হাস পায়।

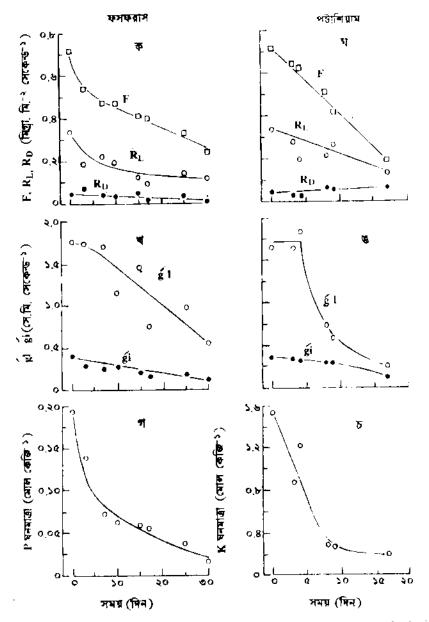
একই প্রজাতির বিভিন্ন ভ্যারাইটি কিংবা বিভিন্ন প্রজ্যতিতে পানি ঘাটতির জন্য r_s এবং r_m ব্লাসের সময় এবং এদের আপেক্ষিক গুরুত্ব ভিন্ন ভিন্ন হয়।

খনিজ মৌল

খনিজ মৌলের সাথে সালোকসংশ্লুষণের হারের ধনাত্বক সম্পর্ক আছে ; অন্তঃস্থ এবং পত্রবন্ধীয় পরিবাহকতার উপর খনিজ মৌলের প্রভাবের মাধ্যমে এটি ঘটে (চিত্র ৭,১৪)। আলোকশৃসনের উপরও খনিজ মৌলের প্রভাব আছে।

চিত্র ৭,১৪–এ চিত্র g'e এর মান বেশি, তাই আলোকশ্বসন (R_L) এবং অঙ্গুস্থ পরিবাহকতা g'i তুলনায় সালোকসংশ্লেষণের উপর g'e এর কম প্রভাব আছে।

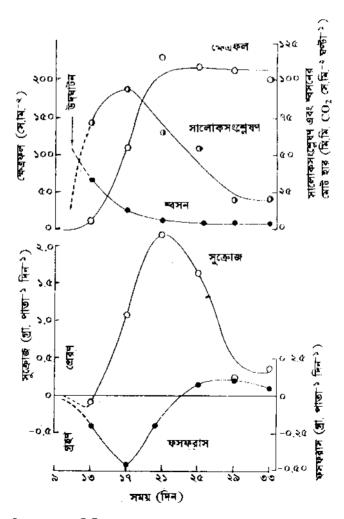
স্যালোকসংশ্লেষণের উপর লৌহ এবং অন্যান্য মৌলের প্রভাব প্রধানত কার্যকর হয় ক্লোরোফিল, কার্বোক্সিলেন্ড এবং অন্যান্য এনজাইমের পরিমাণের পরিবর্তনের মাধ্যমে।


লবণাক্ততা

মাটির লবণাক্ততার জন্য সালোকসংশ্রেষণের হার কম্বে যায়। মৃত্তিকায় লবণের জন্য মৃত্তিকার দ্রবণের অসমোটিক পটেনশিয়াল কমে যায়, তাই মৃত্তিকায় পানির পটেনশিয়াল কমে যাওয়ায় মৃত্তিকা থেকে পানি পরিশোষণ কম হয়, ফলে উদ্ভিদে পানি ঘাটতি হয়। একে বলা হয় শারীরতাত্ত্বিকভাবে গুন্দ মৃত্তিকা।

লবণাব্রুতার জন্য মৃত্তিকায় খনিজ মৌলের ঘাটতি হয়। যেমন, K+,NH4+, NO3⁺, Mg²⁺ এবং Fe^{3+/2+}পরিশোষণে সোডিয়াম ক্লোরাইড বাঁধা প্রদান করে।

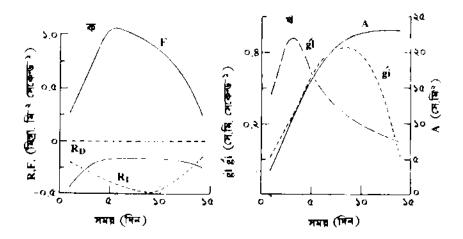
িবিশেষ করে লবণান্ডতা প্ররোচিত K+ এবং Mg²⁺ ঘটিতির জন্য সালোকসংশ্রেষণের হার কমে যায়, কারণ যথাক্রমে পত্রবন্ধ খুলতে এবং থাইলাকয়েড – স্ট্রোমা আয়ন গ্রেডিয়েন্টে এদের ভূমিকা আছে।


লবণান্টতার জন্য কার্বন ডাই–অক্সাইড গ্রহণ কম হয়, কারণ লবণান্ততা ধূর্দ্ধির জন্য পুত্রবন্ধ আংশিক বন্ধ হয়।

২১৯৫ স্থাবৰ মৰে মসফৰস (কাংগৰে ৭) এবং পাম শইনমাৰ মেটে বা সন্ধৰত সেটে বাই মান সায়, বাহাৰ মাৰকেলজুমেৰের প্রভাৱককারী বিভিন্ন উপাবালিকে বাহন বিভান বিভান বিভান ইনিয়ে, মাৰেগেজ্যে), জ্ঞালেকেশ্সন, R1 প্রেক্ত বৃত্ত, তা মলকার শবলৈ মি1, বিভা বা বি হারে পাতাৰ পাৰবাহকতা, দুন্তি স্কি বাইবা বা মাতাপ্র বিভিন্ন হাবে বা বি বাহৰে স্কি পদাতাৰ মৌলেৰ সন্মানা।

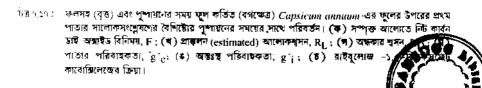
অন্তঃস্থ প্রভাবকসমূহ

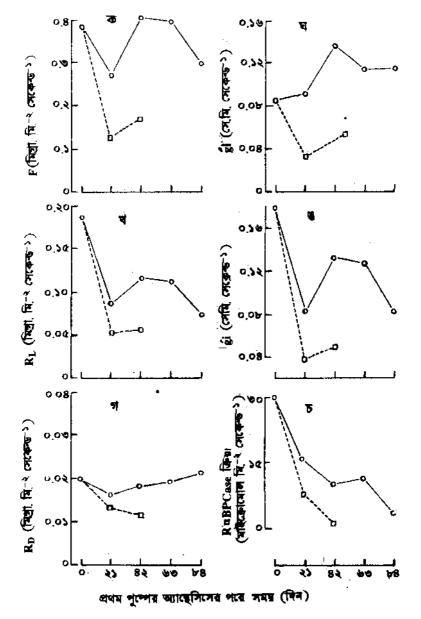
অধিকাংশ উদ্ভিদ প্রজাতির বৃদ্ধির অঙ্গজ পর্যায়ে একটি প্রধান প্রবণতা দেখা যায় যে, পাতার নয়স বাড়ার সাথে সাথে সালোকসংশুমধনের ক্ষমতা হ্রাস পেতে থাকে। সালোকসংশ্রেষণের সবোচ্চ হার সাধারণত হয় পাতার সর্বোচ্চ প্রসারণের সময়ে এবং খনিজ মৌলের সরবরাহ পথাগ্র থাকলে এই সর্বোচ্চ হার অনেক দিন বজায় থাকে। বয়সের সাথে পাতার শ্বসনের হারও কমে যায়, কিন্তু সালোকসংশ্লেষণের তুলনায় এই হ্রাস অধিকতর মন্থর (চিত্র ৭.১৫.)।


চিত্র ৭,১৫ : কিউকামবারের দ্বিতীয় পাতার বর্ধনের সময়ে পাতার ফেত্রফল (I-), সাংলাকসংশ্বেষণের হার (P), শ্বসনের হার (R) এবং সুক্রোজের গ্রহণ ও প্রেরণের প্রতিষ্ঠিন।

থেহেতু এই পরিবর্তনগুলো ঘটার সময় পাতারও বধন হয়, অ্যাসমিলেটের চাহিদারও পরিবন্তন হয় এবং এর জন্য প্রাথমিক অবস্থায় পুরাতন পাতা থেকে নবীন পাতা অ্যাসমিলেট গ্রহণ করে।

যে সময় পাতার ফেন্রফল সংবাচ্চ ফেন্রফলের এক–তৃতীয়াংশে পৌছায় তথন এটি আর্মিমিনেট গ্রহণের সাথে সাথে প্রেরণ করাতেও ওরু করে। সর্বোচ্চ ফেন্রফলের অর্থেক ক্ষেত্রফল হলে পাতা নিট প্রেরণকাকী হয়। কেন্তরাওলো খনিজ মৌলের গ্রহণ এবং প্রেরণ একই প্যাটানে হয়। তবে সময়ের পার্থকা হয়। ও পাতা থেকে ফসফেটের নিট প্রেরণ প্রায় পাত্রার সর্বোচ্চ ক্ষেত্রফল হয় ও এই সময়ে ম্যাসিমিলেট প্রেরণ সর্বোচ্চ হয়।


ির ৬১৫ এ পারা থেকে ফসফরাস স্তন্যন্তর এবং সন্থবত উপরের নবীন পার্ডা কর্তৃক হায়া প্রদানের জন্য সালোকসংক্রায়ণের হার কামেডে। তবে যদি পুষ্টি দ্রবণে উদ্ভিদ জন্মণে যায় এবং আলোর উচ্চ ফ্রাক্সখনর বজায় রাখা যায়, ভাহলেও একই রকম প্রতিক্রিয়া পরিলক্ষিত হয়। চিঙ ২,১৬০০


এক্ষেত্রে প্রাথমিক অবস্থায়। এর বৃদ্ধি _{মিতি} এবং _{মি}ু বৃদ্ধির সাথে সম্পন্ধযুক্ত : সাহবত পাত্রে পূরুত্ব বৃদ্ধির মাধ্যমে এটি হয়। উভয় পরিবা**হকতা কমে যাও**য়ায় পরব**তীতে** F হাস পায়।

চিত্র যোগা - Phaneolius congaris এব প্রায়ারক পাতা বেই কওমা runfolding নাথাক সময়ের সাথে। জ নিট কারন রাই-অক্সায়ত বিনিময়া ৮, আলোকশ্বসন R_L, ও অঞ্চকার শ্বসন R_D এবং জাপেতি ব পরিবাহক চাতু (,, এ স্কান্ধ পরিবাহকতা চুণ্ এবং পাতার ক্ষেত্রজ্ঞাবার পারিবাইনা,

মঙ্গজ প্রধায়ের তুলনায় ডান্ডদের ফলেঙ্গপাদনের সময় কোন নিনিষ্ঠ পাত্যয় উচ্চ হায়ে এবং বেশি দিন প্ররে সংলোকসংশ্লেষণ বজ্ঞায় থাকে। যখন ফুল অথবা বধনশীল ফল কেটে ফেলং হয়, তখন অঙ্গজ উদ্ভিদের মতে পরিবাতন পরিলাক্ষিত হয় (চিত্র ৫১৭০০

সালোকসংশ্লেষণ, অন্ধকার শ্বসন ও আলোকশ্বসন

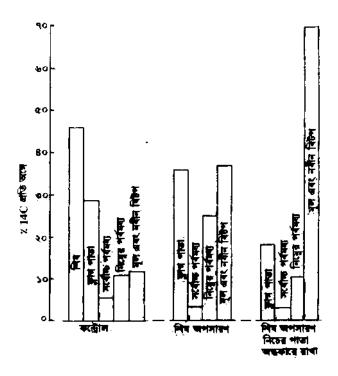
(half

ফল্ল ফটোসিনথেটের প্রধান সিন্দ্র (sinK) হলে অধিক সময় স্থায়ী উচ্চ হারের সালোকসংশ্লেষণ আরো প্রকটভাবে পরিলক্ষিত হয় ; বৃহৎ সিন্দেক, যেমন– গমের মঞ্জরী অথবা গোল আলুর কলে এরকম প্রভাব হয়।

বৃহৎ সঙক (sink) যেমন–Capsicum এর ফল (বর্তমান ফটোসিনথেটের শতকার ৮০ ভাগ প্রান্ত এটি গ্রহণ করে) অপসারণের জন্যেও তাৎক্ষণিকভাবে পাতায় কার্বন ডাই–অক্সাইড ফ্রাঙ্গ ধনর গ্রস পায়।

এতে পত্রবন্ধীয় এবং **অন্তঃশ্ব পরিধাহকতা** উভয়েরই ভূমিকা আছে বলে **প্রতীয়মান হয়, তবে** এনের আর্শেক্ষিক মন্ত্রোর উপর J: নির্ভরশীল।

Capsicum-এ (চিত্র ৭.১৭) যদিও দ্রবণীয় প্রোটিনের পরিমাণের (এবং ফ্র্যাকশন ১ প্রোটিন) ও রাইবেল্রেড বিস ফসফেটের ক্রিয়ার পরিবর্তন হয়েছিল, ফিন্তু এদের সাথে g'i ঘনিষ্ঠভাবে সম্পরিত নয় এবং সুনির্দিষ্ট পাতার ক্ষেত্রফল (Specific Leaf Area বা SLA) তথা মোট সিস্টেমের আক্ষারের সাথেও সামঞ্জস্যপূর্ণ নয়।


ভিনধমী বৈশিষ্ট্যসম্পন্ন উদ্ভিদের মধ্যে রেসিপ্রোকাল জেড়কলমেও এরকম প্রতিক্রিয়া দেখা যায়। যোমন- সুগারবিট, এর বৃহৎ সঞ্চয়ী মূল আছে, এবং স্পিনাক বিটের, সঞ্চয়ী মূলবিহীন, মধ্যে রেসিপ্রোকাল স্তোড়কলমের নিট আস্তীকরণ হার (Net Assimilation Rate বা NAR) সর্বোচ্চ ২য় যখন সুগারবিটকে আদি জোড় (stock) হিসেবে ব্যবহার করা হয়, উপজ্ঞোড়ের (scion) ভানিকা এখানে নগণ্য।

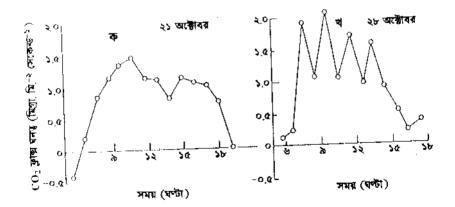
একটভাবে দৃটি গোল আলুর জাতের মধ্যে জোড়কলমের ক্ষেত্রে কন্দের ফলন এবং এদের শবরার পরিমাণের উপরে উপজোড়ের কোন ভূমিকা নেই। টমেটো এবং গোল আলুর মধ্যে রোসপ্রোকাল জোড়কলম করে এজাতীয় পরীক্ষা-নিরীক্ষা করা হয়েছে।

যখন আঁতরি জ আাসিমিলেট ব্যবহারের জন্য পর্যাপ্ত বিকল্প সিন্ধ থাকে না, তখন সিঞ্চ থেকে উৎস এই ফিডবারু কৌশল পরিদৃষ্ট হয়। যেমন- গোল আলু পর্যাপ্ত পার্শ্বে পার্শ্বীয় বিটপ তৈরি করে কন্দ অপসারণের ফতি পুরণ করতে পারে না, ফিস্তু Chrysanthemum mortfolium -এ প্রধান সিন্তক, পুষ্ণমঞ্জরী, অপসারণে অ্যাসিমিলেট মূলে স্থানাস্তরিত হয় এবং এর জন্য নিট আধীকরণ হারের তেমন পরিবর্তন হয় না।

এক ইডাবে যদি জেরুজালেম আরটিককের (Jerusalem artichoke) কন্দের ইনিশিয়ালস (initials) অপসারণ করা হয়, তাহলে অ্যাসিমিলেট মূলে স্থানাস্তরিত হয়। গমের অবস্থান এই দুই গুপের মাঝামাঝি ; এক্ষেত্রে প্রধান সিন্ধ, মঞ্জরী অপরসারণের জন্য ফ্র্যাগ পাতার সালোকসংশ্রেধণের হার কমে যায়।

একই সাথে অধিক পরিমাণে অ্যাসিমিলেট মূল এবং নবীন কুশিতে পরিবাহিত হয়। যখন পুরাতন পাতায় সালোকসংশ্রেষণে, এসকল অঙ্গ অ্যাসিমিলেট সরবরাহকারী, বাঁধা প্রদান করা হয়, তাহলে ফ্র্যাগ পাতা থেকে অধিক অ্যাসিমিলেট প্রেরিত হয় (চিত্র ৭.১৮)।

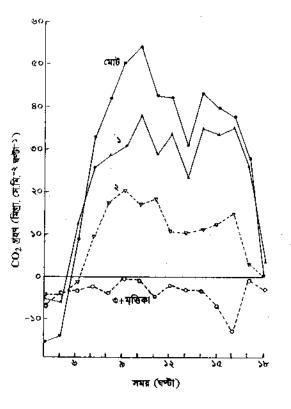
টেকান্ডেঃ গদের ফ্রাগে পাতায় ¹⁴CO₂ সম্পাতের ২৪ ঘন্টা পর ¹⁴C এর বন্টন প্যাটান ; কর্ট্টেল উদ্ভিদ ; ¹⁴CO₂ সম্পাতের ২৪ ঘন্টা পূর্বে মঞ্জরী অপসারণ এবং ¹⁴CO₂ সম্পাতের তিন দিন পূর্বে এবং মঞ্জরী অপসারদের ২৪ ঘন্টা পরে নিচের পাতাগুলোকে মন্ধকারে রাখ্য হয়েছিল।


শাস্য সালোকসংশ্লেষণ (Crop Photosynthesis)

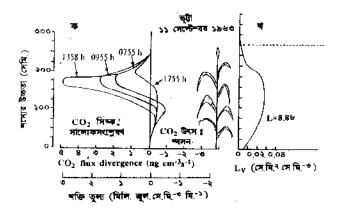
দিন-রাতের বিভিন্ন সময়ের প্রবণতা (Diurnal Trends)

নিয়াখ ও পরিবেশে একটি পাতা কিংবা একটি উদ্ভিদের সালোকসংশ্লেষণের হার পরিমাপের জনা কতকণ্ডলে। পদ্ধতি আছে। তবে মাঠে জন্মানো অবস্থায় একটি উদ্ভিদ কিংবা শস্যের সালোকসংশ্রেষণের হার পরিমাপ করা,খুবই কঠিন, কারণ পূর্বে আলোচিত সবগুলো পারিবেশিক এবং মন্তঃস্ত প্রকরণগুলো একই সাথে কাজ করে। এফেত্রে তাৎক্ষণিক প্রভাব সম্ভবত ক্যানোপির নিচের পাতাগুলো ডায়তে থাকে এবং এজন্য ক্যানোপির উপরের পাতার তুলনায় এদের সালোকসংশ্লেষণের হার কম। পরিস্থিতি আরও জটিল হয়, যখন নিচের পাতা বয়স বৃদ্ধির জন্য খনিও মৌল অন্য পাতায় প্রেরণ করে; এর জন্য অস্তঃস্থ পরিবাহকতা g ; কমে যায় এবং পাতার বাধকপ্রোগি গুরু হয়। ার্কাট স্বচ্ছ তাবু দিয়ে শস্যের কিছু অংশ ঢেকে দিয়ে এবং তাবুর ভেতরের বায়ুর কার্বন ডাহ অঞ্জাইডের ধনমাত্রার পরিবর্তন অনুসরণ করে শস্যের গড় সালোকসংশ্লেষণের হার নিরপণ করা ধায়। এই পদ্ধতির অসুবিধা হলো যে, বায়ুমণ্ডল এবং শস্যের মধ্যে স্থানাস্তর প্রক্রিয়াগুলো চাবুর ভেতরে এবং বাইরে এক রকম নয়।

বিকল্প পদ্ধতি হলে। মহিক্রো-মিটিওরোলোজিক্যাল (micro-meteorological) কৌশল নারহার করে শসেরে ক্যানোপির ভেতরে এবং বাইরে কার্বন ডাই-অক্সাইডের ঘনমাত্রার পরিবর্তন নিরাপদ করা। এরপর ৩.১৪ থেকে ৩.১৭ সমীকরণের (তৃতীয় অধ্যায়) সাহায্যে কার্বন ডাই-অক্সাহডের ফ্রান্থ পরিমাপ করা সন্তব। কার্বন ডাই-অক্সাইডের ব্যাপন গুণান্ধকে, Kp, KH, KW অপ্যাং K_M যে কোনো একটির সমান হিসেবে ধরে নেয়া হয় এবং কার্বন ডাই-অক্সাইডের পরিমাপের সাথে সাথে তাপমাত্রা, বায়ুর আর্দ্রতা অথবা বায়ুপ্রবাহের গ্রেডিয়েন্ট ও পরিমাপ করা ২০ এই পদ্ধতি ব্যবহার করে ফলাফল ৭.১৯ নং চিত্রে দেখানো হয়েছে।


গমের ভূলনায় পাইন বনের উপাত্ত অধিকতর পরিবর্তনশীল, এর সস্তাব্য কারণ হলো পাইন শসেরে পৃষ্ঠ অমসৃথ ও ঢালুতে ছিল। দুপুরে গম শস্যে কার্বন ডাই-অক্সাইডের ফ্লাক্স কমে যায় এবং পানি পরিশোষণের তুলনায় প্রস্কেদনের হার বেশি হওয়ায় এসময় পত্রবন্ধ সাময়িকভাবে বন্ধ ২৫: খায়। কার্বন ডাই অক্সাইডের ফ্লাব্লের প্রাক্তলিত ভ্রান্থি (estimate error) ছিল গমের জন্য • একরা ১০ ভাগ এবং পাইনের জন্য শতকরা ২০ থেকে ৩০ ভাগ এবং মৃত্তিকা থেকে কার্বন ডাই-অক্সাইড চলাচলের (তথ্যকথিত মৃত্তিকা শ্বসন) অনিশ্চয়তার কারণে ভ্রান্তি (error) বেশি হয়েছে। শেষেক্ত প্রভাব ৭.২০ নং চিত্রে দেখা মেতে পারে ; এখানে কার্বন ডাই–অক্সাইডের মোট ফ্লাব্সে ঘৃত্তিকা এবং গমের ক্যানোপির তিনটি স্তরের অবদান দেখানো হয়েছে।

চিত্র ৫.১৯ : (ক) গণ শস্য এবং (খ) গ্রাইন ধনের উপরে প্রতি ঘণ্টায় কার্বন ডাই–অক্সাইডের নিম্নমুখী ফ্রা-স্কের গড়। দুটি স্থানই অস্ট্রেলিয়ার ক্যানবেরার নিকটে। ঋণাত্মক মান নিট উর্ধবমুখী ফ্রান্স নির্দেশ করে।


গম শস্যের ক্যানোপির সর্বোপরে অবস্থিত পাতণ্ডেলোতে সুম্পষ্টভাবে সবচেয়ে বেশি সক্রিয় সংলোকসংশ্লেষণ ২য় (চিত্র ৭.২০)। তবে পাতার ফেব্রফল ঘনত্বও গুরুত্বপূর্ণ ; ক্যানোপির যে স্তরে সবচেয়ে বেশি পাতার ফেব্রফল ঘনত্ব আছে, সেই অংশে প্রায়ই সালোকসংশ্লেষণের হার সর্বোচ্চ হয় (চিত্র ৭.২১)।

- 292

^{দির ৭,২০}: অস্টেলিয়ার ক্যানবেরার নিকটে জম্মানো গম শস্য কর্তৃক মোট কার্বন ডাই–অক্সাইড শোষণে বিভিন্ন পাতার স্তর এবং মৃস্তিকার অবদান। ২১ অক্টোবর এই পরিমাপঞ্জল্য করা হয়েছে (চিত্র ৭.১৯)। শস্যের মোট পত্র ফেত্রফলসূচক ছিল ১.৬৭ এবং ১,২ এবং ৩ নম্বর গুরে ছিল যথাক্রমে ০,৫৭, ০.৫৮ এবং ০.৫২। ১ নম্বর স্তর হলো সর্বোপরের স্তর।

ক্যানের্গিতে পাতার বিন্যাসের উপর এই প্রকার প্রোফাইল বিশ্লেষণ নির্ভর করে, কারণ এর সাথে আলোর প্রোফাইল এবং তাই সালোকসংশ্লেষণের জন্য শক্তির লভ্যতা সম্পর্কযুক্ত। উপরস্ত, আলো শোষণকরী সকল অঙ্গের ফেব্রফল বিবেচনা করা দরকার, কারণ এদের অধিকাংশই সালোকসংশ্লেষণে সক্ষম এবং আপতিত আলোকের অনেকখানি শোষণ করে। যেমন- গম এবং ভুট্টার মেট সালোকসংশ্লেষী ফ্রেব্রফলের যথ্যক্রমে শতকরা ৫০ এবং ১৩ ভাগ পর্যন্ত অংশ হলো পাতার শিথ (sheath) এবং কাণ্ড। এছাড়াও, ভুট্টার টাসেল (tassel) শতকরা ৯ ভাগ পর্যন্ত আলো শোষণ করে। কোনো ফেব্রে কম স্পষ্ট সালোকসংশ্লেষি অঙ্গের সালোকসংশেষণ বেশ তাৎপর্যপূর্ণ হয়। যেমন কতকগুলো ক্যন্ঠল বিটপের মতো, আঙ্বুর, বিন এবং মটরের পর্ডপত্রে মেলোকসংশ্রেষণে হয়। যবের দানার শুব্দ ওজনের প্রায় শতকরা ৪৫ ভাগ আসে মঞ্জরীর সালোকসংশ্রেষণে হয়। যবের দানার শুব্দ ওজনের প্রায় শতকরা ৪৫ ভাগ আসে মঞ্জরীর সালোকসংশ্রেষণে হয়। যবের দানার গুব্দ ওজনের প্রায় শতকরা ৪৫ ভাগ আসে মঞ্জরীর সালোকসংশ্রেষণের মাধ্যমে। শুভবিহীন (awnless) গমের মঞ্জরীর সালোকসংশ্লেষণের অবদ্য যবের তুলনায় অনেক কম, কিন্তু শুভযুক্ত গমের অবস্থা অনেকটা যবের মতোই।

চিত্র ৭৯৯ : (ক) একটি ভুট্টা শস্যে কার্বন ডাই–অব্লাইড এবং আলোকরাসায়নিক শক্তিয় উৎস এবং সিঙক ; ধন্যত্ত্বক এবং ঋণাত্ত্বক মান যথাক্রমে নিট সাল্যেকসংশ্লেষণ এবং শ্বসন নির্দেশ করে। (খ) একই শস্যের পাতার ক্ষেত্রফল ঘনত্বের খাড়া বিস্তার।

শস্যের কার্বন সমতা (Carbon Balance of Crop)

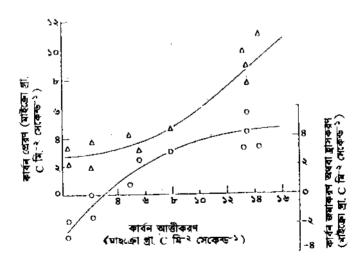
দিনে বায়ুমণ্ডল থেকে মাঠশস্যে কার্বন ডাই-অক্সাইডের ফ্লান্স নিমুমুখী হয়। একে F_a দ্বারা চিহ্নিত করা যাক। ক্যানোপির কলার শ্বসন, R_c এবং মূল, R_r ও মৃত্তিকার জীব, R_s, থেকে কার্বন ডাই-অক্সাইডের উদ্বর্যুয়ী ফ্লান্সও আছে। R_r এবং R_C হলো এমন কার্বন ডাই-অক্সাইড যা মূল+নিমু ক্যানের্ণপি এবং উপরের পাতার মধ্যে পুনঃআবর্তন (recycle) হয়। সুতরাং N ঘন্টা দিনের আলোতে ক্যানোপি কর্তৃক নিট কার্বন ডাই-অক্সাইড গ্রহণকে $\sum_{i=1}^{N} (F_a+R_s)$ হিসেবে প্রকাশ করা যায়। রাতে শস্য-মৃত্তিকা সিস্টেম R_a(=R_s+R_r+R_c) হারে বায়ুমণ্ডলে কার্বন ডাইঅক্সাইড ত্যাগ করে, অর্থাৎ শস্য থেকে নিট ত্যাগ হলো

$$R_D^* = \sum_{N=1}^{24} (R_a - R_s)$$
 (9.55)

২৪ ঘন্টায় নিট গ্রহণ নিমুলিখিভাবে **প্রকাশ ক**রা যায় --

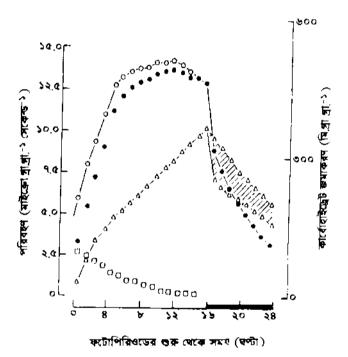
 $F_{D}^{*} = \sum (F_{a} - R_{a}) + \sum R_{s}$ (9.52)

এখানে Pa এবং Ra হলো দিনে নিমুমুখী এবং রাডে পরিমিত (measured) উধ্বমুখী ফ্লাক্সে এবং Ra প্রতিপ্রভাবে নিরূপণ করা হয়। যদি F+RDকে মোট (gross) সালোকসংশ্লেষণ, P, হিসেবে ধরং হয়, তাহলে প্রান্ড্যহিক ভিন্তিতে এখানে RD (adj) হলো রাতের শ্বসনের হার যাকে তাপমাত্রা পার্থকোর জন্য পরিশুন্ধ (corrected) করা হয়েছে।


$$P^{*} = \sum_{0}^{N} (F_{a} + R_{s}) + R_{D} (adj) \dots (9.50)$$

অ্যাসিমিলেটে পরিবহণ (Translocation of assimilates)

কার্বন আন্টীকরণের স্থান থেকে অধিকাংশ অ্যাসিমিলেট অন্য অঙ্গে পরিবাহিত হয়, এখানে এটি রক্ষণ (maintenance) অথবা বৃদ্ধির (growth) জন্য ব্যবহৃত হয়। ফ্লোয়েমে সিভনলের ভেতর দিয়ে এই পরিবহণ হয়, তবে এই কৌশল এখনও ভালভাবে জানা যায়নি। তা সত্ত্বেও এই পদ্ধতির ধর্ণনা দেয়া সন্তুব যা বর্তমান উদ্দেশ্যের জন্য পর্যাপ্ত।


সাধারণত সুক্রোজ হিসেবে কার্বন পরিবাহিত হয়, কিন্তু কতিপয় প্রজাতিতে ব্যাফাইনোজ (raffinose) অথবা শ্ট্যাকিণ্ডজ (stachyose) হলো অধিকতর সচল অবস্থা। মনোস্যাকারাইডের তুলনায় ডাই– এবং ট্রাই–স্যাকারাইডের পরিবহণের সময় অতিরিক্ত শ্বসনজনিত ফতি হ্রাস পায়। পরিবহণের হার, সিতনলের তেতর দিয়ে ফ্লাঙ্গ ঘনত্ব যে হারে কার্বন ফ্লোয়েমে প্রবেশ করে তার সাথে সম্পর্কিত, কিন্তু এর সাথে সালোকসংশ্লেষণের হারের সবসময় সরল সম্পর্ক নেই। অধিকাংশ ফেত্রে, পরিবহণের হারের তুলনায় সালোকসংশ্লেষণের হারে বেশি এবং এজন্য পাত্যায় কার্বন জমা হয়, সাধারণত শর্করা হিসেবে। রাতে কিংবা পরিবহণের হারের তুলনায় সালোকসংশ্লেষণের হার কম হলে এই সঞ্চিত কার্বন পরিবহণের হারের দিন–রাতে তারতম্য আছে (চিত্র ৭.২২)। এটি অস্থায়ী হতে পারে এবং পরিবহণের হারের দিন–রাতে তারতম্য আছে (চিত্র ৭.২০)।

পর্যতায় অস্থায়ীভাবে সঞ্চিত কার্বন পরিবহদের পথ বরাবর পুনরায় সঞ্চিত হয়; সীভনল এবং পার্শ্বতী কলায় অধিরত কার্বনের বিনিময় হয়। কোনো কোনো ক্ষেত্রে এই সঞ্চয় কেবল কয়েক ঘন্টার জন্য, এবং অন্য ক্ষেত্রে, বিশেষ করে বার্ধক্যজ্ঞনিত কারণে পাতার ফটোসিনথেটের পরিমাণ কমে যায়, তখন সঞ্চয়ী অঙ্গে স্থানাস্তরিত হয়।

চিত্র ৭,২২ : Lycoperiscon esculentum-এর পাতা থেকে কার্বন প্রেরণ (ত্রিভুজ) অথব্য সঞ্চরের (খুক্ত বৃত্ত) এবং কার্বন আস্টীকরণের মধ্যে সম্পর্ক।

আ্যাসিমিলেটর দীর্ঘকালীন প্রধান সিন্ধক হলো মূল ও বিটপের শীর্ষ, অঙ্গজ উদ্ভিদের ক্যায়িয়াম এবং সঞ্চয়ী অঙ্গ যেমন- কন্দ, দানা ও ফল তবে শেষোক্ত ক্ষেত্রে আংসিমিলেটের পরিবহণ বিপরীতমুখী হতে পারে, যদি কোনো কারণে বৃদ্ধি বাঁধাগ্রস্থ হয়, যেমন গোল আল্ব দেরিতে তৈরি কন্দ অথবা দানাশস্যের অনুর্বন কুশি থেকে উর্বর (fertile) কুশিতে পুনঃস্থানান্তর হয়। ডাই পাতার বৃদ্ধি এবং কার্বনের নিট গ্রহণকারী থেকে নিট প্রেরণকারীতে পরিব তনের ও অন্যান্য সিল্লেকার উৎপত্তির জন্য উদ্ভিদে অ্যান্সিমিলেটের বন্টন প্যাটার্নের স্বস্রমন্ত্রেই পরিবর্তন হয়।

চিত্র ৭,২০ : ১৬ মন্টা আলোতে এবং ৮ ঘন্টা এন্ধকারে Vicia faba—এর কাবোহাইডেট সধ্যয় এবং পরিবহণ। যেদিনে করেন ডাই-অক্সাইড আত্তীকরণ হয়েছে, সেদিনে পরিবহণ (বন্ধ বৃত্ত), পরবর্তী দিনে পরিবহণ (অর্থাং পুরবর্তী আলোককালে তৈরি কারোহাইডেটের স্তানাস্তর (মুক্ত বঁগকেত্র), মোচ পরিবহণ (মুক্ত বৃত্ত) এবং কারোহাইডেটের কালেকুলেটেড সধ্যয় (মুক্ত বৃত্ত) এবং করে।গ্রেইডেটের কালেকুলেটেড সদ্দয় মুক্ত ভিড্ডা আধকার ধ্যমনের জন্য যে পরিমাণ করে।হাইডেটের নাই হয় ডা ফাক ফার লাইন দিয়ে দেখানে হয়েছে।

কিভাবে আর্মিমিলেটের পরিবহণের নিক নিয়াষ্টত হয় ৩া জানা সম্ভব হয়ানা, ৫০স এবং সিঙেকর মধ্যে সুজোজের চলাচলকে দিন্দ্র সূর্য্য দেয়ে বর্ণনা করা সম্ভব, জ্বাচনাচলকে দিঙে, সুজো বুজোজের মনমাত্রার পাথকোর সাথে ফ্রাক্সে সমানুপ্রাতিক। প্রকৃতপক্ষে, সরল ব্যাপনের মাধ্যমে গ্রহা চলাচল হয় না, পানিতে সুজোজের ব্যাপন গুজাজের ত্রালের হিরাজের সুজোজের সুজোজের সাংগ্রহার করাজে ব্য বেশি। এরকম সম্পর্ক পাওয়া সম্ভব হয়েছে ঐসব প্রজাতিতে যারা সুক্রোজ সঞ্চয় করে না। যেমন-- আথের মতো প্রজ্রাতিতে কাণ্ডে সুক্রোজ জমা হয় বলে সিতনলে সুক্রোজের ঘনমাত্রার গ্রেডিয়েন্ট তৈরি হতে পারে না।

চিত্র ৭,১৫-এ প্রতীয়মান হয় যে, পাতায় ফসফরাসের নিট চলাচল হয়েছিল, এর কিছু অংশ অবশ্যই ফ্রোয়েমের মাধ্যমে হয়েছে যখন ফ্রোয়েম দিয়ে সুক্রোজের নিট প্রেরণ হয়েছিল। এটি কিভাবে সম্ভব হয় তা এখনও ভালভাবে জানা যায়নি, তবে প্রতীয়মান হয় যে, কোনো কোনো ফেব্রে বিভিন্ন সিতনলে অথবা পরিবহণ কলাগুচ্ছে বিপরীতদিকে চলাচল হয়। তবে একটি সাধ্যরণ উৎস থেকে একটি সাধারণ সিঙ্কে ধ্রবণের কোনো সরল প্রবাহ এটি নয়। একটি সঙ্গ একইসাথে ফসফরাসের সিঙ্ক এবং সুক্রোজের উৎস হতে পারে এবং এর জন্য পরিবহণ তন্ত্র যথেষ্ট নমনীয় (flexible)।

উদ্ভিদের যে অংশে বৃদ্ধির হার সর্বোচ্চ সেই অংশ অ্যাসিমিলেটর প্রধান সিঙ্ক, তবে প্রকট (dominant) সিঙ্ক, যেমন- কাণ্ডের শীর্ষের বৃদ্ধির হার প্রায়ই কম, এ অবস্থায় তারা কিভাবে তাদের প্রাধান্য বজায় রাখে তা জানা যায় নি। কোনো কেয়নো বৃদ্ধিকর রাসায়নিক পদ্যথের ক্রিয়ার কথা এ প্রসঙ্গে বলা হয়, কিন্তু পরীক্ষামূলকভাবে যখন উদ্ভিদে প্রয়োগ করা হয়, এটি সরাসরি পরিবহণ তন্ত্রের উপর ক্রিয়া করে না, কেবল বৃদ্ধিকে উদ্ধীপিত করে।

সালোকসংশ্রেষণের হার এবং উৎপাদনশীলতা (Rates of Photosynthesis and Productivity)

শস্যের বৃদ্ধির আরও কতিপয় বিষয় বিবেচনা না করে সালোকসংশ্লেখণের হারের সাথে উৎপাদনশীলতার সম্পর্ক ভালভাবে মূল্যায়ন করা যায় না। যেহেতু শস্যের ৮৫% থেকে ৯৫% শুক্ষ ওজনের বৃদ্ধি সালোকসংশ্লেষণের মাধ্যমে হয়, তাই ধারণা করা হয় যে, প্রতি একক ক্ষেত্রফলে সালোকসংশ্লেষণের হার বৃদ্ধির জন্য বৃদ্ধির হারও দ্রুত হয়। তাই শস্যের অধিক ফলনের উদ্দেশ্যে উচ্চ আলোকে সর্বোঞ্চ নিট সালোকসংশ্লেষণের হার) F_{max}, আছে এমন জাত বাছাই-এর জন্য প্রচিষ্টা চালানো হছে।

প্রথমে C_3 এবং C_4 উদ্ভিদের মধ্যে তুলনা করা যাক। C_4 উদ্ভিদের শুক্ষ পদার্থের উৎপাদন কেবল পাওয়া যায় উষ্ণ অঞ্চলে, শীতল নাতিশীতোষ্ণ অঞ্চলে এর কোনো সুবিধা নেই।

দ্বিতীয়ত, উভয় ক্রপের (C₃ এবং C₄) উদ্ভিদের একই প্রজাতির বিভিন্ন জাতের মধ্যে F_{max} এর বিস্তর পার্থক্য আছে (সারণি ৭.২), তাই বাছাই–এর জন্য যথেষ্ট বংশগতীয় তেরিয়েবিনিটি পাওয়া যায়। তবে এটি সাধারণত সালোকসংশ্লেষী সিস্টেমের আকারের (যেমন-পাতার পুরুত্ব) সাথে অধিক সম্পর্কযুক্ত, সিস্টেমের অন্তঃস্থ কার্যকারিতার জন্য নয়। যেমন C₃ উদ্ভিদে আলোকশ্বসন এবং মোট (gross) সালোকসংশ্লেষণের অনুপাতের ভেরিয়েশন যুব কম। তবে প্রতি একক আয়তনের কার্বোপ্লিলেজ ক্রিয়া এবং পত্রবন্ধীর পরিবাহকতার পার্থক্য আছে। এ পর্যস্ত জানা মতে F_{max} এবং বৃদ্ধি হারের মধ্যে ধন্যরক সম্পর্ক পাওয়া যায়নি এবং কয়েকটি ফেত্রে বিপরীত সম্পর্ক পাওয়া গেছে। গম, টমেটো এবং তুলার বন্য প্রজাতিতে সর্বোচ্চ সালোকসংশ্লেষণের হার দেখা যায় ; পাতার আকার, পাতার বৃদ্ধির হার, দানার আকরে এবং আপেফিক বৃদ্ধি হার কম-বেশি অপরিবর্তিত আছে।

তৃতীয়ত, কিছুটা উপরোক্ত বিষয়ের বিপরীত হলেও, বায়ুমণ্ডলে কার্বন ডাই–অক্সাইডের পরিমাণ বৃদ্ধির জন্য সাধারণত আলোর সঞ্চল মাত্র্য্য প্রতি একক পাত্যার ক্ষেত্রফলে

শস্য শারীরবিজ্ঞান

সালোকসংশ্লেষণের হার বৃদ্ধি পায়। নিচের পাতা অধিকতর ছায়াযুক্ত হওয়া সন্ধেও বৃদ্ধির হার এবং – ফলন বৃদ্ধি পায়। অধিকতর ছায়াযুক্ত হওয়া সন্ধেও বৃদ্ধির হার এবং ফলন বৃদ্ধি পায়। এতদসম্বেও, কার্বম ডাই–অক্সাইডের বৃদ্ধির জন্য তুলার সংলোকসংশ্লেষণের হার কমে যায়, সম্ভবত পাতা থেকে অধিক পরিমাণে নাইটোজেনের পুনঃস্থানান্তরের (remobilization) সাথে এটি সম্পর্কিত।

অন্ধকার শুসন এবং আলোকশুসন (Dark Respiration and Photorespiration) জীবস্ত কোমে জারণের মাধমে কার্বেয়েইডেট থেকে কার্বন ডাই-'মক্সাইড, পানি এবং শক্তি তৈরি হওয়ার পছতিকে সাধারণভাবে শ্বসন বলে। সালোকসংশ্রেষী উদ্ভিনে দু'প্রকারের শ্বসন হয়-প্রথমটিকে বলা হয় অন্ধকার শ্বসন (R₁)) এবং এতে সাবেস্টেটের জারণের বিভিন্ন পথ আডে, যেমন- গ্লাইকোলাইসিস, ক্রেবস চক্র এবং জারিত পেন্টোজ ফসফেট পথ (চিত্র ৭.৪)। এওে কার্বেয়েইডেটের মুক্ত শক্তির কিছু অংশ ATP-এর উচ্চ শক্তিসম্পন্ন বন্ধনীতে এবং বিজারিত পাইরিডিন নিউক্লিওটাইডে (NADH+H⁺) সংরক্ষিত থাকে। মাইটোকনড়িয়ার ঝিল্লীওে মক্সিডেটিভ ফসফোরাইলেশনের পথ বরাবর NADH+H⁺ জারণের সময় ইলেকটন পরিশেযে মক্সিডেটিভ ফসফোরাইলেশনের পথ বরাবর NADH+H⁺ জারণের সময় ইলেকটন পরিশেযে মক্সিডেটিভ ফসফোরাইলেশনের পথ বরাবর NADH+H⁺ জারণের সময় ইলেকটন পরিশেযে মক্সিডেটিভ ফসফোরাইলেশনের পথ বরাবর NADH+H⁺ জারণের সময় ইলেকটন পরিশেযে মক্সিডেটিভ ফসফোরাইলেশনের পথ বরাবর NADH+H⁺ জারণের সময় ইলেকটন পরিশেযে মরিজেনের সঙ্গে মিলিত হয়, তাও শ্বসনের অস্তভুক্ত। প্রতিটি NADH +H⁺জারণে তিনটি A TP তৈরি হয়। দ্বিতীয় প্রকার শ্বসনকে বলা হয় আলোকশ্বসন (R_L)। এটি থনো ফটোরেসপিরেটরি কর্বেন অক্সিডেশন (PCO) চন্ডের মাধ্যমে (একে গ্লাইকোলেট পথণ্ড বলে-চিত্র ৭.৪) কার্বন ডাই-অক্সাইড তৈরি হওয়া। সালোকসংশ্রেযী কারন বিজ্ঞারণ চক্রের (কেলভিন চন্দ্র) প্রবিদ্যাল থে এনজাইম রাইবুলেজ বিস ফসফেট কার্বোক্সিলেশনে অংশগ্রহিলে করে, সেই এনজাইমই PCO চক্রের প্রথম ধাপে আক্সিডেনেশনের মাধ্যমে ফসফোণ্লেইকোলিক এসিড তৈরিতে অংশগ্রহণ করে।

আলোক শ্বসন এবং অন্ধকার শ্বসনের মধ্যে শারীরতারিকভাবে কওকণ্ডলো পার্থকা আছে: (১) রাইবুলোজ বিস ফসফেটের জন্য প্রকৃত আলোকশ্বসনের সাথে সালোকসংশ্লেষী বাবন বিজারণ চক্র সম্পর্কিত, সুতরাং আলোকশ্বসন কেবল আলোর উপস্থিতিতে সনুজ কোষে হয়। অপরপক্ষে, অন্ধকারশ্বসন অন্ধকার কিংবা আলোতে সকল জীবস্ত কোষেই হয় এবং সন্তবত আলোতে সালোকসংশ্লেষী কোষেও হয় (নিট সালোকসংশ্লেষণের হারের শতকরা ৫ থেকে ১৫ তাগ)। (২) অক্সিন্ধেন এবং কার্বন ডাই- এক্সাইড উভয়ের ঘনমাত্রা দ্বারা আলোকশ্বসন প্রজারিও হয়। রাইবুলোড বিস ফসফেটের অক্সিজেনেশন এবং কার্বোক্সিলেশনের প্রতিয়েগিতামূলক প্রকৃতির তাগ)। (২) অক্সিন্ধেন এবং কার্বন ডাই- এক্সাইড উভয়ের ঘনমাত্রা দ্বারা আলোকশ্বসন প্রজারিত হয়। রাইবুলোড বিস ফসফেটের অক্সিজেনেশন এবং কার্বোক্সিলেশনের প্রতিযোগিতামূলক প্রকৃতির কন্য এটি হয়। কার্বন ডাই- অক্সাইডের ঘনমাত্রা বৃদ্ধির জন্য রাইবুলোজ বিসফসফেটের কার্বোক্সিলেশন বৃদ্ধি পায় (অর্থাৎ নিট সালোকসংশ্লেষণ বৃদ্ধি পায়), কিস্তু অক্সিজেনের ঘনমাত্রা বৃদ্ধির জন্য অক্সিজিনেন্ড ক্রিয়া বৃদ্ধি পায় (অর্থাৎ আলোকশ্বসন বৃদ্ধি পায়)। অপরপক্ষে, শতকরা ২ থেকে ৩ তাগের বেশি কার্বন ডাই- অক্সাইড অথবা অক্সিজেনের ঘনমাত্রা বৃদ্ধির জন্য অক্সিজেরে শ্বসনে গ্লুকোজের জারণ হতে লভ্য শন্ডিন প্রায় শতকরা ৩৫ থেকে ৪০ ভাগ ATP তে সংরক্ষিত থাকে। কিন্তু ফটোরেসপিরেটরি কার্বন অন্ধিডেশন সক্র স্বচ্ব জন্য প্রকৃতপক্ষে শক্ষিকে থাকে। কিন্তু ফটোরেসপিরেটরি কার্বন অক্সান্টেয়ে রন্য ২৮টি ATP সমতুলা শন্তিদ দ্বকার)।

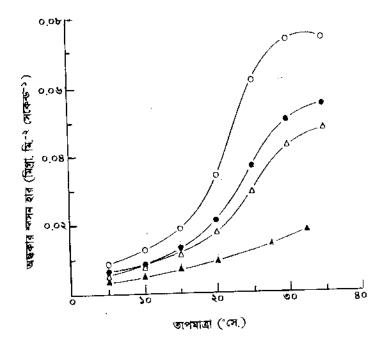
C4 উদ্ভিদে আলোকশ্বসন

C⁴ উদ্ভিদের অনেকগুলো শারীরতান্বিধ বৈশিষ্টা নির্দেশ করে যে, এসব উদ্ভিদের ধাহ্যিকভাবে মনে হয় আলোকশ্বসন অনুপস্থিত। এগুলো ব্যাবন ডাই-অক্সাইডের ক্ষতিপূরণ মাত্রা প্রায় শূন্য

278

সালোকসংশ্লেষণ, অন্ধকার শ্বসন ও আলোকশ্বসন

(খুব সামান্য কিংবা শ্বসনের জন্য কোনো কার্বন ডাই-অক্সাইড মুক্ত হয় না) মেসেফিলরিংশক কম, অক্সিজেনর ঘনমাত্রার সাথে সালোকসংশ্লেষণের প্রতিক্রিয়ার সম্পকের অভাব, সালোকসংশ্লেষণের উচ্চ হার এবং উচ্চ তাপমাত্রা সর্বোন্ডম তাপমাত্রা (অস্ত্রিজিনেজ এবং কার্বোস্কিলজে অনুপাত তাপমাত্রার সাথে বৃদ্ধি পায়)। C₄ উদ্ভিদে শ্বসনে তৈরি কার্বন ডাই-অক্সাইডের দক্ষতার সংথ পুনঃআস্ত্রীকরণ হয়, কিন্তু বিকিরণ ব্যবহারের দক্ষতার (কোয়ান্টাম দক্ষতা) উপর অস্থিজিনের কোনো প্রভাব কেন থাকে না, তার ব্যাখ্যা পাওয়া যায় না। কারণ আশা করা যায় থে, আলোকশ্বসনের সাথে এটি পরিবর্তিত হয়, কিন্তু এরকম প্রভাব এখনও সনজে করা সম্ভব হলনি। তা সত্ত্বেও অনেক তথ্য নির্দেশ করে যে, আলোকশ্বসনের প্রয়েজনীয় এনজাইম বাডিল শিদে থাকে (খুব কম মাত্রায়), তাই আলেকেশ্বসন অনুপস্থিত থাকার সম্ভাব্য কোরণ হলো অন্তঃস্থ কর্থেন্টা কার্য্বেজের ঘনমাত্রা বেশি হওয়ায় প্রায় সম্পূর্ণরাপেই রাইবুলোজ বিস ফসফেটের কার্যেক্সিলেন হয়।

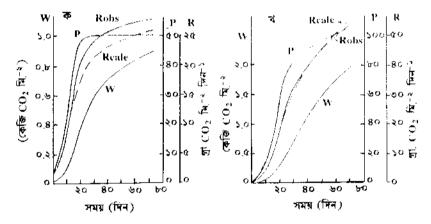

কোনো নিদিষ্ট পরিবেশে একটি আলোকিত পাতার P,R₁, এবং R_D পৃথকভাবে পরিমাপের সন্তোষজনক পদ্ধতির এখনও অভাব আছে, কারণ P এবং R_L এর সমগ্রার উপর অগ্রিডেটিভ ফসফোরাইলেশনের হারের উপর ফটোফসফোরাইলেশনের প্রভাব সম্পর্কে এখনও অনিশ্চয়তা আছে। এগুলোর মধ্যে যেমন– আলোতে অন্ধকার শ্বসন আদৌ হয় কি-না অথবা কতিপন্ন গবেষক পরিমাপ করেছেন যে এই হার হ্রাস পেয়ে প্রায় এক–তৃতীয়াংশ হয় কি–না অথবা অন্ধকারে নির্নাপিত কার্বন ডাই–অক্সাইডের বহিঃস্থ ফ্লাক্সের সাথে এর প্রকৃত সম্পর্ক কিরপ।

২৫° সেলসিয়াস তাপমাত্রায় এবং অন্ধকারে পূর্ণ প্রসারিত পাতার কার্বন ডাই–এয়াইডের বহিঃস্থ ফ্লাব্সের, RD, পরিমাণ হয় প্রায় ০.০২ থেকে ০.০৭ মিলিগ্রাম প্রতি বর্গমিটার প্রতি সেকেন্ড এর মধ্যে। তবে প্রসারণশীল পাতায় এই হার অনেক বেশি (চিত্র ৭.১৬) এবং অন্যন্য এঙ্গেও একই রকম ফলাফল পাওয়া গেছে। পূর্ববর্তী আলোককালে সালোকসংশ্লেষণের হারের সাথেও বৃদ্ধির জন্য অন্ধকার শ্বসনের সম্পর্ক আছে (চিত্র ৭.২৪) এবং মূলে অন্ধকারে হারের সাথেও বৃদ্ধির জন্য অন্ধকার শ্বসনের সম্পর্ক আছে (চিত্র ৭.২৪) এবং মূলে অন্ধকারে হারের সাথেও অন্ধকার শ্বসনের হার বেশি। এই তারতম্য সম্বেও পাতার এবং মূলে অন্ধকারের তুলনায় আলোতে অন্ধকার শ্বসনের হার বেশি। এই তারতম্য সম্বেও পাতার এবং মূলের প্রতি একক গুব্দ ওজনে কার্বন ডাই–অক্সাইড তৈরির হার সাধারণত একই রকম, কিন্তু সক্রিয় দীর্ঘীকরণের সময়ে কাণ্ডের তুলনায় কম। এটি সাধারণত ধরে নেয়া হয় প্রায় শূন্য থেকে ২৫ থেকে ৩৫" সেলসিয়াস তাপমাত্রার পরিসরে RD (সকল অঙ্গের) এর Q10 হলো প্রায় ২ (চিত্র ৭.২৪)।

সাধারণত বৃদ্ধি এবং সালোকসংশ্লেধণের হারের সাথে শ্বসনের হার ঘনিষ্টভাবে সম্পকযুক্ত: তবে কোনো কোনো সময় এরকম সম্পর্ক দেখা যায় না। যেমন, যদি গোল আলুর কলকে ৫ সেলসিয়াস তাপমাত্রার নিচে রাখা হয়, তাহলে উল্লেখযোগ্য পরিমাণ শকরা সুগারে পরিণত হয় এবং এর জন্য এসকল কন্দের শ্বসনের হার ২০° সেলসিয়াস তাপমাত্রায় রাখা কন্দের মতো হয়। অনেক ফলের যেমন- আপেল, কলা, টমেটো, পরিপক্বতার সময় শ্বসনের হার বৃদ্ধি পায়। এই বৃদ্ধিকে বলা হয় ক্লাইম্যাকটেরিক (Climacteric) এবং শ্বসনিক অনুপাতের (respiratory quotient) বৃদ্ধি এবং রঙ ও গঠনের পরিবর্তনের সাথে এটি সম্পর্কযুক্ত; এর শুরু ইথিলিন তৈরির উপর নির্ভরশীল।

কোষের সকল প্রকার জীবজ কাজে ব্যবহৃত শক্তি (ATP) এবং কার্বন কাঠামো অন্ধকার শ্বসন সরবরা**হ ক**রে।

সাইটোপ্লাজমে রাসায়নিক বিক্রিয়ায় ব্যবহৃত NADPH+H⁺ -এর উৎস হলো অগ্রিডেটিভ পেন্টোজ ফসফেট পথ।


চিত্র ৭.২৪ : তুলা উদ্ভিদের বিভিন্ন পাতার শ্বসনের হারের উপর তাপমাত্রার প্রভাব : দশম পাতা, অর্ধ-প্রসারিত (মুক্ত বৃস্ত) ; যন্ঠ পাতা (বদ্ধ বৃস্ত) ; উচ্চ আলোতে রাখার এক দিন পর চতুর্থ পাতা (মুক্ত ত্রিভুজ); অন্ধকারে রাখার এক দিন পর চুতর্থ পাতা (বদ্ধ ত্রিভুজ)।

অন্ধকার শ্বসনকে সাধারণত দু'ভাগে ভাগ করা হয়-বৃদ্ধি (growth, RG) এবং রক্ষণ (maintenance, R_m) শ্বসন। বৃদ্ধি এবং কোযের নতুন উপ্যাদান সংশ্লেষণের জন্য বৃদ্ধি শ্বসন এবং কোষের গঠন রক্ষণের জন্য রক্ষণ শ্বসন শক্তি সরবরাহ করে। এ দু'প্রকার শ্বসনের মধ্যে কোনো প্রাণরাসায়নিক পার্থক্য নেই ; ধারণা করা হয় যে, R_M শুষ্প ওজনের সমানুপান্তিক এবং তাপমাত্রায় খুব সংবেদনশীল, অন্যপক্ষে R_G সরাসরি সালোকসংশ্লেষণের উপর নির্ভরশীল এবং তাপমাত্রায় সংবেদনশীল নয়।

দৈনিক (অর্থাৎ ২৪ ঘণ্টা) ভিত্তিতে পাতার শ্বসনকে নিম্নলিখিত সমীকরণের সাহায্যে বর্ণনা করা যায় :

 $R^* = R_G + R_M = aP^* + bW$ (কেন্দ্রি প্রতি কেন্দ্রি প্রতি দিন) (৭.১৪)

এক্ষেত্রে P* হলো আলোতে মোট সালোকসংশ্লেষণ এবং W হলে৷ কার্বন ডাই-অক্সাইড তুল্যাঙ্কেক [অর্থাৎ (৪৪/১২)C, এই C হলো প্রতি একক ওজনে কার্বনের পরিমণে] পাতার ওজন। এই সম্পর্ক সন্তবত ক্লোরোফিলবিহীন অঙ্গের ক্ষেত্রেও ব্যবহার করা যেতে পারে, সেক্ষেত্রে P* হবে মোট পরিবাহিত কার্বনের পরিমাণ। একক পাতা কিংবা অন্য কোনো অঞ্চে এই সম্পর্ক খুব কম ব্যবহার করা হয়েছে, কিন্তু সমগ্র উদ্ভিদের (whole plant) ক্ষেত্রে এটি সাফল্যের সাথে ব্যবহৃত হয়েছে (চিত্র ৭.২৫)। সীমিও বিশ্লেষণ থেকে জানা যায় যে, কার্বনের পরিমাণ প্রায় শতকরা ৪০ ভাগ (W-১.৪ কার্বন ডাই-অক্সাইড তুল্যান্ডক)। ৩বে গুব্দ পদার্থের গঠনের উপর ভিন্তি করে কার্বনের পরিমাণ শতকরা ৩০ থেকে ৪৫ ভাগের মধ্যে হতে পারে। বর্তমানে প্রয়িশন উদ্ধে থেকে জানা যায় যে, বৃদ্ধি গুণাঙ্ক, a হলো প্রায় ০.০০, এবং এটি তাপমত্রোর উপর নির্ভরশীল নয়, এবং রক্ষণ গুণাঙ্ক, b হবে ০.০১৪ (২)^{০.৬}(T-2) D⁻¹, তবে অধিকতর আস্থার সাথে একে সাধারণীকরণের জন্য আরও তথ্যের প্রয়োজন। যেমন যেহেতু গঠনগত এবং সঞ্চিত উদ্যাদান হলো ওজনের ভিন্তি, তাই এটি আশা করা যায় যে, অঙ্গের আকার এবং বয়সের সাথে সাথে ৮ কমে যায়। উপরস্ত, বায়ুমণ্ডলের কার্বন ডাই অক্সাইডের ঘনমাত্রা বৃদ্ধির সাথে সাথে ৫ হাস পায় এবং উপরে যে a এর মান দেখানো হয়েছে তা স্বাভাবিক কার্বন ডাই–অক্সাইডের ঘনমাত্রায় (প্রায় ০.০০৫৫/)।

চিত্র ৭.২৫ : দুটি ভিন্ন মাত্রার আলোতে (ক এবং খ) ১০০ ওয়াট প্রতি বর্গমিটার বিকিরণের জন্মানে: *Trifolium repens*-এর ২৪ ৫৬টার মোট সালোকসংশ্রেষণ, P. ওথ্দ ওজন, W.এবং পর্যবেক্ষণকৃত (observed) এবং নির্ণীত (calculated) শ্বসন, Robs, Reale. !

শস্যের ফলনের উপর আলোকশ্বসনের প্রভাব (Photorespiration in Relation to Crop Yield)

আলোকন্মসনের জন্য কোনো শক্তি উৎপত্তি হয় না, প্রকৃতপক্ষে এর জন্য শক্তির অপচয় হয়, এবং এজন্য শস্য উদ্ভিদের ফলন অনেকাংশে কমে যায়। এ কারণে আলোকন্মসনের ২/র কমিয়ে আনতে পারলে উদ্ভিদের বৃদ্ধির হার শতকরা ৫০ থেকে ১০০ ভাগ বাড়ানো সন্তব। এটি করা হয়েছে ফসফোগ্লাইলিক এসিড সংশ্লেষণ বন্ধের মাধ্যমে। কোনো বিষাক্ত পদার্থ তৈরি না হয়ে ফসফোগ্লাইকোলিক এসিডের মাত্রা হাসের একমাত্র কার্যকর পদ্ধতি থলো শস্যের চারদিকে লয়্ব অক্সিন্ডেনসকাবন ৬৫ই। অন্ধ্রাইডের অনুস্পত হাস করাণ এটি করা যায় রায়ুর অক্সিজেনের খনমাত্রা। হাস করে কিংবা কার্বন ডাহন এআইডের খনমাত্রা বৃগর করে।

অক্সিজেনের নিমু ঘনমাত্রায় ফলন বৃদ্ধি

এটি সুনিন্দিতভোৱে জন্য গেছে যে, আগ্রাজনের নিমুখনমান্রণ আবেরকাক্ষেমন বাঁধাপ্রাপ্ত হয় এবং অনের শক্ষের ফলন বৃদ্ধি পায়। আগ্রাজনের জালবির ঘনমান্র। ২০া থেকে ২০ এ কমিয়ে আনলে বিভিন্ন উদ্ভিদে সংলোকসংশ্রেষণের হারে শতকরা ২০া থেকে ১০০ ভাগে পর্যন্ত বৃদ্ধি পায়। সালোকসংশ্রেষণের হারের বৃদ্ধির জন্য বৃদ্ধির হার এবা ওকা পদার্ঘ তেরির পরিমাণ ও বৃদ্ধি পায়। অনেক গুরুত্বপূদ্ধ শস্য উদ্ভিদ, যেমনা গম, স্থারনিসালবা স্বাম্বাতে এটি পাওয়া গেছে।

এরকম সৃধ্পষ্ঠ ফলফল সংবৃত্ত এর খরচ এবং মংঠ আকৃত্তিক পরিবেশে আগজেনের ঘনমাত্র হাস করার বাস্তব মসুবিধার কারণে এর পদ্ধ'ত কামকর নয়। এই পদ্ধতির জনং প্রয়োজন হলো ডান্ডনকে ব মুরোধী বৃহৎ আকরাছে এন্যাতে হলে এন। পাচ ভাগের চার ভাগ বায়ুর পরিবর্তে নাইট্টোজেন গ্যাস ব্যবহার করতে হলে। যেহেতু এই প্রকেষ্ঠেটি বায়ুরোধী, সেহেতু সালেকেসংশ্রেষণের জনা কায়কভাবে কারন ডাই আগমেড যোগ করতে হবে। এজন্য মাঠ শাসের ফেন্ডে এটি ব্যবহার করা সন্থব নয়।

কার্বন ডাই-অক্সাইডের উচ্চ ঘনমাত্রায় ফলন বৃদ্ধি

থেষ্ট্রেড অক্সিজেনের ফলমান্রে কমিয়ে অন্সিজেন, লাবন ডাহ- মল্লাইডের অনুপাত হ্রাস করা কঠিন এবং বায়েবহুল সেহেতু কানন ডাই আক্সাইডের ফলমান্র ব্যন্তর করে আপেক্ষাকৃত কম খরচে এবং সহজে এটি করা যাত্রা এটি করতে কাবন ডাহ আক্সাইডের ফলমার্ট এমন বৃদ্ধি **করতে হবে** যা মানুষের জন্য আতিকর নয়। এর জন্য জ্ঞান্য ফলাম্যান্যি যায়ুরোহী প্রকাষ্ঠের প্রয়োজন কিন্তু বায়ুমণ্ডলের কাবন ডাই অক্সাইডের প্রকোষ্ঠের প্রয়োজন, কিন্তু বায়ুমণ্ডলে কাবন ডাই অক্সাইডের মন্যার এতে কমান্য হাই অক্সাইডের প্রকোষ্ঠের প্রয়োজন, কিন্তু বায়ুমণ্ডলে কাবন ডাই অক্সাইডের মানুষের জন্য আতি কাব হাই অক্সাইডের প্রকোষ্ঠের প্রয়োজন কিন্তু বায়ুমণ্ডলে কাবন ডাই অক্সাইডের মান্যার এতে কমান্য হেন্ডারে, এই অনুসার বের্দ্ধি পরিবাহন করে আলোকন্মসন হাস করতে যুব সামান্য পরিমান মতিরিও কাবন ডাই অক্সাইডের প্রয়োজন।

থনে হাউলে কারন ভাই অস্মহজের মারনে ট্রিয়ে শাসের ফলন বৃদ্ধির পদ্ধতির বর্তদন থেকেই চলে আসছে এবং আলোকশ্বসনাবাশস চাঁছদে আগ্রান্ডেনের মাত্রা কমিয়ে যে পরিমাণ ফলন বৃদ্ধি হয়, এর জনেও একই পরিমাণ হয়, সাধারণত শতকরা ৩০ থেকে ১০০ ভাগ ফলন বৃদ্ধি পায়। এবে নিমু অক্সিজেন পদ্ধতির মতো এর একটি অসুবিধ্য ইলো উন্তিদ জন্মনোর জন্য বায়ুরোধী প্রক্ষেষ্ঠের সায়োজন, তাই খেলো মাঠে বৃহৎ আকারে শস্য উৎপাদনের জন্য এটি অনুপযোগ^ন

রাসায়নিকরোধক ব্যবহারের মাধ্যমে ফলন বৃদ্ধি

যদি এমন কোনো প্রসায়নিক পদাপের সম্রাণ পাওয়া যেতো যা মাঠে জন্মানো শসেং ছিটিয়ে দিলে ফসফোন্থ্রাইকোলিক প্রাসভ সংশ্লেষণ বন্ধ করে আলোকন্দ্রসন হাস করতে পরেতো। এটি যদি সন্তা এবং বিষাভ না ২তো তা হলে মাঠে জন্মানো শস্যের জন্য সহজেই ব্যবহার করা যেতো। দুজাগাবেশত এখন পয়ন্ত এরকম কোনো রাসায়ানক পদাপের সন্ধান পাওয়া যায়নি। কয়েকটি রাসায়নিক পদাণ্ড, যেনন আলফা হাইডোর্মসালফোনোট ট্রাইকোলিক এসিডের সংশ্লোণ বন্ধ করে, কিন্তু এণ্ডলো আবার সালোকসংশ্লেষণকেও বাঁধাগ্রস্থ করে। তবে যেহেতু একই এনজ্রাইম উভয় প্রক্রিয়ায় অংশগ্রহণ করে, সেহেতু সালোকসংশ্লেষণকে বাধাগ্রস্থ না করে গ্লাইকোলিক এসিড সংশ্লেষণ বন্ধ করতে এমন রাসায়নিক পদার্থ পাওয়া হয়তো সম্ভব না–ও হতে পারে।

উদ্ভিদ প্রজননের মাধ্যমে আলোকশ্বসন হ্রাস

নিমু আলোকশ্বসনসম্পন্ন মিউট্যান্ট তৈরির মধ্যমে আলোকশ্বসনের হার কমানো যেতে পারে। বীজে γ–রশ্নি অথবা কোনো রাসায়নিক পদার্থ প্রয়োগ করে পরিব্যক্তি (mutation) ঘটানো যায়। এভাবে যদি খুব কম মাত্রার আলোকশ্বসন সম্পন্ন উদ্ভিদ পাওয়া যায় এবং এদের বীজ্ব উৎপাদন সম্ভব হয়, তাহলে উদ্ভিদ প্রজননের বিভিন্ন কৌশল প্রয়োগ করে আলোকশ্বসনবিহীন উদ্ভিদ তৈরি হয়তো সম্ভব হবে।

তথ্যপঞ্জি

- Abbott, I.R. and N.K. Matheson, 1972. Phytochemistry 11: 1261-1272.
- Abdul-Baki, A. and J.E. Baker. 1970. Plant Physiol. 45: 698-702.
- Abrahamsen, M. and T.W. Sudia. 1966. Amer. J. Bot. 53: 108-114.
- Abrahamsen, M. and A.M. Mayer, 1967. Physiol. Planta, 20: 1-5.
- Abrol, Y.P., D.C. Uprety, V.P. Ahuta and M. S. Naik. 1971, Aust. J. Agric. Res. 22: 195-200.
- Ackerson, R.C. and J.W. Radin, 1983. Plant Physiol. 71: 432-433.
- Adams, M.W. 1967. Crop Sci. 7: 505-510.
- Addicott, F.T. and J.L. Lyon, 1969, Ann. Rev. Plant Physiol. 20: 139-164.
- Ainii, R.,H. Sawamura and S. Konno, 1959, Proc. Crop Sci. Soc. Japan 27: 405-407.
- Ahrens, J.F. and W.E. Loomis, 1963. Crop Sci. 3 : 463-466.
- Aldrich, S.R. and E.R. Leng, 1966. Modern Corn Production. The Farm Quaterly, Cincinnati, Ohio.
- Allan, R.E., O.A. Vogel and J. C. Craddock, 1959. Agron. J. 51 : 737-740.
- Allan, R.E., O.A. Voget and C.J. Peterson, 1962, Agron. J. 54 : 347-350.
- Allen, E.J. and R.K. Scott. 1980. J. Agric. Sci., Camb. 94 583-606.
- Allison, J.C.S. 1964, J. Agric. Sci., Camb. 63: 1-4.
- Almond, J.A., C.J. Done and T. C. K. Dawkins, 1983, Arable Farm, 12: 6-10.
- Anderson, D.B. and T. Kerr, 1938. Ind. Eng. Chem. 30 : 48-54.
- Anderson, D.B. and T. Kerr. 1943. Plant Physiol. 18: 261-269.
- Anderson, E. and W. L. Brown, 1948, Missouri Bot, Gard. Ann. 35 : 323-336.
- Angus, J.F., R. Jones and J.H. Wilson, 1972. Aust. J. Agric. Res. 23: 945-957.
- Anisimov, A.A. 1962. Doklady Akad. Nauk. SSSP 139 : 742-743.
- Anonymous, 1966, Sovhean Dig. 26: 10-11.
- Arashi, K. 1960. Growth of rice Plant and diagnosis of its aletumn decline. Yokendo, Tokyo.
- Asana, R.D. and V.S. Mani, 1950. Physiol. Planta, 3: 22-39.
- Asana, R.D. 1961. Arid Zone Res. 16: 183-190.
- Asana, R.D. and A.D. Saini, 1962. Indian J. Plant Physiol. 5: 128-171.
- Asana, R.D. and R.N. Basu, 1963. Indian J. Plant Physiol. 6: 1-13.
- Asana, R.D. and C.M. Joseph. 1964. Indian J. Plant Physiol. 7: 86-101.
- Asana, R.D. and R.F. Williams, 1965. Aust. J. Agric, Res. 16 : 1-13.
- Asana, R.D. and R.K. Sahay. 1965. Indian J. Plant Physiol. 8: 86-102.
- Asana, R.D.P.K. Ramiah and M.V.K. Rao. 1966. Indian J. Plant Physiol. 9: 95-107.

- Asana, R.D. and A.K. bagga. 1966. Indian J. Plant Physiol. 9: 1-21.
- Asana, R.D. and D.N. Singh. 1967. Indian J. Plant Physiol. 10: 154-169.
- Asana, R.D., S.R. Parvatikar and N.P. Saxena. 1969. Physiol. Planta. 22: 915-924.
- Ashley, D.A. 1972, Crop Sci. 12: 69-74.
- Athwal, D.S. 1971. Quart. Rev. Biol. 46: 1-34.
- Austin, R.B. 1980. Physiological limitations to cereal yields and ways of reducing them by breeding. In : Opportunities for Increasing Crop Yields. eds. R.G. Hurd. P.V. Biscoe and C. Dennis, pp. 3-20. Pitman, London.
- Baba, L. I. Iwata and Y. Takahashi. 1957. Proc. Crop Sci. Soc. Japan 25: 222-224.
- Baba, I. 1961. IRC Newsletter. 10: 9-16.
- Baim, J.M. and F.V. Mercer. 1966a. Aust. J. Biol. Sci. 19: 49-67.
- Bain, J.M. and F.V. Mercer. 1966b. Aust. J. Biol. Sci. 19: 69-84.
- Baker, D.A. and J. Moorby, 1969. Ann. Bot. 33: 729-741.
- Baker, D.N., J.D. Hesketh and W.G. Duncan. 1972. Crop Sci. 12: 431-435.
- Balls, W.L. and F.S. Halton, 1915a. Phil. Trans. Roy. Soc. Ser. B. 206: 103-180.
- Balls, W.I. 1917. Phil Trans, Roy. Soc. Ser. B. 208: 157-233.
- Balls, W.L. and F.S. Halton. 1915b. Phil. Trans. Roy. Soc. Ser. B, 206: 403-480.
- Banerjee, H.T., M. Das and T.K. Bhattacharjee. 1967. Indian J. Agron. 12: 323-324.
- Bange, G.G.J. 1953. Acta Bot. Neelandica 2 : 255-296.
- Barber, H.N. 1959. Heredity 13: 33-60.
- Barer, G.A. and W.Z. Hassid. 1965. Nature, Lond. 207: 295-296.
- Barley, K.P. 1970. Adv. Agron. 22: 159-201.
- Barnard, C. 1974. In : Cereals in Australia, eds. A. Lazenby and E.M. Matheson. Angus and Robertson. Sydney.
- Barnes, A.C. 1974. The Sugarcane. Leonard Hill Books. P. 572.
- Barrs, H. 1968. Physiol. Plant. 21: 918-929.
- Bassett, D.M., J.R. Stockton and W.L. Dickens. 1970. Agron. J. 62: 200-203.
- Bassett, D.M., W.D. Anderson and C.H. E. Werkhoven. 1970. Agron. J. 62: 299-303.
- Beardsell, M.F. and D. Cohen, 1974. Bull. R. Soc. N.Z. 12: 411-415.
- Beevers, L. and W.E. Splittstoesser. 1968. J. Exp. Bot. 19: 698-711.
- Beevers, L. and R. Poulson. 1972. Plant Physiol. 49: 476-481.
- Begg, J.E. and N.C. Turner. 1976. Adv. Agron. 28: 161-217.
- Begum, F.A. and N.K. Paul. 1993, J. Agron. & Crop Sci. 170 : 136-141.
- Begum, A. and W.G. Eden, 1965. J. Econ. Entomol. 58: 591-592.
- Belikov, J.F. 1955, Dokl. Akad. Nauk. SSSR 102 : 379-381.
- Belikov, I.F. and L. I. Pirskii. 1965. Soviet Plant Physiol. 13: 361-364.
- Berdahl, J.D., D.C. Rasinusson and D₃N. Moss. 1972. Crop Sci. 12: 177-180.
- Bergersen, F.J. 1970. Aust. J. Biol. Sci. 23: 1015-1025.
- Bergesen, F.J. 1971, Ann. Rev. Plant Physiol. 22: 121-140.
- Bergersen, F.J. and D.J. Good child. 1973. Aust. J. Biol. Sci. 26: 741-756.

- Berkley, E.E. 1931, Ann. Mo. Bot. Gard. 18: 573-601.
- Berry, J.A. and J.K. Raison, 1981. Encyclopaedia of Plant Physiology. 12A: 278-338.
- Berger, J. 1962. Maize production and the manuring of maize. Centre d'étude de L'azote. Geneva.
- Bernal, J.D. 1965. Symp. Soc. Exp. Biol. 19: 17-32.
- Beuerlein, J.E. and J.W. Pendleton. 1971. Crop Sci 11: 217-219.
- Beardsell, M.F. and D. Cohen, 1975. Plant Physiol. 56: 207-212.
- Bhan, S. M. Balaraju and Vidya Ram. 1980. Indian J. Agric. Sci. 50: 760-763.
- Bieberdorf, F.W. 1938. J. Amer. Soc. Agron. 30: 375-389.
- Bilinski, E. and W.G. McConnell. 1958. Cerel Chem, 34 : 1.
- Bils, R.F. and R.W. Howell. 1963. Crop Sci. 3 : 304-308.
- Bingham, J. 1966. Ann. Appl. Biol. 47: 365-377.
- Bingham, J. 1967. J. Agric. Sci., Camb. 68: 411-422.
- Bingham, J. 1969. Agric Prog. 44: 30-42.
- Birecka, H. 1967. In : Isotopes in Plant Nutrition and Physiology. Int. Atomic Energy Agency, Vienna.
- Birecka, H., V. Wojeicska and S. Głazewski. 1968. Bull. Acad. Polon. Sci.Cl. V16 : 191-196.
- Birecka, H. 1968. Bull. Acad. Polon. Sci. Cl. V16 : 455-460.
- Biswas, S.c., K.M. Roy and N.K. Paul. 1990a. Bangladesh J. Bot. 19: 231-234.
- Biswas, S.c., R.K. Mondal and N.K. Paul. 1990b. J. Asiatic Soc., Bang. 16: 27-31.
- Biscoe, P.V. and J.N. Gallagher. 1977. In : Environmental Effects on Crop Physiology. eds. J. J. Landsberg and C. V. Cutting. Academic Press. London. pp. 75-100.
- Biscoe, P.V. and J.N. Gallagher, 1978. Agric. Prog. 53: 34-50.
- Blackman, V.H. 1919. Ann. Bot.33: 353-360.
- Blackman, P.G. and W.J. Davies, 1984. J. Exp. Bot. 35 : 174-179.
- Bland, B.F. 1971. Crop production : cereals and legumes. Academic Press, London.
- Blad, B. L. and D.G. Baker, 1972, Agron. J. 64: 26-29.
- Bleasdale, J.K.A. 1965, J. Agirc. Sci., Camb. 64: 361-366.
- Blixt, S. 1970. Pisum, In :: Genetic Resources in Plants, eds. O.H. Frankel and E. Bennett. 1BP hand book No. 11. Blackwell, Oxford, pp. 321-326.
- Blomquist, R.V. and C.A. Kust. 1971. Crop Sci. 11: 390-393.
- Blum, A. and A. Ebercon. 1981, Crop Sci. 21: 43-47,
- Boatwright, G.O. and H. Ferguson. 1967. Agron. J. 59: 299-302.
- Bodlaender, K.B.A. 1963. Proc. 10th Ester Sch. Agric. Sci. Univ. Nottingfiam, 199-210.
- Bohning, R.H. and C. A. Burnside, 1956. Amer. J. Bot. 43: 557-561.
- Bond, G. 1950. Ann. Bot. 15 : 95-108.
- Bonnett, O.T. 1940. J. Agro. Res. 60 : 25-37.
- Bonnett, O.T. 1967. Bull. Univ. III. Agric. Exp. St. 721; 105.
- Booth, A. 1963. Proc. 10th Ester Sch. Agric. Sci. Univ. Nottingham, 99-113.
- Borah, M.N. and F.L. Milthorpe. 1962. Indian J. Plant Physiol. 5: 53-72.

- Borden, R.J. 1946. Hawaiian Planters' Record 50: 3-4.
- Borger, H., W. Huhnke, D. Kohler, F. Schwanitz and R. Von Sengbusch. 1956. Der. Zuchter. 26 : 363-370.
- Borthwick, H.A. and M.W. Parker, 1939, Bot. Gaz. 101, 1341-365.
- Boyer, J.S. 1971. Crops Sci. 11: 403/407.
- Boyer, J.S. A. J. Cavalieri and E.D. Schulze. 1985. Planta 163: 527-543.
- Boysen-Jensen, P. 1932. Die Stoffproduktion der pflanzen, Fisher, Jena, p. 108.
- Bradford, K.J. and T.C. Hsiao, 1982. Encyl. Plant Physiol. New Ser. 12B : 263-324.
- Brady, N.C. 1974. The Nature and Properties of Soils. MacMillan, New York.
- Brandes, E.W. 1958. In Sugarcane, USDA Hundbook No. 122, Washington, p. 307.
- Brar, G. and W. Thies, 4977. Z. Pflanzen Physiol. 82: 1-13.
- Bremner, P.M. and H. M. Rawson. 1972, Aust. J. Biol. Sci. 25 : 921-930.
- Bremner, P.M. and M.A. Taha, 1966. J. Agric. Sci., Camb. 66 : 241-252.
- Bremner, P.M. 1972. Aust. J. Biol. Sci. 25: 657-681.
- Brenchley, W.E. 1920-21. Ann. Appl. Biol. 6: 211-216.
- Breyhan, T., O. Fischnich and F. Heilinger, 1962. Landbauforsch. Völkenröde 12: 78-80.
- Briggs, G.E., F. Kidd and C. West. 1920-21a. Ann. Appl. Biol. 7 : 103-123.
- Briggs, G.E., F. Kidd and C. West. 1920-21b. Ann. Appl. Biol. 7: 202-223.
- Briggs, G.E., F. Kidd and C. West, 1920-21c. Ann. Appl. Biol. 7 : 403-406.
- Brouwer, R. 1966. In : The Growth of Cereals and Grasses, eds. F. L. Milthorpe and J.D. Ivins, Butterworths, London.
- Brouwer, R., A. Kleinendorst and Th. J. Loeber. 1970. In : Plant Response to Climatic Factors. UNESCO, Paris, pp. 169-174.
 - Response to Chanade Factors, estebblico, Fairs, pp. 105
- Brown, H.B. and J.O. Ware, 1958, Cotton, McGraw-Hill,
- Brewn, D.M. 1960. Agron. J. 52: 493-495.
- Brown, A.H.D., J. Daniels and B.D.H. Latter. 1969. Theor. and Appl. Genet. 39: 1-10.
- Brun, W.A. 1972, Agron. Abstr. p. 31.
- Bull, T.A. and K. T. Glasziou, 1963. Aust. J. Biol. Sci. 16: 737-742.
- Bull, T.A. 1964. Aust. J. Agric. Res. 15: 77-84.
- Bull, T.A. 1969 Crop Sci. 9 : 726-729.
- Bull, T.A. 1971. In : Photosynthesis and photorespiration. eds. M.D. Hatch, C.B. Osmond and R.O. Slatyer, John Willey, pp. 68-75.
- Bull, T.A. and K.R. Gayler and K.T. Glasziou, 1972. Plant Physiol. 49: 1007-1011.
- Burch, G.J.R.C.G. Smith and W.K. Mason. 1978. Aust. J. Plant Physiol. 5: 169-177.
- Burke, M.J., L.V. Gusta, H.A. Quamme, C.J. Weiser and P.H. Li, 1976. Ann. Rev. Plant Physiol. 27: 507-528.
- Burris, J.S., A.H. Wahab and O.T. Edge. 1971. Crop Sci. 11: 492-496.
- Burris, J.S., O.T. Edge and A.H. Wahab. 1973. Crop. Sci. 13: 207-210.
- Burton, W.G. 1966. The Potato, Veenman and Zonen, Wageningen.
- Burton, W.G. and D.F. Meigh. 1971. Poato Res. 14 : 96-101.

- Buttery, B.R. and R.I. Buzzell. 1972. Can. J. Plant Sci. 52 (13-20)
- Buttery, B.R. 1969. Can J. Phant Sci. 49: 675-684.
- Buttery, B.R. 1970. Crop Sci. 10: 9-13.
- Buttrose, M.S. 4962a. Aust. J. Biol. Sci. 15: 611-618.
- Buttrose, M.S. 1962b. J. Cell Biol. 14, 159-167.
- Buttrose, M.S. 1963. Aust. J. Biol. Sci. 16 : 305-317.
- Buttrose, M.S. and I. H., May, 1965, Ann. Bot. 29 ; 79-81,
- Colder, N. 1967. The Environment Game. Secker and Warburg. London, p. 240.
- Cameron, D.S. and F.A. Cossins, 1967, Biochem. J. 105 (323-331)
- Campbell, C.A. and D.W.L. Read, 1968, Can. J. Plant Sci. 48 (299-311)
- Campbell, C.A., W.L. Pelton and K.F. Neilson. 1969. Can J. Plant Sci. 49: 685-699.
- Campbell, D.K. and D.J. Hame, 1970. Crop Sci. 10: 625-626.
- Cannell, R.Q., W.A. Brun and D.N. Moss. 1969. Crop Sci. 9: 840-842.
- Canning, R.F. and P.J. Kramer, 1958. Amer. J. Bot. 45: 378-382.
- Canny, M.J. 1971. Ann. Rev. Plant Physiol. 22 (237-260.
- Carns, H.R. 1966. Ann. Rev. Plant Physiol. 17: 295-314.
- Carpenter, R.W. H.J. Hass and E.F. Miles , 1952. Agron. J. 44 : 420-423.
- Carpenter, P.N. 1957. Bull. Me. Agric Exp. Sta. 562 ; 1-22.
- Carr, D.J. and K.G.M. Skene, 1961, Aust. J. Biol. Sci. 14 : 1-12.
- Carr, D.J. and J.F. Wurdlaw, 1965, Aust. J. Biol. Sci. 18 : 714-719.
- Carr. D.J. and J.S. Pate, 1967, Symp. Soc. Exp. Biol. 21 : 559-600.
- Cart wright, D.J. and D. Snow, 1962, Ann. Bot. 26 : 257-259.
- Catchpole, A.H. and J. Hillman. 1969, Nature Lond. 223 (1387).
- Chandler, W.V. (960) Tech. Bull. North Carolina Agr. Expt. Sta. 143.
- Chang, Jen Hui, 1964. Hawanan Planters' Record, 56 : 195-223.
- Chase, D.I. (1971) M Sc. Thesis, Univ. of Sydney,
- Chin, E.T.Y., R. Poussen and L. Beevers, 1972, Plant Physiol. 49, 482(489,
- Chinoy, J.J. and K.K. Nanda. 1951. Physiol. Pant 4: 427-436.
- Chonan, N. 1965, Proc. Crop. Sci Soc. Japan 33 388-393
- Chonan, N. 1974. Proc. Crop Sci. Soc. Japan 40: 425-430.
- Christiansen, M. N. 1968, Phant Physiol. 43 : 743-746.
- Christiansen, M.N. and R.P. Moore, 1959, Agron. J. 51 : 582-584.
- Christiansen, M.N., H.R. Carns, and D.J. Slyter, 1970, Plant Physiol. 46: 53-56.
- Chinjo, H. 1966a, Proc. Crop. Sc., Soc. Japan 35 (177-186,
- Chujo, H. 1966b. Proc. Crop Sci. Soc. Japan 35 : 187-194.
- Chajo, H. 1967. Proc. Crop. Sci., Soc. Japan 36 : 224-231.
- Clarke, J.M. and G.M. Simpson, 1978. Can. J. Plant Sci. 58: 731-737.
- Claver, F.K. 1964. Rev. Fac. Agron. La Plata 40 : 171-183.
- Clehand, R.E. 186 Anot J. Plant Plasmil, 13 (93-103).
- Coates, J.H. and D.H. Summonds, 1961. Cereal Chem. 38: 256-272.

- Cock, J.H. and S. Yoshida, 1972. Proc. Crop Sci. Soc. Japan 41: 226-234.
- Cole, S. 1961. Neolithic Revolution. 2nd Edition, London.
- Cooper, D.C. 1938. Bot. Gaz. 100 ; 123-132,
- Cooper, J.P. 1960, Ann. Bot. 24 : 232-246,
- Cossins, E.A. 1964. Nature, Lond. 203 : 989-990.
- Curtis, C.E., W.L. Ogren and R.H. Hageman, 1969. Crop Sci. 9: 323-327.
- Daniels, J., K.T. Glasziou and T.A. Bull. 1965, Proc. Intr. Soc. Sugarcane Technol. 12: 1027-1032.
- Daniels, R.W. and D.H. Scarisbrick, 1981. In : Yield of oilseed Rape, Nat. Agric. Cent. Course Papers, pp. 29-46.
- Das Gupta, D.K. 1972. J. Exp. Bot. 23: 103-113,
- Dastur, R.H. 1959. Physiological studies on the cotton crop and their practical applications. The Indian Central Cotton Committee, Bomby.
- Davidson, J.L. and J.R. Philip. 1958, Arid Zone Res. 11: 181-187.
- Davidson, J.L. 1965, Aust. J. Agric. Res. 16: 721-731,
- Davis, K.S. and J.A. Day, 1961. Water. Heinemann, London.
- Davis, D. B. and E.C. A. Runge. 1964, Agron. J. 61: 518-521.
- Davies, W.J., J. Metchalfe, T.A. Lodge and A.R. da Costa. 1986, Aust. J. Plant Physio 113: 105-125.
- Daynard, T.B. and W.G. Duncan, 1969. Crop Sci. 9 : 473-476.
- Daynard, T.B., J.W. Tanner and D.J. Hume, 1969, Crop Sci. 9: 831-834.
- Daynard, T.B., J.W. Tanner and W.G. Duncan. 1971, Crop Sci. 11: 45-48.
- Degemhardt, D.F. and Z.P. Kondra. 1981. Can. J. Plant Sci. 61: 175-183.
- Denmead, O.T. and R.H. Shaw, 1962. Agron. J. 45: 385-390.
- Denmead, O.T. 1970. In : Prediction and Measurement of Photosynthetic Productivity. Pudoc. Wageningen, pp. 149-164.
- Diener, T. 1950. Phytopath. Z. 16: 129-170.
- Dixon, R.O.D. 1964. Arch. Mikrobiol. 48: 166-178.
- Donald, C.M. 1968. Euphytica. 17: 385-403.
- Dornhoff, G.M. 1969, M.Sc. Thesis, Iowa state Univ. .
- Dornhoff, G.M. and R.M. Shibles. 1970. Crop Sci. 10: 42-45.
- Drennan, D.S.H. and C. Norton. 1972. Plant and Siol 36: 53-57.
- Duffield, R.D., L.I. Croy and E.L. Smith. 1972. Agron. J. 64: 249-251.
- Duncan, W.G., R.S. Loomis, W.A. Williams and R. Hanau. 1967. Hilgardia 38: 181-205.
- Duncan, W.G. and J.D. Hesketh. 1968. Crop Sci. 8: 670-674.
- Duncan, W.G. 1971, Crop Sci. 11: 482-485.
- Duncan, W.G. 1973, Proc. 27th Ann. Corn and sorghum Res. Conf. ASTA, 159-167.
- Duncan, W.G., D.R. Davis and W.A. Chapman. 1973. Florida Soil and Crop Sci. Soc. 32: 59-62.
- Dungan, G.H. 1931, Agron. J. 23: 662-669.

- Dunstone, R.I., and L.T. Evans, 1973, Aust. J. Plant Physiol. 1: 157-165.
- Direstone, R.L., R.M. Gettord and L.T. Evans, 1973, Aust. J. Biol. Sci. 26: 295-307.
- Endey, F.B. and J.L. Canter, 1945, J. Amer. Soc. Agron. 37 : 727-735.
- Futon, J. M. and D.R. Ergie, 1948, Plant Physiol, 23 : 169-187,
- Edelman, U and S.P. Singh, 1966, J. Pap. Bot. 17: 696-702.
- Edelman, J., T.G. Jettor Fand S.P. Singh, 1969, Planta 84 : 48-56.
- Edge, O'T, and J.S. Busris, 1970a, Ass. Offic. Seed Anal. Proc. 60: 149-157.
- Filice, O.T. and J.N. Burras, 1970b. Ass. Offic. Seed Anal Proc. 60 : 158-166.
- Faswards, C.U.E.F. and E.E. Hartwig, 1972, Agron. J. 63 (429-430).
- Flusson, L. 1955 Physiol. Plant 8 : 374-388.
- Elmore, C.D. J.D. Hesketh and H. Muramoto, 1967, J. Ariz, Acad. Sci. 4 : 215-219.
- 14 Sharkawy, M. and J.D. hesketh, 1964, Crop Sci. 4, 514-518.
- El Sharkawy, M., J.D. Heskedi and H. Muramoto, 1965. Crop Sci. 5 : 173-175.
- Emerson, W.W. 1984, In Soil Salinity Under Irrigation : processes and Management, eds. 1. Shallberg and J. Shalhevet, Ecol. Studies 51 : 65-76. Springer-verlag, Berlin.
- Parifsson, B. and H. Findblom, 1963, Proc. 10th Easter Sch. Agric, Sci. Univ. Nottingham 45-62.
- Lingledow, F.L. and S.M. Wadham, 1923. J. Agric. Sci. 13 : 390-439.
- Epstein, E., J.D. Norlyn, D.W. Rush, R.W. Kingsbury, D.B. Kelley, G.A. Cunningham and A.F. Wrona, 1980. Science 210: 399-404.
- Evans, I. T. and R.L. Dunstone, 1970. Aust. J. Biol.Sci. 23 (725-741).
- Evans, I. F., R.L. Dunstone, H.M. Rawson and R.F. Williams, 1970, Aust. J. Biol. Sci. 23 (1443) 152.
- Evans, I. T. 1971, In Photosynthesis and Photorespiration, eds. M.D. Hatch, C.B. Osmond and R.O. Sladyer, Wiley-Interscience, New York, pp. 130-136.
- Itvatis, F. J. Bingham and M.A. Roskams, 1972, Aust. J. Biol.Sci. 25 (1-8)
- Evans, I. L. J. Burgham, P. Jackson and J. Sutherland, 1972, Ann. Appl. Biol. 70: 67-25
- Evens, A.D. 1970, Ann. Box 34, 547-555
- Fisher, R.A. 1920 21; Ann. Appl. Biol. 7 : 367-372
- Fischer, R. V. and C. P. Kohn. 1966, Aust. J. Agric. Rev. 17, 281-295.
- 4 (scher), R. X. 1973, *bi* Plant Response to Climatic Factors, UNESCO, Parts, pp. 233-244
- [14mm] A.M. and J.S. (eds) 1968 Ann. Box 32 (479)495.
- Figure VAL 1969, Pr.D. Diesis, queen's Univ., Belfast
- Flinn, A.M. and J.S. Pate, 1970, J. Exp. Bot. 21 (71)82.
- Lord, M.A. and C.N. B. one, 1967, Ann. Bot. 31 : 629-644.
- Eox. J.E. 1969. T. Physiology of plant growth and development. ed. M.B. Wilkins, McGuaw Hill, New York, pp. 83-123.
- Equival C X V D Sherrin D D Harpstead, and D.C. Cassalott 1970. Crop. Sci. 10: $4c \approx 4t_0 s$

- Frazier, J.C. and B. Appalanaidu. 1965. Amer. J. Bot. 52: 193-198.
- Friend, D.J.C. 1965a. Can. J. Bot. 43: 345-353.
- Friend, D.J.C. 1965b. Can. J. Bot. 43: 1063-1076.
- Friend, D.,C. 1966, h_{i} : The Growth of Cereals and Grasses, eds. F.L. Milthorpe and J.D. Ivins, Butterworth, London, pp. 181-199.
- Friend, D.J.C., V.A. Helson and J.E. Fisher. 1962. Can. J. Bot. 40: 299-311.
- Fry, K.E.1970. Plant Physiol.45: 465-469.
- Fryxell, P.A. 1963. Bot. Gaz. 124: 196-199.
- Fujii, Y. 1961. Bull. Fac. Agr. Suga Univ. 12: 1-117.
- Fulcher, R.G., T.P. O'Brien and D.H. Simmonds, 1972, Aust. J. Biol. Sci. 25 : 487-497. Funnah, S.M. 1971, Ph.D. Thesis, Univ, of Florida.
- Funnah, S.M. 1971. ph.D. Thesis. Univ. of Florida.
- Gaastra, P. 1962, Netherlands J. Agric. Sci. 10: 311-324.
- Gaff, D.F. 1980. In : Adaptation of Plants to water and High Temperature stress, eds.
- N.C. Turner and P.J. Kramer, Wiley, New York, pp. 207-230.
- Gardner, W.R. 1960. Soil Sci. 89: 63-73.
- Gates, J.W. and G.M. Simpson. 1968. Can. J. Bot. 46: 1459-1462.
- Gates, D.M. 1976. In : Water and Plant life, eds. O.L. Lange, L. kappen and E. -D. Schulze. Ecological studies 19: 137-147. Springer Verlage, Berlin.
- Gavin, W. 1951, J. Min. Agric, 58: 105-111.
- Gericke, F. 1908. Zeitachrift für Naturw, 80 : 321-363.
- Ghorashy, S.R., J.W. Pendelton, R.L. Bernard and M.E. Bauer. 1971. Crop Sci. II: 426-427.
- Gieger, D.R., M.A. Saunders and D.A. Cataldo, 1969. Plant Physiol. 44: 1657-1665.
- Gifford, R.M. and J. Moorby. 1967. Eur. Potato J. 10: 235-238.
- Gifford, R.M., P.M. Bremner and D.B. Jones 1973. Aust. J. Agric. Res. 24: 297-307.
- Gifford, R.M. 1974. Aust. J. Plant Physiol. 1: 107-117.
- Gilman, D.F., W.R. Fehr, and J.S. Burris. 1973. Crop Sci. 13: 246-249.
- Glasziou, K.T., T.A. Bull, M.D. Hatch and P.C. Whiteman. 1965, Aust. J. Biol. Sci. 18 ; 53-66.
- Glasziou, K.T. and T.A. Bull. 1974. In : Photo-Synthesis and Photo respiration. eds. M.D. Hatch, C.B. Osmond and R.O. Slatyer. John Wiley Inc. pp. 82-88.
- Goodwin, P.B. 1966, Eur. Potato J. 9: 53-63.
- Goodwin, P.B. 1967. J. Exp. Bot. 18: 87-99.
- Goodwin, P.B., A. Brown, J.H. Lennard and
 - F.L. Mithorpe, 1969a, J. Agric, Sci., Camb. 73: 161-166.
- Goodwin, P.B., A. Browik, J.H. Lennard and F.L. Milthorpe, 1969b, J. agric, Sci, Camb. 73:167-16.
- Gosnel, J.M. 1968, Proc. Intr. Soc. Sugar cane Technol. 13: 499-513.
- Goss, LA. 1968. Bot. Rev. 34: 333-358.
- Gott, M.B. 1961, Aust. J. Agric, Res. 12: 547-565.
- Grabe, D.F. and R.B. Metzer. 1969. Crop Sci. 9 : 331-333.

- Grace, J. 1977, Plant Response to Wind, Academic Press, London,
- Graham, J.S.D., R.K.Morton and J.K. Raison 1963. Aust. J. Biol.Sci. 16: 375-394.
- Graham, D., M.D. Hatch, C.R. Slack and R.M. Smillie, 1970. Phytochem. 9 : 521-532.
- Grahl, A. 1965, Landbou forsch. 15 : 97-106.
- Grant, U. J., W.H. Hatheway, D.H. Timothy, D. C, Cassalottand L.M.Roberts. 1963 Publ. Nat. Res. Council Nat. Acad. Sci. Washington, No. 1136.
- Grasmanis, V.O. and K.P. Barley, 1969. Aust. J. Biol. Sci. 22 : 1313-1320.
- Greacen, E.L. and J.S. Oh. 1972. Nature New Biol. 235 : 24-35.
- Green, D.E., E.I. Pinnell, L.E. Cavanah and L.F. Williams. 1965. Agron. J. 57: 165-168.
- Green, H A.L. and I.C. Anderson, 1965, Crop Sci. 5 : 229-232,
- Gregory, F.G. 1917. Third Ann. Rep. Exptl. and Res. Sta. Cheshunt. pp. 19-28.
- Gregory, F.G. 1928. Ann. Bot. 42: 369-507.
- Gregory, L.E. Encyl. Pl. Physiol. 15: 1328-1354.
- Grobman, A.W., W. Salhuano, R. Sevilla and P.C. Managels dorf. 1962. Publ. Nat. Res. Concil. Nat, Acad. Sci. Washington No. 915.
- Guardiola, FL, and J.F. Suteliffe, 1971a. Ann. Bot. 35: 791-807.
- Guardiota, J.L., and J.F. Sutcliffe, 1971b. Ann. Bot. 35: 809-823.
- Guardiola, J.L. and J.F. Sutcliffe, 1972. J. Exp. Bot. 23: 322-337.
- Guinn, G. and R.E. Hunter, 1968, Crop Sci. 8: 67-70,
- Hackett, C. 1973. Aust. J. Biol. Sci. 26: 1057-1071.
- Hall, V.L., J.M. Smis and T.H. Johnston. 1968. Agron, J. 60: 450-453.
- Hall, H.K. and J.A. McWha. 1981. Ann. Bot. 38: 419-429.
- Hallauer, A.R. and W.A. Russell. 1962. Crop Sci. 2: 289-294.
- Halse, N.J. and R.N. Weir, 1970. Aust. J. Agric Res. 21 : 383-393.
- Ham, G.J. 1970. Report of Water Research Foundation of Australia. No. 32.
- Hanif, M. and R.H.M. Langer. 1972. Ann. Bot. 36: 721-727.
- Hansen, W.R. 1972. Ph.D. Thesis, Iowa state Univ.
- Hanson, W.D., R.C. Leffel and R. Howell, 1961. Crop Sci. 1: 121-126.
- Hanson, W.D. 1971. Crop Sci. 11: 334-339.
- Hanway J.J. and C.R. Weber. 1971. Agron. J. 63: 227-230.
- Hanway, J.J. and C.R. Weber, 1971a, Agron. J. 63 : 227-230.
- Hanway, J.J. and C.R. Weber, 1971b. Agron. J. 63 : 263-266.
- Hanway, J.J. and C.R. Weber, 1971c. Agron. J. 63: 286-290.
- Hanway, J.J. and C.R. Weber, 1971d. Agron. J. 63: 406-408.
- Hardman, L.L. and W.A. Brun, 1971. Crop Sci. 11: 886-888.*
- Hardy, P.J. and G. Norton, 1968, New Phytol. 67: 139-143.
- Hardy, R.W.E., R.C. Burns and R.D. Holsten, 1973. Soil. Biol. Biochem, 5: 47-81.
- Hardfand, S.C. 1961. Biograph. Mem. Fellows Roy. Soc. 7 : 1-16.
- Harper, J.E., J.C. Nicholas and R.H. Hageman. 1972. Crop Sci. 12: 382-386.

- Hartt, C.E. 1972. Plant Physiol. 49: 569-571.
- Hashimoto, K. and R. Yamamoto. 1970. Proc. Crop. Sci. Soc. Japan 39: 164-170.
- Hashimoto, K. 1971, Hokkaido Nat, Agr. Exp. Sta. Res. Bull. 99 : 17-29.
- Hartting, W., W.M. Kaiser and C. Bursckka, 1983.Z. pflanzenphysiol, 112:131-138.
- Hatch, M.D. and C.R. Slack, 1970. Ann. Rev. Pl. Physiol. 21: 141-162.
- Harvey, D.M. 1971, Ann. Report. John Innes Institute, England 62:35.
- Haupt, W. 1969. In : The Induction of Flowering. ed. L.T. Evans, MacMillan pp. 393-408.
- Hawkey, J.S. 1965. Aust. J. Biol. Sci. 18: 959-969.
- Hayashi, K. and H. Ito. 1962. Proc. Crop Sci. Soc. Japan 30 : 329-334.
- Hayashi, K. 1966. Proc. Crop Sci. Soc. Japan 35 : 205-211.
- Hayashi, K. 1972, Bull. Nat. Inst. Agr. Sci. Japan Ser. D. 23: 1-67.
- Head ford, D.W. R. 1962. Eur. Potato J. 5: 14-22.
- Heath, O.V.S. and F.G. Gregory, 1938. Ann. Bot. 2: 811-818.
- Heilmann, B., W. Hartung and H. Gimmler, 1980. Z. Pflanzenphysiol. 97 : 67-78.
- Helback, H. 1950. Tollund mandens sidste maaltid Araboger for Nordisk Olkdkyndighed og Historie.
- Hellmuth, E.O. 1971. Photosynthetica 5: 190-194.
- Henson, I.E. 1983, Ann. Bot. 52: 247-255.
- Henson, I.E. 1985, J. Exp. Bot. 36: 1232-1239.
- Herner, R.C. 1969. Diss. Abstr. 29 : 2316B.
- Hesketh, J.D. and D.N. Moss. 1963. Crop Sci. 3 : 107-110.
- Hesketh, J.D. and A. Low, 1968, Cott. Gr. Rev. 45 : 243-257.
- Hesketh, J.D. 1968. Aust. J. Biol. Sci. 21: 235-241.
- Hesketh, J.D., D.N. Baker and W.G. Duncan. 1971. Crop Sci. 11: 394-398.
- Hesketh J.D. and D.N. Baker, 1969. J. Ariz. Acad. Sci. 5 : 216-221.
- Hesketh, J.D., D.N. Baker and W.G. Duncan. 1972. Crap Sci. 12: 436-439.
- Hesketh, J.D., S S. Chase and D.K. Nanda. 1969. Crop Sci. 9 : 460-463.
- Hicks, D.R. and J.W. Pendleton, 1969. Crop Sci. 9: 435-437.
- Hidaka, N. 1968. Bull. Nat. Inst. Agr. Sci. Japan Ser. A. 15: 1-175.
- Hofstra, G. and C.D. Nelson, 1969. Planta, Berl. 88: 103-112.
- Hoffman, G.J., S.E. Rawlins, M.J. Garber and E.M. Cullen. 1971. Agron. J. 63 : 822-826.
- Holmgren, P., P.G. Jarvis and M.S. Jarvis. 1965. Pysiol. Planta. 18: 557-573.
- Honoya, K. 1961. Tohku Agr. Expt. Sta. Bull. 21: 1-143.
- Hornberger, R. 1885, Landw. Versuch. 31: 415.
- Hoshikawa, K. 1959. Proc. Crop Sci. Soc. Japan 28: 291-295.
- Hoshikawa, K. 1961a. Proc. Crop Sci. Soc. Japan 30: 228-231.
- Hough, H.N. 1978. ADAS Quarterly Review 31: 217-221.
- Howell, R.W. and J.E. Cartter. 1958. Agron. J. 50: 664-667.

- Hozumi, K., H. Koyami and T. Kira. 1955. J. Inst. Polytechnics Osaka city Univ. Ser. D6 (321-130).
- Hozyo, Y., S. Kato and H. Kobayashi. 1972. Proc. Crop Sci. Soc. Japan 41: 420-425.
- Hsia, C., S. Waon and F. Wong, 1963. Acta Bot. Sin. 11: 338-349.
- Hsio, T.C. 1973.Ann. Rev. Plant Physiol. 24: 519-570.
- Hsio, T.C. and E. Acevedo. 1974, Agric. Meteorol. 14: 59-84.
- Hsio, T.C., E. Acevedo, E. Fereres and D.W. Henderson. 1976. Phil. Trans. R. Soc. London B273 : 479-500.
- Hsio, T.C., J.C. O'Toole, E.B. Yambao and N.C. Turner. 1984. Plant Physiol. 75: 338-341.
- Hubbell, D.H. and G.H. Elkan. 1967. Can. J. Microbiol. 13: 235-241.
- Hubick, K.T., J.S. Taylor and D.M. Reid. 1986. Plant Growth Regul. 4: 139-152.
- Hughes, A.P. and P.R. Freeman. 1967. J. Appl. Ecl. 4: 553-560.
- Humbert, R.P. 1968. The Growing of Sugarcane. American Elsevier Pub. Co. Inc. New York. p. 779.
- Hume, D.J. and D.K. Campbell, 1972, Can. J. Plant Sci. 52: 363-368.
- Humphries, E.C. and P.W. Dyson, 1967. Eur. Potato J. 10: 116-126.
- Hunt, R. and I.T. Parsons. 1974. J. Appl. Ecol. 11: 297-307.
- Hunter, R.B., T.B. Daynard, J.W. Tanner, J.D. Curtis and L.W. kannenberg. 1969. Crop Sci. 9: 405-406.
- Hurd, E.A. 1968. Agron. J. 60: 201-205.
- Hussain, S.M. and L. Linck. 1966. Physiol. Plant. 19: 992-1010.
- Hussain, S.M. 1967. Diss. Abstr. 27: 4258B.
- Hymowitz, T. 1970. Econ. Bot. 24: 408-421.
- Inada, K. 1967. Bull. Nat.Inst. Agr. Sci. Japan Ser. D16: 19-156.
- Ishibara, A. 1956. Proc. Crop Sci. Soc. Japan 24 : 211.
- Islam, M.M. and N.K. Paul. 1985. J. Bangladesh Acad. Sci. 9: 201-206.
- Islam, M.R., P.B. Kundu and N.K. paul. 1988. Crop Res. 1 : 194-204.
- Ishihara, A. 1961. Proc. Crop Sci. Soc. Japan 30: 88-92.
- Ishizuka, Y. and A. Tanaka. 1963. Studies on the nutrio-physiology of the rice plant. Yokendo, Tokyo.
- IRRI. 197. In : Annual report of Inter. Rice Res. Inst. for 1969, The Philippines. pp. 118-139.
- Irvine, J.E. 1967. Crop sci. 7: 297-304.
- Jain, T.C. and K.C. Jain. 1979. Indian J. Agric. Sci. 49: 470-472.
- Jarvis, P.G. and T.A. Mansfield, 1981. Stomatal Physiology. Cambridge Univ. Press.
- Jean, F.C. 1928. Bot. Gaz. 86: 319-329.
- Jenner, C.F. 1968. Aust. J. Biol. Sci. 21: 597-608.
- Jenner, C.F. and A.J. Rathjen. 1972. Ann. Bot. 36: 743-74.
- Jennings, A. C. and R.K. Morton. 1963a. Aust.J. Biol. Sci. 16: 318-331.
- Jennings, A. C. and R. K. Marton. 1963b. Aust. J. Biol. Sci. 16: 332-341.

Jennings, P.R. 1967. Crop Sci. 4 : 13-15.

Jensen, N.F. 1964. Science 157 : 3405-1409.

Jewiss, O.R. 1972. J. Brit. Grassl. Soc. 27 : 65-82.

Joarder, O.L. N.K. Paul and S.K. Ghose (1979) Expl. Agric 15 (200) 302

Johnson, H.W., H.A. Borthwick and R.C. Letfel, 1960; Bot. Gaz. 122: 77-95

Johnson, B. L. and O.Hall, 1965. Amer. J. Bot. 52: 506-573.

Johnson, V.A., P.J. Mattern and J.W. Schmidt, 1967. Crop Sci. 7: 664-667.

- Johnson, D.R. and J.W. Tanner. 1972. Crop Sci. 12: 482-485.
- Johnston, T.J., J.W. Pendelton, D.B. Peters and D.R. Hicks. 1969. Crop Sci. 9: 577-581.

Jolliffe, P.A. and E.F. Tregunna. 1968. Plant Physiol. 43: 902-906

Jones, V.M. and D. Boulter, 1968. New Phytol. 67 : 925-934.

Jordan, W.R. 1970. Agron. J. 62: 699-701.

Jordan, W.R. and J.T. Ritchie, 1971. Plant Physiol. 48: 783-788.

Jordan, W.R., W.A. Dugas and P.J. Shouse. 1983. In .: Plant production and Management Under Drought Conditions, eds. J.F. Stone and W.O. Wills. Elsevier, Amsterdam. pp. 281-299.

Juliano, B.O. and J.E. Varner. 1969. Plant Physiol. 44: 886-892.

* Junges, W. 1959. Z. fur pflazenz. 41: 103-122.

Kapoor, B.M. 1966. Genetica. 37: 557-568.

Kato, I. and S. Sakaguchi, 1954. Tokai-kinki Nat. Agr. Exp. Sta. Bull. 1: 115-132.

Kato, L. S. Sakaguchi and Y. Naito, 1954, Tokai-Kinki Nat. Agr. Phys. Sia, Bull. 1 (196-114.

Kato, L. S. Sakaguchi and Y. Naito. 1955. Tokai-Kinki Nat. Agr. Exp. Sta. Bull. 2: 59-188.

Kato, I. 1967, Tokal-Kinki Nat. Agr. Exp. Sta. p. 14.

Kellogg, C.E. and A.C. Orvedal. 1968. War on Hunger. 2: 14-17.

Khan, M.A. and M. Tsunoda. 1970. Jap. J. Breed. 20: 305-314.

Khan, M.A. and S. Tsunoda (1970) Jap J. Breed, 20: 133-140.

Kiesselbach, M. 1949, Res. Bull. Univ. Nebr. Agr. Expt. Sta. 161

Kiltz, H. 1909. Bot. Zbl. 110 : 455-456.

King, R.W. and L.T. Evans. Aust. J. Biol. Sci. 20: 623-635.

King, R.W., I.F. Wardlaw and L.T. Evans. 1967. Planta, Berl. 77, 261-276.

King, E.E. and H.C. Lane. 1969. Plant Physiol. 44: 903-906.

Kishida, K. 1970, Proc General Meet, Soc. Agr. Meteor, Japan, pp. 25-26.

Knott, D.R. and B. Talukdar. 1971. Crop Sci. 11: 280-283.

Kollotfel, C. and J.V. Sluys. 1970. Acta Bot. Neerl, 19: 503-508.

Kortschak, H.P., C.E. Hartta nd G.O. Burr. 1965. Plant Physiol. 40: 209-213

Koyama, T., A. Miyasaku and K. Eguchi. 1962. Proc. Crop. Sci. Soc. Japan 30 (1443-145.

- Kozloski, T.T. (ed.) 1972. Water Deficits and Plant Growth. Vol. III. Academic Press, New York,
- Kramer, P.J. and T.T. Kozloski. 1979. Physiology of Woody Plants. Academic Press, New York.
- Kramer, P.J. 1980. In : Adaptation of Plants to Water and High Temperature Stress. eds. N.C. Turner and P.J. Kramer. Wiley, New York. pp. 7-20.
- Krautsova, B.Y. 1957. Dokl. Akad.Nauk. SSSR 115: 822-825.
- Krekule, J. 1964. Biol. Planta. 6: 299-305.
- Kreusler, U., A. Prehn and G. Becker. 1877. Landw. Jahrb. 6 : 759-786.
- Kriedeman, P. 1966. Ann. Bot. 30: 349-363.
- Kumura, A. 1956. Proc. Crop. Sci. Soc. Japan 24 : 177-180.
- Kumura, A. 1960. In : Experimental methods in crop science, vol. ii. eds. Y. Togari, T. Matsuo, M. Hatamura, N. Yamada, T. Harada and N. Suzuki. Nogyo-gijutsu-kyokai, Japan. pp. 195-274.
- Kumura, A. and T. Takeda. 1962. Proc. Crop Sci. Soc. Japan 30: 261-265.
- Kumura, A. and I. Naniwa. 1965. Proc. Crop Sci. Soc. Japan 33: 467-472.
- Kundu, P.B., K.M. Roy and N.K. Paul, 1989, Crop Res. 2 : 131-136.
- Kundu, P.B., R.K. Mondal, S.C. Biswas and N.K. Paul. 1991. Rajshahi Univ. studies 19: 37-45.
- Lactsch, W.M. and H.P. Kortschak. 1971. Plant Physiol. 49: 1021-1023.
- Laing, D.R. 1966. Ph.D. Thesis. Iowa state Univ.
- Landsberg., J.J. and G.B. James. 1971. J. Appl. Ecol. 8: 729-742.
- Lang, A. 1952. Ann. Rev. Plant Physiol. 3 : 265-306.
- Langer, R.H.M. and F.K.Y. Liew. 1973, Aust. J. Agric. Res. 24: 647-656.
- Langer, R.H.M. and M. Hanif. 1973. Ann. Bot. 37: 743-751.
- Lapwood, D.H., G.A. Hide and J.M. Hirst, 1967. Pl. Path. 16: 61-63.
- Larson, L.A. 1968. Plant Physiol. 43: 255-259.
- Larson, L.A. and L. Kyagaba, 1969. Can. J. Bot. 47: 707-709.
- Larsarides, D.L. 1967. Eur. Potato J. 10: 100-107.
- Lawlor, D.W. 1969. J. Exp. Bot. 20: 895-911.
- Leblova, S., I. Zimakova, D. Sofrova and J. Barhtova. 1969. Biol. Plant. 11: 417-423.
- Lee, J.H. and Y. Ota. 1971. Proc. Crop Sci. Soc. Japan 40: 217-222.
- Leffel, R.C. 1961. Marylant Agr. Exp. Sta. Bull, A-117: 69.
- Leopold, A.C. and F.S. Guernsey, 1954, Amer. J. Bot. 41 : 181-185.
- Levitt, J. 1972. Responses of Plants to Environmental Stress. Academic Press, New York.
- Lewis, O.A.M. and J.S. Pate, 1973, J. Exp. Bot. 24: 596-606.
- Lie, T.A. 1969. Plant and Soil 31: 391-406.
- Lie, T.A. 1971. Plant and Soil 34 : 751-752.
- Linck, A.J. 1961. Phytomorphology II: 79-84.
- Linke, R.D. and N.G. Marinos. 1970. Aust. J. Biol.Sci. 23: 1125-1131.

২৩৪

তথ্যপঞ্জি

- Lipsett, J. 1963. Aust. J. Agric. Res. 14: 303-314.
- Liu, M.C. and H.H. Hadley, 1971, Crop Sci. 11: 467-471,
- Locke, L.F. and J.A. Clark, 1924. J. Amer. Soc. Agron. 16: 261-268.
- Loomis, R. S. W. A. Williams, 1963. Crop Sci 5: 67-72.
- Loomis, R.S. and W.A. Williams, W.G. Duncan, A. Dourat and A.F. Nuner. 1968. Crop Sci. 8 : 352-356.
- Lpatecki, L.E., E.L. Longair and R. Kasting, 1962. Can. J. Bot. 40: 1223-1228.
- Lovell, P.H. and A. Booth, 1967. New Phytol. 66 ; 525-537.
- Lovell, P.H. 1969. Physiol. Plant 22: 506-515.
- Lovell, P.H. and A. Booth. 1969. New Phytol. 68: 1175-1185.
- Low, A., J.D. Hesketh and H. Muramoto, 1969. Cott. Gr. Rev. 46 : 181-188.
- Lowe, L.B. and S.K. Ries, 1972. Can. J. Plant Sci. 52: 157-164.
- Lowe, L.B., G.S. Ayers and S.K. Ries. 1972, Agron. J. 64: 608-611.
- Ludlow, M.M. 1980. In : Adaptive significance of stomatal responses to water stress, eds. N.C. Turner and P.J. kramer, pp. 123-138.
- Lugt, C., K.B.A. Bodiaender and G. Goodijk. 1964. Eur. Potato J. 7 : 219-227.
- Lupton, F.G.H. 1966, Ann. Appl. Biol. 57 : 335-364.
- Lupton, F.G.H. and M.J. Pinthus. 1972. Nature, Lond. 221: 483-484.
- Madee, P. 1963. Proc. 10th Ester Sch. Agrie, Sci. Univ. Nottingham 121-130.
- Madee, P. 1964, Proc. 2nd. Trienn, Conf. EAPR, 1963, pp. 36-39,
- Madec, P. and P. Perennec, 1969. Eur. Potato. J. 12: 96-115.
- Maeda, K. 1960. Proc. Crop. Sci. Soc. Japan, 29 : 158-160,
- Mague, T.H. and R.H. Burris. 1972. New Phytol. 71 : 275-286.
- Majernik, O. and T.A. mansfield. 1972. Environ. Pollut. 3: 1-7.
- Mann, J.D. and E.G. Jawoski. 1970. Crop Sci. 10: 620-624.
- Mansfield, T.A. 1976. In : Commentaries in Plant Science. ed. H. Smith. Pergamon Press. Oxford. pp. 13-22.
- Mansfield, T.A. (ed.). 1976. Effects of air Pollution on Plants. Cambridge Univ. Press.
- Mansfield, T.A. 1983. Sci. Prog. Oxf. 68 ; 519-542.
- Maretzki, A. and A. De la Crus. 1967. Plant and Cell Physiol. 8: 605-611.
- Mason, T.S. and E.J. Maskell. 1928. Ann. Bot. 42: 189-253.
- Mathur, O.P. and P.S. Tomar. 1972. Indian J. Agron. 17: 306-308.
- Matin, M.A., M.A. Hossain and M.A.S. Miah. 1988. Bangladesh J. Sugarcane. 10: 108-110.
- Matsuo, T. 1959. Min. Agr. For. Japan p. 128.
- Matsushima, S. 1957. Bull. Nat. Inst. Agr. Sci. Japan Ser, A. 5 ; 1-271.
- Matsushima, S. and T. Manaka . 1959. Proc. Crop Sci. Soc. Japan 27 : 432-434.
- Matsushima, S. and T. Manaka. 1961. Proc. Crop Sci. Soc. Japan 29: 202-206.
- Matsushima, S. and T. Manaka, 1963. Proc. Crop Sci. Soc. Japan 29: 202-206.
- Matsushima, S. and T. Manaka, 1963, Proc. crop Sci. Soc. Japan 32 : 44-47.

তঘ্যপঞ্জি

- Milburn, J.A. 1979. Water Flows in Plants. Longmans, London.
- Millerd, A. and J.R. McWilliam. 1968. Plant Physiol. 43: 1967-1972.
- Miller, A.A. and W.R.Gardner. 1972. Agron. J. 64: 559-562.
- Milthorpe, F.L. 1963. Proc. 10th Easter Sch. Agric. Sci. Univ. Nottingham 3-16.
- Milthorpe, F.L. and J. Moorby (1969) Ann. Rev. Plant Physiol. 201 117-138.
- Mithorpe,F.L. and J. Moorby, 1974. An Introduction to Crop Physiology. Cambridge Univ. Press.
- Minchin, F.R. and J.S. Pate. 1973. J. Exp. Bot. 24: 259-271.
- Minotti, P.L. and W.A. Jackson. 1970. Planta 94: 36-44.
- Misra, S.R., R.S. Ram and K. Singh. 1987. Indian J. Agric. Sci. 57 : 267-270.
- Mitchell, D.J. and R.G.S. Bidwell. 1970. Can. J. Bot. 48 . 2001-2007.
- Mitchell, R.L. and W.J. Russell, 1971 Agron. J. 63 : 313-316.
- Mittelheuser, C.J. and R.F.M. Steveninek. 1971. Planta 97: 83-86.
- Mohapatra, N., E.W. Smith, R.C. Fifes and G.R. Noggle. 1970. Biochem. Biophy. Res. comm. 40 : 1253-1258.
- Moll, A. 1968. Flora, Jena 159: 277-292.
- Moll, A. 1970, Biochem, Physiol.Pflanzen 161 : 74-80.
- Mondal, R.K. and N.K. Paul. 1994. Bangladesh J. Bot. 23: 123-126.
- Mongelard, J.C. and L. Mimura. 1971. Crop Sci. 11, 795-800.
- Mongelard, J.C. and L. Minmura. 1972. Crop Sci. 12: 52-58.
- Monsi, M. and T. Saeki. 1953. Jap. J. Bot. 14: 22-52.
- Monteith, J.L. 1977. In : In Agricultureal Efficiency. The Royal Society, London.
- Moomaw, J.C., P. Baldazo andL. Lucas 1967. IRC Newsletter Special Issue, pp. 18-25.
- Moorby, J. and S. McGrow. 1966. Ann. Appl. Biol. 54: 159-170.
- Moorby, J. 1967. Eur. Potato J. 10: 189-205.
- Moorby, J. 1968. Ann. Bot. 32: 57-68.
- Moorby, J. 1970. Ann. Bot. 34: 297-308.
- Moore, T.C. and E.K. Bonde. 1962. Plant Physiol. 37: 149-153.
- Moore, T.C. 1964. Plant Physiol. 39: 924-927.
- Moore, T.C. 1965. Nature, Lond. 206 : 1065-1066.
- Morgan, J.M. 1984. Ann. Rev. Plant Physiol. 35 : 299-319.
- Morgan, J.M. and R.W. King, 1984, Aust. J. Plant Physiol. 11 : 143-150.
- Moraghan, B.J. 1970. Ph.D. Thesis. Iowa state Univ.
- Morris, D.A. 1966, Eur. Potato J. 9 ; 69-85,
- Morrison, J.W. 1955. Can. J. Bot. 33: 168-176.
- Morris, D.A. 1967. Eur. Potato J. 10 : 296-311
- Mortimore, C.G. and G.M. Ward. 1964. Can. J. Plant Sci. 44 : 451-457.
- Moss, D.N., E.G. Krezer and W.A. Brun. 1969. Science 164: 187-188.
- Mulchi, C.L., R.J. Volk and W.A. Jackson. 1971. In Photosynthesis Photorespiration. eds. M.D. Hatch, C.B. Osmond and R.O. Slatyer View Interscience, New York, pp. 35-50.

- Mulder, E.G. 1948. Plant and Soil 1: 179-212.
- Mukherjee, N. 1979, Proc. Ann. Con. Sug. Techin. Asso. India, 43 : 37-43.
- Munns, R. and A. TerMaat, 1986, Aust. J. Plant Physiol. 13: 143-160.
- Muramoto, H., J.D. Hesketh and C.D. Elmore. 1967. Proc. Cotton Physiology Defoliation Conf. pp. 161-165.
- Muramoto, H., J.D. Hesketh and D.N. Baker, 1971. Crop Sci. 11: 189-591.
- Murata, Y. and A. Osada. 1958. Proc. Crop Sci Soc. Japan 27. 12-14.
- Murata, Y. 1961, Bull. Nat. Inst. Agr. Sci. Japan Ser. D. 9: 1-169.
- Murata, Y. 1964a, Proc. Crop Sci. Soc. Japan 33: 59-63.
- Murata, Y. 1964b. In : Mineral nutrition in rice plants. IRRI. Johns Hopkins Press. pp. 385-400.
- Murata, Y., J. Iyama, M. Himeda, S. Izumi, A. Kawabe and Y. Kanzaki. 1966. Bull. Nat. Inst. Agr. Sci. Japan Ser. D. 15: 1-53.
- Murata, Y. 1969. In : Physiological aspects of Crop yield, eds. J.D. Eastin, F.A. Haskins, C.Y. Sullivan and C.H.M. Van Bavel, ASA and CSSA, Madison, Wisconsin.
- Murata, Y. and Y. Togari, 1972. Proc. Crop Sci. Soc. Jupan 41: 372-387.
- Murayama, N. 1971. Nogyo-oyobi-engei 46 : 145-149.
- Murtaza, M.G. and N.K. Paul. 1989, Bangladesh J. Agri. 14: 163-168.
- Nagato, K. and F.M. Chaudhury, 1969, Proc. Crop Sci. Soc. Japan 38 : 425-433.
- Naidu, K.M. and K.V. Bhagyalaksmi, 1967. Current Sci. 36 : 555-556.
- Nakaina, M. and T. Asahi. 1972, Plant Cell Physiol. 13: 101-110.
- Nakayama, H. 1969. Proc. Crop Sci. Soc. Japan 38: 338-341.
- Namken, L.N. 1964, Siol. Sci. Soc. Amer. Proc. 28: 12-15.
- Namken, L.N. 1965. Agron. J. 57: 38-41.
- Natr. L. 1963. Rostl. Vyroba. 13: 797-818.
- Nawa, Y. and T. Asahi. 1971. Plant Physiol. 48: 671-674.
- Neales, T.F., M.J. Anderson and I.F. Wardlaw. 1963. Aust. J. Agric. Res. 14 : 725-736.
- Neales, T.F. and J.A. Davies. 1966. Aust. J. Biol. Sci. 19 : 471-480.
- Nelson, C.D. 1963. *In* : Environmental control of plant growth, ed. L.T. Evans. Academic Press, New York, pp. 149-172.
- Neuffer, M.G., L. Jones and M.S. Zuber. 1968. The Mutants of Maize. Crop Sci. Soc. Amer. Madison.
- Norton, G. and J.F. Harris, 1975 Planta 123 : 163-174.
- Nutman, P.S. 1956, Biol. Rev. 31: 109-151,
- Oghoghorie, C.G.O. 1971. Ph.D. Thesis, Univ. Belfast.
- Oghoghorie, C.G.O. and J.S. Pate, 1971, Plant and Siol, Special vol. 185-202.
- Ogren, W.L. and G. Bowes, 1971. Nature New Biol. 230 ; 159-160.
- Ohad, J., J. Friedburg, Z. Neéman and M. Schramm, 1971. *Plant Physiol*, 47: 465-477. Ohirogge, A.J. 1958. *Plant Food Rev.* 4: 4-6.
- Ojima, M., J. Fukui and I. Watanabe. 1965. Proc. Crop. Sci. Soc. Japan 33 : 437-442.

তথ্যপঞ্জি

- Ojima, M. and J. Fukui. 1966. Proc. Crop. Sci Soc. Japan 34 : 448-152.
- Ojima, M. and R. Kawashima. 1968. Proc. Crop Sci. Soc. Japan 37 667 675.
- Okajima, H. 1960. Tohku Univ. Inst. Agr. Res. Bull. 12: 1-146.
- O'Kelly, J.C. 1953. Plant Physiol. 28: 281-286.
- Osada, A. and Y. Murata, 1965, Proc. Crop. Sci. Soc. Japan 33 : 460-466.
- Osada, A., M. Nara, S. Dhammanuvong, H. Chakurabanthu, M. Rahony and M. Gesprosert. 1972. Proc. Crop Sci.Soc. Japan 41: 87-88.
- Osada, A. 1966. Bull. Nat. Inst. Agr. Sci. Japan Ser. D. 14: 117-188
- Pahlich, E. and K.W. Joy. 1971. Can J. Biochem. 49: 127-138.
- Pandey, R.K. 1972, Ph.D. Thesis Univ. Illonois.
- Parker, M.W. and H.A. Borthwick, 1943, Bot. Gaz. 104 : 612-619
- Passioura, J.B. 1972. Aust. J. Agric. Res. 23 : 745-752.
- Passioura, J.B. 1977. J. Aust. Inst. Agric. Sci. 43: 559-565.
- Passioura, J.B. 1984. Aust. J. Plant Physiol. 11: 333-339.
- Pate, J.S. 1958. Aust. J. Biol.Sci. 11: 366-381.
- Pate, J.S. 1962. Plant and Soil 17: 333-356.
- Pate, J.S., B.E.S. Gunning and L.G. Briarty, 1969. Planta 85: 11-34.
- Patil, B.B. and R.De. 1978. J. Agric. Sci., Camb. 91 : 257-264.
- Paul, N.K. and A.M. Sarker. 1989. Bangladesh J. Sci. Res. 7: 145-154.
- Paul, N.K. 1990a. Acta Agronomica Hungarica 39 : 31-36.
- Paul, N.K. 1990b. Acta Agronomica Hungarica 39 : 37-42.
- Paul, N.K. 1991. Bangladesh J. Bot. 20: 143-148.
- Paul, N.K. and P.B. Kundu. 1991. Proc. Inte. Conf. Pt. Physiof. Benaras Hindu University pp. 35-42.
- Paul, N.K. and D.K. Saha. 1992. Crop Res. 5 : 249-255.
- Pablov, A.N. 1969. Sel'khoz. Biologia 4 : 230-235.
- Pearce, R.B., G.E. Carlson, D.K. Barnes, R.H. Hart and C.H. Hanson. 1969. Crop Sci. 9 : 423-426.
- Peaslee, D.E., J.L. Rangland and W.G. Duncan, 1971, Agron. J. 63 561 563
- Premdasa, M.A. 1982. New Phytol. 90: 209-219.
- Pendleton, J.W., G.E. Smith, S.R. Winter and J.J. Johnston. 1968 Agrout J. 60 : 422-424.
- Penning de Vries, F.W.T. 1972. In : Crop Processes in Controlled environments, eds. A.R. Rees, K.E. Cockshull, D.W. Hand and R.G. Hard. Academic Press, New York, pp. 327-346.
- Perry, D.A. and J.G. harrison. 1970. J. Exp. Bot. 21: 504-512.
- Peters, D.B. and L.C. Johnson. 1960. Agron. J. 52: 687-689.
- Peters, D.B., J.W. Pendleton, R.H. Hageman and C.M. Brown. 1971. Agron. J. 61, 809-815.
- Phillips, I.D.J. 1969. In : Physiology of plant growth and development ed. M.B. Wilkins, McGrow-Hill, New York, pp. 163-202.
- Phillips, D.A. 1971. Planta 100 : 181-190.

- Phillis, E. and T.G. Maskell. 1936. Ann. Bot. 50: 161-174.
- Plaisted, P.H. 1957, Plant Physiol. 32: 445-453.
- Pierce, M. and K. Raschke, 1980, Planta 148: 174-182.
- Pinthus, M.J. and Y. Eshel. 1962. Isreal J. Agric. Res. 12: 13-20
- Pinthus, M.J. 1963. Crop Sci. 3 : 301-304.
- Pinthus, M.J. and R. Osher, 1966, Isreal J. agric. Res. 16: 53-58
- Pinthus, M.J. 1967. Euphytica 16: 231-251.
- Powell, R.D. and P.W. Morgan, 1970. Plant Physiol. 54: 548-552
- Pressey, R. and R. Shaw- 1966. Plant Physiol. 41: 1657-1661
- Pressey, R. 1969. Plant Physiol. 44: 759-764.
- Pressey, R. 1970. Amer. Potato J. 47: 245-251.
- Puckridge, D.W. 1968. Aust. J. Agric. Res. 19: 191-201.
- Puckridge, D.W. 1971, Aust. J. Agric. Res. 22: 1-9.
- Puckridge, D.W. and D.A. Ratkowsky, 1971. Aust. J. Agric. Res. 32:331-20
- Quartie, S.A. and H.G. Jones. 1977, J. Exp. Bot. 28: 182-203
- Radin, J.W., L.L. Parker and G.Guinn. 1982. Plant Physiol. 70 (1066-1070)
- Radin, J.W. 1984. Plant Physiol. 6: 392-394.
- Redley, R.W. 1963. In : The growth of the potato eds. J.D. Ivins and I/L. Milthorpe, Butterworth, London, pp. 211-220.
- Radley, M. 1970. Planta, Berl. 92: 292-320.
- Raja, V. and K.C. Bishnoi. 1990. Exp. Agric 26: 227-233
- Raper, C.D. Jr. and S.A. barber. 1970. Agron, J. 62: 581-584.
- Rappaport, L. and N. Wolf, 1969, Symp. Soc. Exp. Biol. 23: 249-240
- Raschke, K. 1975. Annu. Rev. Plant Physiol. 26: 309-340
- Raschke, K. and R. Hedrich. 1985. Planta, Berl. 163 : 105-118.
- Rawson, H.M. and C.M. Donald, 1969. Aust. J. agric Res. 20 1799/308
- Rawson, H.M. 1970. Aust. J. Biol. Sci. 23: 1-16.
- Rawson, H.M. 1971. Aust. J. Biol. Sci. 24: 829-841.
- Rawson, H.M. and L.T. Evans. 1971. Aust. J. Agric. Res. 22, 851-863.
- Rawson, H.M., J.E. Begg and R.G. Woodward. 1977. Planta Berl, 134-5 40.
- Reddy, B.N., M.N. Sinha and M.R. Hedge, 1988. J. Oilseeds Res 5: 36-44
- Reitz, L.P. and S.C. Salmon, 1968, Crop Sci. 8: 686-689.
- Rejowski, A. 1964, Bull. Acad. Polon. Sci. Cl. V. 12 : 233-236
- Revelle, R. 1966, Proc. Natl. Acad. Sci. 56 : 328-351.
- Reynolds, J.D. 1960. Agriculture '66: 509-513.
- Richards, F.J. 1959. J. Exp. Bot. 10: 290-300.
- Richards, R.A. and J.B. Passioura, 1981. Crop Sci. 21: 249-252
- Riddel, J.A. and G.A. Gries. 1958. Agron. J. 50: 739-742.
- Rijven, A.H.G.C. and R. Cohen. 1964. Aust. J. biol. Sci. 14 552-566.

- Rijven, A.H.G.C. 1972, Acta Bot. Neerl. 21 : 381-386
- Roach, B.T. 1968. Proc. Intern. Sco. Sugar Cane, Technol. 13, 939-954

1.12

- Rowan, K.S. and D.H. Turner, 1957. Aust. J. Biol. Sci. 10: 414-415
- Roy, K.M. and N.K. Paul, 1991. Acta Agronimica Humani, 46 112383
- Russel, E.W. 1973. Siol Conditions and Plant Growth H originan. Condon-
- Sabalvoro, E.G. 1965, M.Sc. Thesis, Univ. Nottingham,
- Sabbe, W.E. and G.w. Cathey, 1969 Agron. J. 61: 436-438
- Sachs, T. 1966, Ann. Bot. 30: 447-456,
- Sachs, T. 1968a, Ann. Bot. 32: 391-399.
- Sachs, T. 1968b. Ann. Bot. 32: 781-790.
- Sadler, E. 1961, Ph.D. Thesis, Univ. Nottingham.
- Sacki, T. 1960. Bot. Mag., Tokyo 73 : 55-63.
- Saghir, A.R., A.R. Khan and W. Worzefla. 1968 Agram 1, 60, 485 971
- Salim, M.H., G.W. Todd and A.M. Schlehuber, 1965, Agren, J. 57, 603-607
- Salter, P.J. and D.H. Drew, 1965. Nature, Lond. 206 (136) 144
- Saito, M., T. Yamamoto, K. Goto and K. Hashimoto. 1970. Proc. Crop Sc., Soc. Japan 39: 511-519.
- Samimy, C. 1970. Ph.D. Thesis, Iowa State Univ
- Sampaio, I.B.M. and J. Dobereiner, 1968, Pesq. Agropec. Brasil, vol. 255, 263
- Sand stedt, R. 1971. Physiol. Plant. 24 : 408-410.
- Sass, J.E. 1951 Iowa State College J. Sci. 25 809-512
- Schalldach, I. and G. Schilling, 1966. Albrecht Thear Archivelier, 829 830,
- Scrimshaw, N.S. 1966. Proc. Natl. Acad. Sci. 56 : 352-359
- Seko, H., K. Samoto and K. Suzuki. 1956. Proc. Crop. Sci., Soc. Japan 24, 139 (99)
- Shain, Y. and A.M. mayer, 1968. Plant Physiol. 21: 765-776
- Sharpe, P.R. and J.B. Dent. 1968. J. Agric. Sci., Camb. 70, 423 (29).
- Sharpe, R.E. and W.L. Davies, 1979. Planta, Berl. 147 (43)49.
- Shaw, R.H. and H.C.S. Thom. 1951, Agron. J. 43 (54), 546.
- Shibles, R.M. and C.R. Weber, 1965, Crop. Sci. 5: 575-577
- Shibles, R.M. and C.R. Weber, 1966. Crop. Sci. 6 : 55 59.
- Sibma, L. 1970. Neth. J. Agric. Sci. 18 : 125-131.
- Siemer, E.G. 1964. Ph.D. Thesis, Univ. Illonois
- Simon, E.W. and R.M. Harun, 1973, J. Exp. Bot. 23 (1006-1085)
- Simpson, G.M. 1968. Can. J. Plant Sci. 48 : 253-260.
- Singh, O.S. and V.K. Sharma, 1972, Vitis, 11 131-134
- Single, W.V. 1964, Aust. J. Exp. Agric, Anim. Husb. 4 || 165/168
- Sionit, N., B. Strain, H. Hellmers and P. Kramer. 1980. Bot. Gaz. 142 : 191-196
- Sironval, C. 1958, Nature, Lond. 181, 1272-1273
- Slatyer, R.O. 1957 Aust. J. Biol. Sci. 10: 320-336.
- Slater, J.W. 1963. Proc. 10th Easter Sch. Agric. Sci. Univ. Nottingham, 514 (12)

- Slatyer, R.O. 1967. Plant Water Relationships. Academic Press, Leudon
- Slater, J.W. 1968. Eur. Potato J. 11: 14-22.
- Slomnicki, L and I. Rylski, 1964, Eur. Potato J. 7., 184 192
- Smillie, R.M. 1962. Plant Physiol. 37: 716-721.
- Smith, D.L. and A.M. Flinn, 1967. Planta. Berl. 74 : 72-85
- Smith, E.W., R C. Fites and G.R. Noggle 1971. Cotton Deto¹iation Physiology Conference, Atlanta, pp. 47-54.
- Snaith, P.J. and T.A. Mansfield, 1982, J. Exp. Bot. 33 (300-365).
- Snow, R. 1937. New Phytol. 36: 283-300.
- Sofield, L., L.T. Evans and J.F. Wardlaw. 1974. In Mechanisms of Regulation of plant Growth. Roy. Soc. Newzealand, Wellington.
- Soga, Y. and M. Nozaki. 1957. Proc. Crop. Sci. Soc. Japan 26 (105) 108.
- Spiertz, J.H.J., B.A. ten Hag and L.J.P. Kupers. 1971. Neth. J. Agr. Sci. 39 (2)1-222.
- Sprem, J.I. 1968. Planta, Berl. 82: 299-301.
- Sprent, J.I. 1969. Planta, Berl. 88: 372-375.
- Sprent, J.I. 1971a. In : Biological Nitrogen Fixation in Natural Habitats, eds. T.A. Lie and E.G. Mulder, Martinus Nijhoff, pp. 225-230
- Sprent, J.I. 1971b. New Phytol. 70: 9-17.
- Stanfield, B., D.P. Ormrod and F.H. Fletcher. 1966. Can. J. Plant Sci. 46 (195)203.
- Stevenson, K.R. and R.H. Shaw, 1971a, Agron. J. 63 17 19
- Stevenson, K.R. and R.H. Shaw, 1971b. Agron. J. 63, 527 329
- Stoy, V. 1963. Physiol. Plant. 16: 851-866.
- Stoy, V. 1965. Physiol. Plant. Suppl. 4 : 1-125.
- Streeter, J.G. 1972, Agron. J. 64: 315-319.
- Suetsugu, I. Anaguchi, K. Saito and S. Kumano. 1962. Hokariku Agr. Evp. Stat. Buli, 3 , 89-96.
- Suge, H. and J. Hirano, 1962, Proc. Crop. Sci. Soc. Japan 31, 129-134
- Suge, H. and N. Yamada, 1965, Proc. Crop Sci. Soc. Japan 33 (330,334)
- Suge, H. and A. Osada. 1966. Plant and Cell Physiol. 7:, 617-630
- Suteliffe, J. 1977. Plants and Temperature. Edward Arnold, Loadon.
- Swada, S. 1970, J. Pac. Sci. Univ. Tokyo Sect. III Bot. 10, 233-263.
- Syme, J.R. 1968, Aust. J. Exp. Agric. Anim. Husb. 8 (578-881).
- Syme, J.R. 1969 Aust. J. Exp. Agric Anim. Hush 9 (528-53).
- Syme, J.R. 1970, Aust. J. Exp. Agric. Anim. Husb. 10: 350-353
- Tarahashi, J., N. Murayama, M. Oshima, M. Yoshino and M. Yonayisawa: 1955. Buil. Nat Inst. Agr. Sci. Japan Ser. B 4 : 85–122.
- Takahashi, J., I. Iwata snd I. Baba, 1959, Proc. Crop. Sci. Soc. Jup in 28 (22-24)
- Takeda, T. 1956, Proc. Crop. Sci. Soc. Japan 24 : 181-184
- Takeda, T. and, H. Murata. 1961, Japan J. Bot. 17: 403-437.
- Tamiya, H. 1957. Annu. Rev. Plant Physiol. 8: 309-334

- Tanaka, A., S.A. Navasero, C.V. Garcia, F.T. Parao and E. Ramirez, 1964, IRR1 Tech. Bull. 3 : 1-80.
- Tanaka, A., K. Kawano and J. Yamaguchi. 1966. Int. Rice Res. Inst. Tech. Bull. 7: 1-46.
- Tanaka, A. and B.S. Vergava, 1967. IRC Newsletter Special Issue pp. 26-42
- Tanaka, T., S. Matsushima, S. kajo and H. Nitta. 1969. Proc. Crop Sci. Soc. Japan 38 : 287-293.
- Takchevskii, I.A. and Y.S. Karpilov. 1963. Soviet Plant Physiol. 10: 183-184.
- Tayo, T.O. and D.G. Morgan, 1975, J. Agric. Sci. Camb. 85 (303-110).
- Teare, I.D. and C.J. Peterson, 1971, Crop. Sci. 11: 627-628.
- Teare, I.D., A.G. Law and G.F. Simmons, 1972. Can. J. Plant Sci. 52: 80-94.
- Temaat, A., J.B. Passioura and R. A. Olson (1969) Agron. J. 64: 755-759, R. Muans 1985, Plant Physiol. 77: 869-872.
- Terman, G.L., R.E. Ramig, A.F. Dreir and R.A. Olson. 1969. Agron J. 61 : 755-759
- Thaine, R., S.L. Ovenden and J.S. Turner, 1959. Aust. J. Biol. Sci. 12: 349-372.
- Tharp, W.H. 1960. The Cotton Plant. How It Grows. U.S.D.A. han. book No. 178.
- Thomas, M.D. 1965. In : Plant Physiology. ed. F.C. Steward. Academic Press. New York, pp. 9-202.
- Thomas, R.O. and M.N. Christiaan sen. 1971. Crop Sci 11: 454-456.
- Thomas, K. and J.P. Grime, 1983, J. Appl. Ecol. 20: 141-156.
- Throne, G.N. 1965, Ann. Bot. 29: 317-329.
- Thorne, G.N., M.A. Frod and D.J. Watson. 1967. Ann. Bot. 31: 71-101.
- Thorne, G.N., M.A. Ford and D.J. Watson. 1968 Ann. Bot. 32: 425-446
- Thornley, J.H.M. and J.D. Hesketh. 1972. J. Appl. Ecol. 9: 315-317.
- Torfason, W.E. and I.L. Nonnecke, 1959. Can. J. Plant. Sci. 39 (119-124).
- Thoughton, A. 1962, Comm. Bur. Pastures and Field Crops., Hurley p. 94.
- Throughton, J.H. 1969. Aust. J. Biol Sci. 22: 289-302.
- Trouse, A. 1970. Ann. Proc. Assoc. Southern Agric. Workers, p. 51.
- Tsunoda, S. 1959. Jap. J. Breed. 9: 237-244.
- Tsunoda, S. 1960. In :: Morphology and function of rice pl. nl. ed. T. Matsuo, Nogyogijutsu-Kyokai, Tokyo, pp. 179-228.
- Tsunoda, S. 1962, Jap. J. Breed. 12: 49-56.
- Tsunoda, S. 1964. In .: Mineral Nutrition of Rice Plants. IRRI, Johns Hopkins Press. Baltimore, Maryland.
- Tsuno, Y. 1968. Proc. Symposium on comparative studies on the brimary productivity of various terrestrial ecosystems. J. IBP, 1967. pp. 22-28.
- Tsuno, Y. and K.Kotalado. 1970. Proc. Crop Sci. Soc. Japan 39. Exita Issue 1:11-32.
- Turner, N.C. 1979. In: Stress Physiology of Crop Plants, eds. II. Mussell and R.C. staples, Wiley, New York, pp. 343-373.
- Turner, N.C. and D.P. Singh, 1984. New Phytol. 96: 187-195.
- Turner, N.C., E. -D. Schulze and T. Gollan. 1984. Occologia 63: 338-342.
- Van Schaik, P.H. and A.H. Probst, 1958. Agron. J. 50: 197-197

- Van Vliet, W.F. and H. Sparenbeg, 1970. Potato Rev. 13, 223-227.
- Van Volkenburg, E. and J.S. Boyer, 1985 Plant Physiol. 77 (190-194).
- Varner, J.E., L.V. Balce and R.C. Huang, 1963. Plant Physiol. 38: 89-92.
- Vernon, L.P. and S. Aronoff, 1952, Arch. Biochem. Biophys. 36: 383-398
- Vernon, A.J. and J.C.S. Allison, 1963, Nature, Lond. 200: 814.
- Viera da Silva, J. and Ch. Poisson, 1969. Cun. J. Genet. Cytol. 11, 582-596.
- Vierada Silva, J. 1972. Physiol. Phant 25: 213-220.
- Virtanen, A.I. and A.M. Berg, 1954. Acta. Chem. Sciula, 8: 1089-1090.
- Vries, A.P. de. 1971. Euphytica 20 : 152-170.
- Wada, G. 1969. Bull. Nat. Inst. Agric Sci. Japan Ser. A 16 : 27-167.
- Waddle, B.M., C.F. Lewis and T.R. Richmond. 1961. Genetics 46: 427-437.
- Waggoner, P.E. 1969. In : Physiological aspects of crop yield, eds. J.D. Eastin, F.A. Haskins, C.Y. Sullivan and C.H.M. van Bayal. ASA and CSSA, Madison
- Waldron, J.C. 1966. M.Sc. Thesis. Univ. Queensland.
- Waldron, J.C., K.T. Glasziou and T.A. Bull. 1967. Aust. J. Biol. Sci. 20: 1043–1052
- Wang, T.D. and J. Wei, 1964. Acta. Bot. Satura 12: 154-158.
- Wankhede, N.P., I.P.S. Ahlawat and V.M. Salmi, 1970. Indian J. Agric. Sci. 40, 373 377.
- Warldaw, I.F., D.J. Carr and M.J. Anderson, 1965 Aust. J. Agric, Rev. 16, 895-901.
- Wardlaw, I.E. 1963. Aust. J. Biol. Sci. 20 : 25-36.
- Wardlaw, LF. 1970. Aust. J. Biol.Sci. 23 : 765-6-54
- Wardlaw, I.F. 1971. Aust. J. Biol. Sci. 24 : 1043/4058.
- Wardlaw, I.E. 1974. *In* : Cereals in Australia eds. A. Lazenoy and L.M. Matheson, Angus and Robertson.
- Wardlaw, J.F. 1979. Proc. Agron. Soc. NZ, 9:39-48.
- Watson, D.J. and E.C.D. Baptiste, 1938, Ann. Bot. 9 : 437-480.
- Watson, D.J. 1947. Ann Bot. 11: 41-76.
- Watson, D.J. 1942, Adv. Agron. 4: 101-145.
- Watson, D.J. 1963, Proc. 10th Easter Sch. agric. Sci. Univ. Nottingham, pp. 233-247
- Watson, D.J., G.N. Thome and S.A.W. French. 1963. Ann. Bot. 27: 1-22.
- Watson, D.J. 1971. In: Potential Crop Production. eds. P.F. Warering and J.P. Cooper. Heinemann. London. pp. 76-88.
- Wattal, P.N. 1965, Indian J. Plant Physiol. 8 : 145-159.
- Weber, C.R. and B.E. Caldweit 1966. Crop Sci. 6 : 25-27.
- Weber, C.R., R.M. Shibles and D.E. Byth 1966. Agron J. 58 (199-162
- Webster, R. and P.H.T. Beckett, 1972, J. Agric, Sci. Comb. 78 (378-58).
- Weber, C.R. 1966. Agron. J. 58: 46-49.
- Weibel, D.K. 1958, Agron. J. 50 : 267-270.
- Weiss, M.G., C.R. Weber, L.F. Williams and A.H. Probst. 1957 Agron. J. 44 (288) 297.
- Welbank, P.J., S.A.W. French and K.J. Withs, 1966 Ann Ber 301 (91-300).

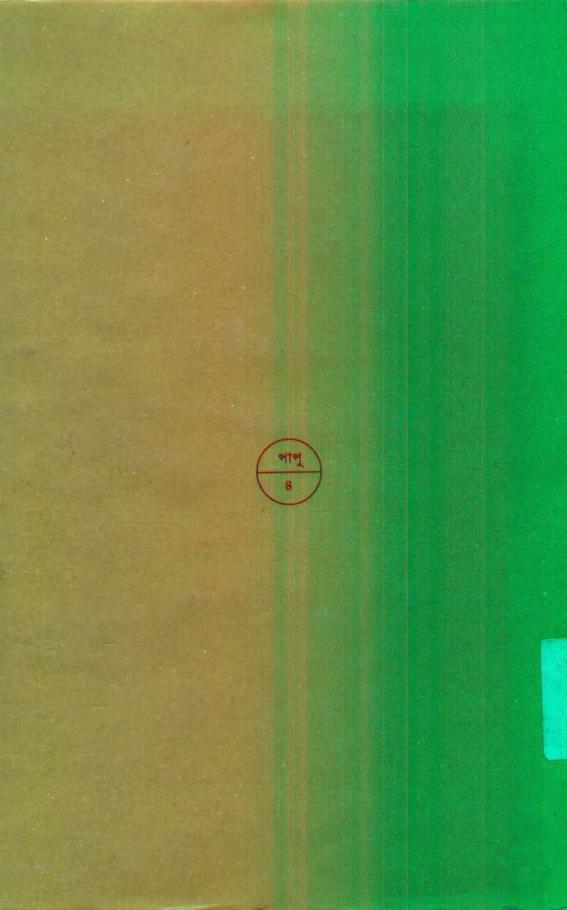
- Wells, B.R. and T.H. Johnston, 1970, Agron J. 62 (608-612
- Wheeler, A.W. 1972. Ann. Appl. Biol. 72 327-334
- Whiteman, P.C., T.A. Bull and K.T. Glasziou. 1963. Anst. J. Buol. Sci. 16 (416-428)
- Willey, R.W. and R. Holliday, 1971a. J. Agric, Sci. Camb. 77, 445-452
- Willey, R.W. and R. Holliday, 1971b. J. Agric. Sci. Camb. 27, 453-461.
- Williams, R.F. 1946, Ann. Bot. 10, 41-72
- Williams, R.F. 1960, Aust. J. Biol. Sci. 13 : 401-428
- Williams, S.G. 1970. Plant Physiol. 45: 374-381.
- Willmer, C. 1983. Stomata, Longman, London,
- Wolf, F.T. 1967, Z. Pflanzenphysiol. 57: 128-133.
- Wilson, D. and J.P. Cooper, 1969. New Physical, 58 (1945)1123.
- Wong, P.P. and H.J. Evans, 1971, Plant Physiol, 47, 750-755
- Woodbridge, C.G. 1969. Proc. Ann. Soc. hort. Sci. 94 : 542-544.
- Woodruff, D.R. 1969, Aust. J. Agric. Rev. 20, 13–24
- Woodworth, C.M. 1930, J. Amer. Soc. Agron. 22 31:50.
- Wright, S.T.C. and R.W.P. Hiron, 1969 Nature, Lond (224), 119 720
- Yabuki, K. and K. Kamotam. 1971. JIBP 2PP P. Level in Experiments Report 1976, pp 1-5.
- Yang, S.I. and J.B. Chen. 1980. Proc. ISSC 1 (17) 30-37.
- Yamada, N., Y. Murata, A. Osada and J. Lvania. 1984. Proc. Crop.Sci. Soc. Japan 23 214-222
- Yamada, N., Y. Ota and K. Kushibuchi. 1987. Proc. Comp. Sci. New Japan 26, 441–478
- Yamada, N., Y. Ota and T. Nakamura, 1964. Proc. Crop Sci. Soc. Japan 29: 329-333
- Yorke, J.S. and G.R. Sagar, 1970. Can. 48: 699-704
- Yoshida, S. and S.B. Ahn, 1968, Sov. Sci. Natrition 141, 453–462
- Yoshida, S. 1972. Annu. Rev. Plant Physiol. 23: 437-464.
- Yoshida, S., J.H. Cock and P.T. Parao. 3972. In : Rice Breeding, IRRE Los Bansos, pp 455-468.
- Young, S.J. and E. De Jong, 1972, Agron J. 64, 874-578.
- Zabadal, T.J. 1974. Plant Physiol 53 : 125-127
- Zee, S.Y. and T.P. O'Brien, 1971, Aust. J. Biol. Sci. 24, 58-49.

গ্ৰন্থপঞ্জি

- Bewley, J. D. and M. Black. 1978. Physiology and Biochemistry of Seeds. vol. 1. Springer-Verlag.
- Byrant, J. A. 1985. Seed Physiology. Edward Arnold.
- Eastin, J. D., F. A. Haskins, C. Y. Sullivan and C. H. M. Van Bavel (eds.), 1969. *Physiological Aspects of Crop Yield*. American Society of Agronomy, Crop Science Society of America, Madison.
- Evans, L. T. (ed.) 1975. Crop Physiology : Some Case Histories. Cambridge University Press.
- Evans, L. T. (eds.). 1963. Environmental Control of Plant Growth. Academic Press.
- Fitter, A. H. and R. K. M. hay, 1987, Euvironmental Physiology of Plants, Academic Press,
- Grace, J. 1983. Plant Atmosphere Relationshhips. Chapmon and Hall.
- Harper, F. 1983. Principles of Arable Crop Production. Granada.
- Hunt, R. 1978, Plant Growth Analysis, Edward Arnold,
- Johnson, C. B. (ed.). 1981. Physiological Processes Limiting Plant Productivity Butterworth.
- Jones, H. G. 1983, Plants and Microclimate, Cambridge University Press.
- Kramer, P.J. 1969. Plant and Soil Water Relationships. A Modern Synthesis. McGraw Hill.
- Landberg, J. J. And C. V. Cutting (eds.) 1977. Environmental Effects on Crops Physiology. Academic'Press.
- Larcher, W. 1980. Physiological Plant Ecology, Springer Verlag.
- Levitt, J. 1972. Responses of Plants to Environmental Stresses. Academic Press.
- Meidner, H. and T.A. Mansfield, 1968. Physiologs of Stomata, McGraw-Hill,
- Milthorpe, F.L., and J. Moorby, 1979. An Introduction to Crop Physiology, Cambridge University Press.
- Monteith, J. L. 1973. Principles of Environmental Physics. Edward Arnold.
- Mudd, J. B. and T. T. Kozłowski (eds.) 1975. Responses of Plants to Air Pollution, Academic Press.
- Neiburger, M., J. D. Edinger and W. D. Bonner. 1973. Understanding our Atmospheric Environment. Freeman.
- Oke, T. R. 1978. Boundary Layer Climates. Methuen.
- Petterssen, S. 1969. Introductory to Meteorologes. McGraw-H91.
- Rending, V. V. and H.M. Taylor. 1989. Principles of Soil-Plant Interrelationships McGraw-Hill.
- Rose, C.W. 1966. Agricultural Physics. Pergamon

গ্ৰন্থপঞ্জি

Russell E.W. 1973, Soil conditions and Plant Growth, Longman,


- Shiv Raj, A. 1978. An Introduction of Physiology of Field Crops. Oxford & IBH Publishing Co.
- Subbiah Mudaliar, V.T. 1984. Principles of Agronomy, Bangalore Printing and Publishing Co. Edd.
- Wareing, P. F. and J. P. Cooper (eds.) 1971. Potential Crop Production. London : Heinemann Educational Books.

Williers, T. A. 1975. Dormancy and the Survival of Plants. Edward Arnold.

নিশীথ কমার পাল (১৯৫০-), পি এইচ, ডি (উদ্ভিদ শারীরতত্ত্ব ওয়েলস বিশ্ববিদ্যালয়, যুক্ত-রাজ্য)। বাংলাদেশ বিশ্ববিদ্যালয় মঞ্জুরী কমিশন ও রাজশাহী বিশ্ববিদ্যালয়ের আর্থিক সহায়তায় পবিচালিত তিনটি গবেষণা প্রকল্প পরিচালক প্রকলেপর হিসেবে, সুইডেন-বাংলাদেশ পরি-গবেষণা প্রকল্পে চালিত প্রিন্সিপাল ইনভেস্টিগেটর ও পরবর্তীকালে প্রোগ্রাম কো-অর্ডিনেটব হিসেবে করেন। নটিংহাম বিশ্ব-যুক্তরাজ্যের বিদ্যালয়ের স্কুল অব এগ্রি– কালচার এ একাডেমিক স্টাফ ফেলো হিসেবে কাজ করেন। ভারতের হায়দ্রাবাদে অবস্থিত অব–উষ্ণ গ্রীক্ষমগুলীয় শস্য সম্পর্কিত আন্তর্জাতিক গবেষণা কেন্দ্রের ফেলো হিসেবে ও উত্তর বঙ্গ বিশ্ববিদ্যালয়ের পরিদর্শক বিজ্ঞানী হিসেবে এবং যুক্তরাজ্যের পরিবেশ সম্পর্কিত গবেষণা প্রতিষ্ঠানের পরিদর্শক বিজ্ঞানী হিসেবে কাজ করেন। বিশ্ব-বিদ্যালয়ের পি এইচ, ডি পর্যায়ের ৭টি ও সাতকোত্তর পর্যায়ের ১৮টি থিসিস প্রোগ্রামের তন্ত্বাবধান করেন। ড পালের প্রকাশিত গবেষণাপত্রের সংখ্যা ১৩০টি এবং স্রাতক ও স্রাতকোত্তর পর্যায়ের উপযোগী পাঠ্য বা পাঠ্যসহায়ক গ্রন্থের সংখ্যা এই গ্রন্থের দুটি খণ্ডসহ মোট ৮টি। বিভিন্ন দৈনিক পত্রিকায় তাঁর অনেক বিজ্ঞান– বিষয়ক জনপ্রিয় প্রবন্ধ প্রকাশিত হয়েছে। বিবাহিত জীবনে ড পাল দুই সন্তানের জনক।

